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Pion-induced double-charge exchange reactions in the � resonance region
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We have applied the Giessen BUU (GiBUU) transport model to the description of the double-charge exchange
(DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120–180 MeV. The DCX
process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents
a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. The impact
of surface effects, such as the neutron skins of heavy nuclei, is investigated. The dependence of the total cross
section on the nuclear mass number is also discussed. We achieve a good quantitative agreement with the extensive
data set obtained at LAMPF. Furthermore, we compare the solutions of the transport equations obtained in the
test-particle ansatz using two different schemes: the full and the parallel ensemble methods.
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I. INTRODUCTION AND MOTIVATION

Over the past two decades, the Giessen Boltzmann-
Uehling-Uhlenbeck (GiBUU) transport model has been devel-
oped to describe heavy-ion collisions and photon-, electron-,
pion-, and neutrino-induced reactions within one unified
transport framework. A realistic treatment of pion interactions
with the nuclear medium is crucial for the interpretation of
experiments where pions are produced inside nuclei. Recently,
it has been shown using GiBUU [1–3] that pion rescattering
in the final-state description of photon-induced double-pion
production produces a considerable modification of the ππ

invariant-mass distributions observed by the TAPS Collab-
oration [4]. Moreover, neutrino-induced pion production, a
source of background for neutrino oscillation experiments [5],
is very sensitive to pion final-state interactions [6,7]. The
propagation of low-energy pions in nuclear matter in the
GiBUU framework has already been extensively discussed in
Ref. [3] and compared to quantum mechanical calculations.

In this context, pionic double-charge exchange (DCX) is
a very interesting reaction. The fact that DCX requires at
least two nucleons to take place makes it a very sensitive
benchmark for pion rescattering and absorption. This reaction
has received considerable attention in the past (see. e.g.,
Ref. [8] and references therein). The mechanism of two se-
quential single-charge exchanges has traditionally been able to
explain the main features of this reaction [9,10] at low energies,
although the contribution of the A(π, ππ )X reaction becomes
progressively important as the energy increases [11,12]. At
higher (∼1 GeV) energies, the sequential mechanism becomes
insufficient to account for the reaction cross section [13,14].
Extensive experimental studies performed at LAMPF obtained
high-precision data for doubly differential cross sections on
3He [15] and heavier nuclei (16O,40 Ca, and 208Pb) [16] in the
region of Ekin = 120–270 MeV.
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Hüfner and Thies [17] explored for the first time the
applicability of the Boltzmann equation in πN collisions
and achieved qualitative agreement with data on single-
and double-charge exchange. Their method of solving the
Boltzmann equation was based upon an expansion of the pion
one-body distribution function in the number of collisions.
There, in contrast to our work, the Boltzmann equation is
not solved with a test-particle ansatz but by reformulating it
into a set of coupled differential equations, which can then
be solved in an iterative manner. However, this approach was
based on simplifying assumptions of averaged cross sections
and averaged potentials. The work by Vicente et al. [11] was
based upon the cascade model described in [18]. There, a
microscopic model for πN scattering was used as input for the
pion reaction rates in the simulation. In that work [11], pion
DCX off 16O and 40Ca has been explored and fair quantitative
agreement with data has been achieved.

In our work, we explore DCX on heavier nuclei, comparing
our results with the data measured by Wood et al. [16]. We
also address the scaling of the total cross section discussed by
Gram et al. [19]. To focus only on single-pion rescattering,
we consider incoming pion energies below Ekin = 180 MeV;
above that energy 2π production becomes prominent and the
DCX no longer necessarily takes place in a two-step process.
Because of the small mean free path of the incoming pions,
the process is mostly sensitive to the surface of the nucleus.
Therefore, we will discuss and compare two widely used
numerical schemes for the solution of the Boltzmann equation:
the parallel ensemble method employed in the BUU models
[20–23] and in the Vlasov-Uehling-Uhlenbeck model [24] and
the full ensemble method used in the Landau-Vlasov [25],
Boltzmann-Nordheim-Vlasov [26,27], and relativistic BUU

[28,29] models. Both schemes are based on the test-particle
representation of the single-particle phase-space density, but
they differ in the locality of the scattering processes (c.f.
discussion in [30,31]). In the parallel ensemble method, all
test particles are subdivided into groups, or parallel ensembles.
The number of test particles in each parallel ensemble is
equal to the number of physical particles in the system.
Collisions are allowed only between test particles from the
same parallel ensemble, and the mean field is averaged over all
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parallel ensembles. Without the mean field, then, the parallel
ensemble method is equivalent to the intranuclear-cascade sim-
ulation [32]. In the full ensemble method, collisions between
all test particles are allowed. The low-energy (Elab = 10–
50 MeV/nucleon) heavy-ion collisions are better described
by the full ensemble method, since this method provides
convergence to the exact solution of the original kinetic
equation in the limit of large N (≡ number of test particles per
nucleon). However, in codes oriented to particle production
in high-energy heavy-ion and hadron-nucleus collisions, the
parallel ensemble method is commonly used, since it is
simpler and numerically less expensive (see the discussion in
Sec. III C). The advantage of the parallel ensemble method
is that each parallel ensemble can be considered as a physical
event, but this method does not converge to the solution of the
kinetic equation in the limit of large N .

This article is structured in the following way. First, we
introduce our GiBUU [33] transport model, emphasizing the
most relevant issues. Next, we discuss the solution of the
Boltzmann equation by using both the full ensemble and
the parallel ensemble schemes and check their consistency.
Finally, we present our results on DCX in comparison to the
data.

II. THE GiBUU TRANSPORT MODEL

Boltzmann-Uehling-Uhlenbeck (BUU) transport models are
based on the Boltzmann equation, which was modified by
Nordheim, Uehling, and Uhlenbeck to incorporate quantum
statistics. A brief description of the formalism is given in the
following. For a detailed discussion concerning the physical
input for pion-induced reactions we refer the reader to [3] and
the references therein. A more general description of the whole
GiBUU model will be given in a forthcoming paper [34].

A. The BUU equation

The BUU equation actually consists of a series of coupled
differential equations, which describe the time evolution of
the single-particle phase-space densities fa(�r, �p, t). The index
a = π,ω,N,�, . . . denotes the different particle species in
our model. A large number of mesonic and baryonic states is
actually included, but at the energies of interest for this study,
the relevant ones are π,N, and the �(1232) resonance.

For a particle of species X, its time evolution is given by

dfX(�r, �p, t)

dt
= ∂fX(�r, �p, t)

∂t
+ ∂HX

∂ �p
∂fX(�r, �p, t)

∂�r
− ∂HX

∂�r
∂fX(�r, �p, t)

∂ �p
= Icoll(fX, fa, fb, . . . , ) (2.1)

with the one-body Hamilton function

HX(�r, �p) =
√

( �p + �AX(�r, �p))2 + m2
X + UX(�r, �p) + A0

X(�r, �p).

The scalar potential UX and the vector potential A
µ

X of species
X may in principle depend upon the phase-space densities

of all other species. Hence, the differential equations are
already coupled through the mean fields. In the limit of
Icoll = 0, Eq. (2.1) becomes the well-known Vlasov equation.
The collision term Icoll on the right-hand side of Eq. (2.1)
incorporates explicitly all scattering processes among the
particles. The reaction probabilities used in this collision
term are chosen to match the elementary collisions among
the particles in vacuum. Within the BUU framework the πN

reaction cross section is given by an incoherent sum of reso-
nance contributions and a direct (i.e., pointlike) contribution.
Interference effects are therefore neglected.

B. Elementary processes

DCX emerges from the interplay of two elementary mech-
anisms: pion-nucleon quasi-elastic scattering, with or without
charge exchange, and pion absorption inside the nucleus. In
our model, the cross section for quasi-elastic scattering is
given by an incoherent sum of background σ BG and resonance
contributions:

σπN→πN = σπN→R→πN + σ BG
πN→πN .

The resonance cross sections are obtained from the partial
wave analysis of Ref. [35]. The background cross sections
denoted by σ BG are chosen in such a manner that the elemen-
tary cross-section data in vacuum are reproduced. Background
contributions are instantaneous in space-time, whereas the
resonances propagate along their classical trajectories until
they decay or interact with one or two nucleons in the medium.

As an improvement in the earlier treatment [3,36,37], we
now included a more realistic angular distribution for the
elastic scattering of the pions. Owing to the P -wave nature
of the �(1232) resonance, we assume for πN → � → πN

in the resonance rest frame a distribution of the pion scattering
angle θ according to

f �(s, θ ) = [1 + 3 cos2(θ )]g(s, θ ),

which is peaked in forward and backward scattering an-
gles. The function g(s, θ ), depending on Mandelstam s,
parametrizes the energy dependence of the πN angular
distribution. In a coherent calculation the angular distribution
is generated by interference effects, which cannot be accom-
plished by our transport model. In our ansatz we need to
split the cross section in an incoherent way to preserve our
semiclassical resonance picture. Therefore we take

g(s, θ ) = [α − cos(θ )]β(m�−√
s)/m�,

with the � pole mass m� = 1.232 GeV. For the background
events we assume

f BG(s, θ ) = g(s, θ ).

The constants α = 1.9 and β = 26.5 are fitted to the angular
distributions measured by Crystal Ball [38]; a comparison of
our parametrization to these data is shown in Fig. 1.

Concerning pion absorption, the most important mecha-
nisms are a two-step process in which πN → � is followed by
�N → NN or �NN → NNN and a one-step background
process πNN → NN .
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FIG. 1. The angular distributions for the charge exchange process
π−p → π 0n in the CM frame of the pion and proton. The plots are
labeled by the kinetic energies of the pions in the laboratory frame.
The data are taken from Ref. [38].

C. Medium effects

As medium modifications, we include Pauli blocking and
Fermi motion of the nucleons and Coulomb forces and
we account as well for the collisional broadening in the
� resonance width. The hadronic potentials included are
introduced as timelike components of vector potentials in the
local rest frame [39]. For our purposes the most important
mean-field potentials are those acting on the nucleon and the
� resonance. The nucleon mean-field potential was
parametrized by Welke et al. [40] as a sum of a Skyrme
term depending only on density and a momentum-dependent
contribution (for explicit details and parameters see [39]).
Phenomenology tells us that the � potential has a depth of
about −30 MeV at ρ0 [41,42]. Comparing to a momentum-
independent nucleon potential, which is approximately
−50 MeV deep, we therefore take the � potential to be

A0
�( �p, �r) = 2

3A0
nucleon( �p, �r).

Here we assume the same momentum dependence for the
nucleon and the � potentials. In [3] we discussed the influence
of the real part of the pion self-energy on absorption processes
in nuclei. Since DCX is mostly sensitive to the surface (see
the discussion in Sec. IV), the influence of this real part has
turned out to be negligible owing to the low effective density
and has not been included in the calculations presented here.
For more details see Ref. [3] and the references therein.

D. Nuclear densities

The nucleons are initialized in a local density approxima-
tion. For 16

8O, 40
20Ca, and 208

82Pb we have implemented density
profiles ρ(r) according to the parametrizations collected in
Ref. [43], which are of Woods-Saxon type for heavier nuclei
(Ca and Pb) and of harmonic-oscillator type for lighter ones
(O). The proton densities are based on the compilation of
Ref. [44] from electron scattering. The neutron densities are
provided by Hartree-Fock calculations. For 103

45Rh, we use a

TABLE I. Parameters of the Woods-Saxon parametrizations for
103
45Rh.

ρ0
p [fm−3] ρ0

n [fm−3] Rp [fm] Rn [fm] ap [fm] an [fm]

0.0708 0.0835 5.194 5.358 0.4743 0.4780

Woods-Saxon density distribution

ρn(r) = ρ0
n

1 + exp[(r − Rn)/an]
,

(2.2)

ρp(r) = ρ0
p

1 + exp[(r − Rp)/ap]
,

with the parameters given in Table I [45]. The larger neutron
radii of heavy nuclei play a relevant role in DCX, as we show
in Sec. IV.

III. SOLUTION OF THE BOLTZMANN EQUATION

The fact that the DCX reaction depends considerably on
the spatial distributions of protons and neutrons implies that
it is also sensitive to the degree of locality of the scattering
processes. In the nondiscretized version of the BUU equation,
the interactions are strictly local in space-time. By utilizing the
test-particle ansatz to solve the problem numerically, this is no
longer the case. Therefore, we elaborate in this section on this
degree of locality of the scattering processes in our simulation.
As a first step, we point out the connection of the underlying
BUU equation to the actual numerical implementation. This
will lead us to a proper definition of a typical volume in
which particles are allowed to interact. Hereafter, we will
introduce an approximation to the full solution: the paral-
lel ensemble scheme. In this scheme, computation time is
radically decreased by reducing the locality. It is widely
employed to solve the BUU equation in particle physics (e.g.,
Refs. [20–23,36]) since otherwise computations would not be
feasible. In Sec. IV, we will discuss a possible problem related
with using this scheme and evaluate its applicability to the
DCX process.

A. The collision term

For the sake of simplicity, let us consider a model with only
one fermionic particle species that has no degeneracy, allowing
only for binary scattering processes

A( �pA)B( �pB) −→ a( �pa)b( �pb).

If such a scattering event occurs at point �r , then the single-
particle phase-space density decreases in the vicinity of phase-
space points (�r, �pA) and (�r, �pB) and increases in the vicinity
of (�r, �pa) and (�r, �pb). Therefore, at each phase-space point,
the collision term in Eq. (2.1) consists of a gain term from
particles that are scattered into this phase-space point and a
loss term from particles that are scattered out:

df (�r, �pA, t)

dt
= Igain(�r, �pA, t) − Iloss(�r, �pA, t),
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with

Iloss(�r, �pA, t) = 1

(2π )3

∫
d3pB

∫
d
CM

× dσAB→ab

d
CM
vABf (�r, �pA, t)f (�r, �pB, t)PaPb,

Igain(�r, �pA, t) = 1

(2π )3

∫
d3pa

1

(2π )3

∫
d3pb(2π )3

× dσab→AB

d3pA

vabf (�r, �pa, t)f (�r, �pb, t)PAPB,

where dσAB→ab/
CM and dσab→AB/d3pA are the angular and
momentum differential cross sections for the reactions AB →
ab and ab → AB, respectively. vAB and vab are the relative
velocities of the collision partners AB and ab. The terms PX =
1 − f (�r, �pX, t) with X = A,B, a, b correspond to the Pauli
blocking of the final states. The momenta of the particles in
Iloss and Igain satisfy the conditions of energy and momentum
conservation.

To point out the connection between our numerical imple-
mentation and the underlying BUU equation, we concentrate
on the loss term of BUU. We will therefore not elaborate on the
gain term Igain, which describes the production of particles.
However, its numerical implementation is analogous to the
loss term since both are connected by detailed balance.

The Boltzmann equation can be solved numerically using
the so-called test-particle ansatz, where the single-particle
density is expressed in terms of δ functions:

f (�r, �p, t) = lim
N→∞

(2π )3

N

A×N∑
i=1

δ[�r − �ri(t)]δ[ �p − �pi(t)].

Here A denotes the number of physical particles and N is
the number of test particles per physical one. So the single-
particle phase-space density is interpreted as a sum of all test-
particle densities. The centroids of the δ functions, �ri and �pi ,
obey the classical Hamiltonian equations. The change of the
single-particle phase-space density per infinitesimal �t owing
to collisions is given by

�f (�r, �p, t) = �t(Igain − Iloss). (3.1)

In terms of the test-particle ansatz the loss term reads

�tIloss(�r, �pA, t) = lim
N→∞

(2π )3

N

A×N∑
i=1

A×N∑
j=1,j �=i

δ( �pA − �pi)δ(�r − �ri)

× lim
N→∞

1

σij

∫
d
CM PaPb

dσij→ab

d
CM︸ ︷︷ ︸
=PaPb

× σij�tvij

1

N︸ ︷︷ ︸
=�Vij

δ(�r − �rj ) (3.2)

= lim
N→∞


 (2π )3

N

A×N∑
i=1

A×N∑
j=1,j �=i

δ( �pA − �pi)

× δ(�r − �ri)PaPb

∫
�Vij

δ(�r ′ − �rj )d3r ′


 ,

(3.3)

where σij and vij are the total interaction cross section and the
relative velocity of the test particles i, j ; �Vij = σij�tvij /N

is an infinitesimal volume in the vicinity of �ri . Note that the
latter volume defines the locality of the scattering process of
two test particles. The term PaPb denotes the blocking of the
final state averaged over its angular distribution. We excluded
self-interactions; therefore a test particle cannot scatter with
itself.

B. Numerical implementation

In a real calculation the number of test particles N is chosen
to be finite, for our purposes usually of the order of 300–1500.
The time step �t is chosen such that the average distance
traveled by the particles during �t is less than their mean free
path. Therefore, �Vij is small enough such that a particle has
no more than one scattering partner at a given time step. The
algorithm proceeds as a sequence of the following steps:

(i) First, we propagate at each time step the test particles
according to Hamilton’s equations.

(ii) The loss term is implemented according to Eq. (3.3).
Therefore we consider each term in Eq. (3.3) separately.
For simplicity let us just consider one summand describ-
ing the loss of the ith test particle owing to a collision
with the j th.

(a) The term
∫
�Vij

δ(�r ′ − �rj )d3r ′ gives 1 or 0 depending on
whether j is within �Vij . The volume �Vij is chosen
to be a cylinder of height �tvij with a circle basis
σij /N ; the symmetry axis is chosen along �vij and the
basis is centered at �ri . This corresponds to the usual
minimum distance concept [32].

(b) If the result of the integral is 1, then we evaluate

PaPb = 1

σij

∫
d
CM PaPb

dσij→ab

d
CM
.

For this we make a Monte Carlo integration with only
one integration point, which is a good approximation
in the large-N limit. This one point 
CM is chosen in
the center of mass (CM) frame randomly according to
the weight

1

σij

dσij→ab

d
CM
.

Since
√

s is fixed, 
CM defines the random momentum
�p CM
a . Furthermore,

�p CM
b = − �p CM

a .
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Finally, by boosting the momenta to the computational
frame, we get

PaPb = [1 − f (�r, �pa, t)][1 − f (�r, �pb, t)].

(c) Now we interpret PaPb as a probability that the
reaction takes place. So we make a second Monte Carlo
decision on whether we accept the reaction or not.
This corresponds to substituting PaPb by a Bernoulli
distributed random number with p = PaPb. With this
substitution, the expectation value of the summand is
equal to the original summand. In the limit of many
ensembles N (i.e., many summands), this yields the
right loss term.

(d) If the reaction is accepted, then we get for this event
where i is scattering with j the loss contribution

δ( �pA − �pi)δ(�r − �ri),

which corresponds to the destruction of the ith test
particle. Because of the double sum in Eq. (3.3), we
also get the contribution

δ( �pA − �pj )δ(�r − �rj ).

This latter term corresponds to the destruction of the
j th test particle. Note that we do not evaluate PaPb

for this case but take the same value that leads to the
destruction of i. This reflects that energy is conserved
on an event-by-event basis.

(e) In our simulation, the final states with momenta
�p CM
b and �p CM

a contribute to the gain term. New test
particles with those momenta are therefore added to
the simulation.

A generalization to 2 → 3 and 3 → 2 processes and to finite
particle species including degeneracies is straightforward.

C. Full and parallel ensemble methods

The kind of simulation we described in the last section
is called a full ensemble calculation. There exists a common
simplification to this method: the parallel ensemble method
[22]. In this scheme one sets N = 1, performs Ñ runs at the
same time, and then averages the results over all runs. The
densities used in each run are the averaged densities of all Ñ
parallel runs. Therefore the propagation part stays the same,
whereas the collision term gets simplified considerably.

Note that the only justification for this simplification is a
great gain in computation time. In a full ensemble method,
the propagation part scales according to the number of test
particles per nucleon N , whereas the collision term scales
with N2; therefore the computation time is O(N2). In a
parallel ensemble method Ñ runs are performed, which results
in O (Ñ) computation time. So there is linear scaling in a
parallel ensemble run but a quadratic one in a full ensemble
run. In pioneering works, it was shown by Welke et al. [30]
and Lang et al. [31] that the parallel ensemble scheme is a
good approximation to the full ensemble scheme under the
conditions of high-energy heavy-ion collisions.

IV. RESULTS OF THE SIMULATIONS

A. Comparison of full and parallel ensemble runs

In the previous section we introduced the concept of the
parallel ensemble approximation. For DCX, surface effects
are expected to be important; therefore the spatial resolution
could be relevant in this context. Indeed, a major problem
of the parallel ensemble scheme is that the volume �Vij can
become very large. In the energy regime under consideration,
the incoming pions interact strongly with the nucleons so that
the total cross section can reach more than 200 mb. For a
parallel ensemble run, the typical volume therefore can have
a size of 5 fm3 for a typical �t = 0.25 fm/c. Since it is not
obvious that the parallel ensemble scheme should be reliable in
this regime, we hence decided to evaluate this approximation
scheme by comparison to the full ensemble method.

In Fig. 2, the results for dσ/d
 for pions with 180 MeV
kinetic energy are presented for both methods. The results
obtained are consistent with each other; therefore we used the
parallel ensemble method to save CPU time and to reach higher
statistics for all further calculations. Note that in the present
problem, to obtain a result at a given energy for one specific
nucleus, one CPU-day is required in the parallel ensemble
scheme. In the full scheme this takes of the order of 30 CPU-
days for acceptable statistics, as shown in Fig. 2.

B. Influence of the density profile

Because of the low pion mean free path in nuclear matter
[3], the DCX is very sensitive to the surface properties of
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FIG. 2. Comparison of the full and parallel ensemble meth-
ods. Angular distributions for the double-charge exchange process
π±A → π∓X at Ekin = 180 MeV. The error bars denote the 1σ

statistical error of each point of the full ensemble run; the thin lines
denote the 1σ statistical error of the parallel result.
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TABLE II. Parameters of the Woods-Saxon parametrizations for 208
82Pb.

ρ0
p [fm−3] ρ0

n [fm−3] Rp [fm] Rn [fm] ap = an [fm]

default parameterization [43] 0.0631 0.0859 6.624 6.890 0.549
old parameterization [3] 0.0590 0.0900 6.826 6.826 0.476

the nuclei. Therefore, we compared the results with our
present density parametrization for 208Pb [43], as described
in Sec. II D, to the results obtained with the one used in
previous publications [1,3,36]. For 208Pb, both distributions are
parametrized according to Eq. (2.2) with the parameters given
in Table II. However, neutron skins are very interesting because
in those skins only π+ mesons can undergo charge exchange
reactions. For the positive pions this causes an enhancement
of DCX processes at the surface, so the pions do not need
to penetrate deeply for this reaction. Hence, the probability
for their absorption is reduced. As can be observed in
Fig. 3, the enhancement in the total cross section for Rn −
Rp = 0.266 fm is roughly 35% at 180 MeV. The accurate
determination of neutron skins is relevant for different areas
of physics such as nuclear structure, neutron star properties,
atomic parity violation (PV), and heavy-ion collisions [46–48].
The Parity Radius Experiment (PREX) at JLab [49] will
measure the neutron radius with high precision (1%) using
PV electron scattering. We have just shown that the DCX
cross section is very sensitive to the size of the difference
between the proton and the neutron radii of Pb. The effect is
especially large (more than a factor of 2) at forward angles,
where our model performs very well (see the next section).
Indeed, without neutron skin, the strong pion absorption in
the bulk nuclear matter leads to a small DCX cross section
at forward angles. The presence of a neutron skin favors
DCX in peripheral reactions, where the pion propagates in
practically pure neutron matter. This naturally enhances the
DCX cross section. Hence, a precise measurement of DCX at
forward angles, combined with a realistic theoretical analysis,
could be a valuable source of information on the neutron
skins complementary to the one obtained with PV electron
scattering. Note that for the π− similar arguments lead to a
reduction of the cross section.
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µ

n
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FIG. 3. Influence of the density distribution on the angular
distributions for the double-charge exchange process π+Pb → π−X

at Ekin = 180 MeV. The solid line shows the result obtained with
our present density distribution [43]; the dashed line was obtained
with the previously used one [1,3,36], which contains no neutron
skin.

C. Comparison to data

Now we proceed to the comparison with the data measured
at LAMPF by Wood et al. [16]. We discuss first the total
cross section. Hereafter, we will explore angular distributions
and, finally, address the double differential cross sections as a
function of both angles and energies of the outgoing pions.

In Fig. 4 one can see the excellent quantitative agreement
to the total cross-section data at 120, 150, and 180 MeV
for oxygen and calcium. For the lead nucleus we see some
discrepancies. Notice that we reproduce the different A

dependencies of both (π+, π−) and (π−, π+) reactions. These
differences arise because, when A increases, the number of
neutrons increases with respect to the number of protons, and
this favors the π+ induced reaction.

In [19], Gram et al. discuss a scaling law of the total
cross section. They argue as follows. Since the first collision
takes place predominantly at the surface, the cross section
should scale with A2/3. Furthermore, they assume that DCX
is mainly a two-step process and that a pion that undergoes
an elastic process at the first collision will not contribute.
This is reasonable because the incoming pions lose energy
in the elastic process, and their cross section for a second
charge-exchange reaction is hereafter very much reduced.
For a negative pion the first charge-exchange reaction occurs
with a probability of Z/N , where Z(N ) denotes the number
of protons (neutrons). This is the case if the interaction is
dominated by the � resonance, as it should be in this energy
region. Finally, the second charge-exchange process then takes
place with the probability (Z − 1)/(A − 1) since, in the isospin
limit, the π0 interacts equally well with protons and neutrons.
Putting these considerations together and extending them to
the π+ case, we expect the cross section for DCX to scale
according to

σtot ∼ A2/3 Q

A − Q

Q − 1

A − 1
, (4.1)

where Q denotes the number of protons in the case of
π−-induced DCX and the number of neutrons in π+-induced
DCX.

Gram et al. [19] find good agreement of this scaling law
with experimental data. This scaling is also fulfilled in the
GiBUU simulation, as can be seen in Fig. 5. Nevertheless, one
may wonder why this scaling law works in a process that
is so sensitive to the neutron skin on heavy nuclei, as has
been shown in Fig. 3. Since the first collision takes place
on the surface, a neutron skin causes an enhancement in the
A(π+, π−)X reaction whereas A(π−, π+)X is suppressed.
This effect leads to a deviation from the scaling. However,
there are also Coulomb forces, which are not negligible.
The Coulomb force enhances A(π−, π+)X by attracting the
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FIG. 4. The inclusive double-charge exchange total cross section as a function of the nuclear target mass at Ekin = 120, 150, and 180 MeV.
The lines connecting our results are meant to guide the eye; the data are taken from Ref. [16] (left panel: Ekin = 120, 150, and 180 MeV; right
panel: only 180 MeV).

negative projectiles and repelling the positive products, which
therefore have a smaller path in the nucleus and undergo
less absorption. Similar arguments show that the reaction
A(π+, π−)X is suppressed. We find that this effect counteracts
the one from the neutron skin restoring the scaling. In
any case, the approximate scaling exhibited by the cross
section shows that the reaction is very much surface driven
and can be very well understood in terms of a two-step
process.

In Fig. 6 we show dσ/d
 for DCX at Ekin = 120, 150,
and 180 MeV on 16O,40 Ca, and 208Pb as a function of the
scattering angle θ in the laboratory frame. Our results (bold
lines) are shown together with their uncertainties of statistical
nature (thin lines). The latter ones are well under control except
at very small and very large angles, where the statistics is very
poor. Again, there is a very good quantitative agreement for
both O and Ca. In the Pb case, the (π−, π+) reaction is well
described, but the (π+, π−) one is underestimated in spite of
the enhancement caused by the neutron skin.
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FIG. 5. The scaling of the total charge exchange cross section
according to Eq. (4.1) visualized by dividing σtot by the factor
A2/3Q(Q − 1)/(A − 1) and plotting it as a function of A − Q. Q

denotes the number of protons in the case of (π−, π+) and the number
of neutrons in (π+, π−). The points are GiBUU results at pion kinetic
energies of 180 MeV; the dashed line denotes a function proportional
to 1/(A − Q), corresponding to the exact scaling.

Going into further details of the energy distribution of the
produced pions, we show in Figs. 7, 8, and 9 the results for
dσ/(d
dEkin) at different laboratory angles θ , as a function
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FIG. 6. Angular distributions for the double-charge exchange
process π±A → π∓X at Ekin = 120, 150, and 180 MeV. The data
points are taken from [16]; only systematic errors are shown. The
solid, dashed, and dotted lines represent the GiBUU results at 120,
150, and 180 MeV, respectively. The bold lines represent the results
of the current study; the thin lines represent a 1σ confidence level for
each point based upon our statistics.
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FIG. 7. Double differential cross sections for the DCX process
π±O → π∓X at Ekin = 120, 150, and 180 MeV. The results at
different angles are shown as function of the kinetic energies of
the produced pions. Data are taken from [16], only statistical errors
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FIG. 8. Same as Fig. 7, but for Ca.
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FIG. 9. Same as Fig. 7, but for Pb at Ekin = 180 MeV.

of the kinetic energy of the outgoing pion, Ekin. The overall
agreement is good, being better at forward and transverse
angles than at backward angles. We observe a lack of pions
with energies below Ekin 
 30 MeV. This feature becomes
more prominent when going from O to Pb and is present for
both incoming π+ and π−. The same problem also shows up
in the work of Vicente et al. [11] (see their Fig. 9). A solution
to this problem is not clear. Owing to the low-energy nature
of those missing pions, one may speculate whether quantum
mechanical effects are responsible for the enhancement and
therefore cannot be described by a semiclassical transport
theory.

V. SUMMARY

We have studied pionic double-charge exchange on dif-
ferent nuclear targets (16O,40 Ca, and 208Pb) in the � region
(Ekin = 120, 150, and 180 MeV) with a semiclassical coupled-
channel transport model (GiBUU).

We have established the validity of the parallel ensemble
scheme for this reaction, which is very sensitive to local density
distributions, by contrasting the results with those obtained in
the more precise but time-consuming full ensemble method.

Furthermore, we compared the results of our model with the
extensive set of data taken at LAMPF [16], achieving a good
agreement, not only for the total cross section but also for
angular distributions and double differential cross sections.
Still, we miss some strength at backward angles and pion
energies below Ekin ≈ 30 MeV. The scaling of the total cross
sections pointed out in [19] could be reproduced. However, we
found two important effects that break this scaling: neutron
skins and Coulomb forces, which compensate each other. We
have shown in Sec. IV B that the DCX cross section is very
sensitive to the size of the neutron skin. A precise measurement
of DCX at forward angles combined with a theoretical analysis
could bring quantitative results on the neutron skins of heavy
nuclei.

Finally, we conclude that the implementation of pion
rescattering and absorption in the GiBUU transport model
successfully passes the demanding test of describing double-
charge exchange reactions. Thus the semiclassical approach is
well suited to describe pion dynamics in nuclei for pion kinetic
energies greater than Ekin ≈ 30 MeV.
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[25] C. Grégoire, B. Remaud, F. Sébille, L. Vinet, and Y. Raffray,

Nucl. Phys. A465, 317 (1987).
[26] A. Bonasera, G. Burgio, and M. D. Toro, Phys. Lett. B221, 233

(1989).
[27] A. Bonasera, F. Gulminelli, and J. Molitoris, Phys. Rep. 243, 1

(1994).

[28] C. Fuchs, T. Gaitanos, and H. Wolter, Phys. Lett. B381, 23
(1996).

[29] T. Gaitanos, C. Fuchs, and H. Wolter, Phys. Lett. B609, 241
(2005).

[30] G. Welke, R. Malfliet, C. Grégoire, M. Prakash, and E. Suraud,
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