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Simultaneous description of four positive parity bands and four negative parity bands
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The extended coherent state model is further extended to describe two dipole bands of different parities.
The formalism provides a consistent description of eight rotational bands. A unified description for spherical,
transitional, and deformed nuclei is possible. Projecting out the angular momentum and parity from a sole
state, the Kπ = 1+ band acquires a magnetic character, whereas the electric properties prevail for the other
band. Signatures for a static octupole deformation in some states of the dipole bands are pointed out. Some
properties that distinguish between the dipole band states and states of the same parity but belonging to other
bands are mentioned. Interesting features concerning the decay properties of the two bands are found. Numerical
applications are made for 158Gd, 172Yb, 228,232Th, 226Ra, 238U, and 238Pu, and the results are compared with the
available data.
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I. INTRODUCTION

The field of negative-parity bands became very attractive
when the first suggestions for a static octupole deformation
were advanced by Chasman [1] and Möller and Nix [2].
Because a nuclear shape with octupole deformation does
not exhibit a space reflection symmetry and, conversely, a
spontaneously broken symmetry leads to a new nuclear phase,
one expects that the octupole deformed nuclei have specific
properties. The main achievements of this field was reviewed
in Refs. [3–5].

Identifying the nuclei that have static octupole deformation
seems to be a difficult task. Indeed, because there is no
measurable quantity for the octupole deformation, some
indirect information about this variable should be found.
Several properties are considered as signatures for octupole
deformation: (a) In some nuclei like 218Ra, the state 1−,
the head of the Kπ = 0− band, has a very low position,
and this is an indication that the potential energy has a flat
minimum, as a function of the octupole deformation. (b) The
parity-alternating structure in ground and the lowest 0− bands
suggests that the two bands may be viewed as being projected
from a sole deformed intrinsic state, exhibiting both
quadrupole and octupole deformations. (c) A nuclear surface
with quadrupole and octupole deformations might have the
center of charge in a different position than the center of mass,
that results in having an electric dipole moment that may excite
the state 1− from the ground state, with a large probability. The
list is not complete and thereby any new signature for this new
nuclear phase deserves a special attention.

Few years ago we considered this subject within a phen-
omenological framework. Thus, in Refs. [6–10] we extended
the coherent state model (CSM) [11,12] to the negative-parity
bands. To the lowest positive-parity bands, named ground (g+),
beta (β+), and gamma (γ +), one associates three negative
bands, g−, β−, γ −, respectively. The six bands are obtained by
projecting out the angular momentum and the parity from three
orthogonal functions that exhibit both quadrupole and octupole
deformations. An effective boson Hamiltonian is considered

in the space of angular momentum and parity-projected states.
The phenomenological boson model called the extended
coherent state model (ECSM) has been successfully applied to
a large number of nuclei, some of them suspected of exhibiting
a static octupole deformation, whereas some of them are
suspected to have vibrational octupole bands. Some signatures
for a static octupole deformation in the excited bands have been
pointed out.

In the present article we extend even more the coherent
state model by adding a new pair of parity partner bands.
These are characterized by Kπ = 1+ and Kπ = 1−. Also two
new terms are added to the model Hamiltonian without altering
its effective character, whose strength are fixed by fitting some
particular data for the new bands.

The new extension is presented according to the following
plan. In Sec. II, a brief description of the CSM and ECSM
is given. The scope consists in having a self-standing work
and in collecting the necessary definitions and notations. In
Sec. III, the ingredients of the new extension are presented
in extenso, i.e., the properties of the states that enlarge the
model boson space as well as the corrective terms of the model
Hamiltonian and their matrix elements are analytically given.
In Sec. IV, we discuss the numerical application for seven
nuclei. Because some results for 172Yb and 226Ra were reported
in two earlier publications, here we consider only the new
results. A summary of the results and the final conclusions are
presented in Sec. V.

II. BRIEF REVIEW OF THE COHERENT STATE MODEL
AND ITS EXTENDED VERSION

A. The coherent state model

In the beginning of 1980s, one of the present authors
(A.A.R) proposed, in collaboration, a phenomenological
model to describe the main properties of the first three
collective bands i.e., ground, β, and γ bands [11,12]. The
model space was generated through a projection procedure
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from three orthogonal deformed states. The choice was made
so that several criteria required by the existent data are fulfilled.
The states are built up with quadrupole bosons and therefore
we are dealing with those properties that are determined by
the collective motion of the quadrupole degrees of freedom.

We suppose that the intrinsic ground state is described
by a coherent state of Glauber type corresponding to the
zeroth component of the quadrupole boson operator b2µ. The
other two generating functions are the simplest polynomial
excitations of the intrinsic ground state, chosen in such a way
that the orthogonality condition is satisfied before and after
projection. To each intrinsic state one associates an infinite
rotational band. In two of these bands the spin sequence is
0+, 2+, 4+, 6+, . . . etc., and therefore they correspond to the
ground (the lowest one) and to the β bands, respectively. The
third one involves all angular momenta larger or equal to 2 and
describes, in the first order of approximation, the γ band. The
intrinsic states depend on a real parameter d that simulates
the nuclear deformation. In the spherical limit, i.e., d goes to
zero, the projected states are multiphonon states of highest,
second highest, and third highest seniority, respectively. In
the large deformation regime, conventionally called rotational
limit (d = 3 means already a rotational limit), the model states
behave like a Wigner function, which fully agrees the behavior
prescribed by the liquid drop model. The correspondence
between the states in the spherical and rotational limits is
achieved by a smooth variation of the deformation parameter.
This correspondence agrees perfectly with the semiempirical
rule of Sheline [13] and Sakai [14], concerning the linkage
of the ground-, β- and γ - band states and the member of
multiphonon states from the vibrational limit. This property
is very important when one wants to describe the gross
features of the reduced probabilities for the intra- and interband
transitions.

In this restricted collective model space an effective boson
Hamiltonian is constructed. A very simple Hamiltonian was
found that has only one off-diagonal matrix element, namely
one connecting the states from the ground and the γ bands.

HCSM = H ′
2 + λĴ 2

2 ,

H ′
2 = A1(22N̂2 + 5�

†
β ′�β ′ ) + A2�

†
β�β, (1)

where N̂2 denotes the quadrupole boson number operator

N̂2 =
∑

−2� m� 2

b
†
2mb2m, (2)

whereas �
†
β ′ and �

†
β stand for the following second- and third-

degree scalar polynomials:

�
†
β ′ = (b†2b

†
2)0 − d2

√
5
,

�
†
β = (b†2b

†
2b

†
2)0 + 3d√

14
(b†2b

†
2)0 − d3

√
70

. (3)

The angular momentum carried by the quadrupole bosons
is denoted by Ĵ2. The boson states space is spanned by the

FIG. 1. (Color online) The structure coefficient C1, determined as
explained in the text, is represented as function of A − 0.5 ∗ (N − Z)
(black square). The obtained values are interpolated by a thid-order
polynomial (full line curve).

projected states:

ϕ
(i)
JM = N

(i)
J P J

MKψi, i = g, β, γ, (4)

where the intrinsic states are:

ψg = ed(b†20−b20)|0〉, ψβ = �
†
βψg, ψγ = �†

γ ψg. (5)

FIG. 2. (Color online) The structure coefficient C2, determined as
explained in the text, is represented as function of A − 0.5 ∗ (N − Z)
(black square). The obtained values are interpolated by a third-order
polynomial (full line curve).
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FIG. 3. (Color online) (Upper left panel) The dynamic moment of inertia is plotted as function of angular frequency. (Upper right panel)
The angle between the angular momenta �J2 and �J3 is represented as function of angular momentum. (Low-left panel) The first-order energy
displacement function is plotted vs. angular momentum. (Low-right panel) The second-order energy displacement is plotted as function of
angular momentum. All theoretical results correspond to 158Gd.

The excitation operator �
†
β is given by Eq. (3), whereas the

operator �†
γ , which excites the γ -band states, is:

�†
γ = (b†2b

†
2)22 + d

√
2

7
b
†
22. (6)

The angular momentum projection operator is defined by:

P J
MK = 2J + 1

8π2

∫
DJ ∗

MK (�)R̂(�)d�, (7)

where the standard notations for the Wigner function and the
rotation operator corresponding to the Eulerian angles � have
been used.

The eigenvalues of the effective Hamiltonian in the re-
stricted space of projected states have been analytically studied
in both spherical and rotational limit. Compact formulas for
transition probabilities in the two extreme limits have been also
derived. This model has been successfully applied for a large
number of nuclei from transitional and well-deformed regions.
It is worth mentioning that by varying the deformation param-
eter and the parameters defining the effective Hamiltonian one
can realistically describe nuclei satisfying various symmetries
like SU(5) (Sm region) [15], O(6) (Pt region) [11,12], SU(3)
(Th region) [16], and triaxial rotor (Ba, Xe isotopes) [17]. This
model has been extended by including the coupling to the indi-
vidual degrees of freedom [18]. In this way the spectroscopic
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(a) (b)

(c) (d)

FIG. 4. (Color online) The same as in Fig. 3 but for 228Th.

properties in the region of back-bending were quantitatively
described.

The extension of the CSM formalism, which is presented
here, considers a composite system of quadrupole and octupole
bosons.

B. The extended coherent state model

The CSM formalism was generalized by assuming that
the intrinsic ground state exhibits not only a quadrupole
deformation but also an octupole one. Because the other bands,
β and γ , are excited from the ground state, they also have this
property. The octupole deformation is described by means
of an axially symmetric coherent state for the octupole bosons
b
†
30. Thus, the intrinsic states for the ground, β, and γ bands are:

�g = ef (b†30−b30)ed(b†20−b20)|0〉(3)|0〉(2),
(8)

�β = �
†
β�g, �γ = �†

γ �g.

The notation |0〉(k) stands for the vacuum state of the 2k-pole
boson operators. Note that any of these states is a mixture
of positive- and negative-parity states. Therefore they do not
have good reflection symmetry. Due to this feature, the new
extension of the CSM formalism has to project out not only the
angular momentum but also the parity. The parity projection
affects only the factor function depending on octupole bosons.
Useful simplifications are achieved when this factor function
is separately treated. The parity projected states are defined by:

�(k)
oc = P (k)ef (b†30−b30)|0〉(3), k = ±, (9)

where P (k) denotes the parity projection operator, which is
defined by its property whereby, acting on a state consisting of
a series of boson operators applied to the octupole vacuum, it
selects only components with even powers in bosons if k = +
and odd components for k = −. From the parity-projected
states one projects out, further, the components with good
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FIG. 5. (Color online) The same as in Fig. 3 but for 232Th.

angular momentum:

�
(k)
oc;J3M3

= N
(k)
oc;J3

P J
M30�

(k)
oc . (10)

The factor N
(k)
oc;J3

assures that the projected state has the norm
equal to unity. Its expression is given in Appendix A.

Then, the intrinsic states of good parity are defined by:

�
(k)
i = �(k)

oc �i, i = g, β, γ, k = ±. (11)

The member states of ground, β, and γ bands are projected
from the corresponding intrinsic states:

ϕ
(i,k)
JM = N (i,k)

J P J
MKi

�
(k)
i , Ki = 2δi,γ , k = ±; i = g, β, γ,

J = (δi,g + δi,β)(even δk,+ + odd δk,−) + δi,γ (J � 2). (12)

It can be shown that these projected states can be expressed by
means of the octupole factor projected states and the projected

states characterizing the CSM formalism.

ϕ
(i,k)
JM = N (i,k)

J

∑
J2,J3

[
N

(k)
oc;J3

N
(i)
J2

]−1
C

J3J2J
0KiKi

[
�

(k)
oc;J3

ϕ
(i)
J2

]
JM

,

Ki = 2δi,γ , k = ±; i = g, β, γ, (13)

The normalization factor has the expression:

[
N (i,k)

J

]−2 =
∑
J2,J3

[
N

(k)
oc;J3

N
(i)
J2

]−2 (
C

J3J2J
0KiKi

)2
,

Ki = 2δi,γ , k = ±; i = g, β, γ. (14)

An effective boson Hamiltonian has been studied in the
restricted collective space generated by the six sets of projected
states. Note that from each of the three intrinsic states, one
generates by projection two sets of states, one of positive and
one of negative parity. When the octupole deformation goes
to zero, the resulting states are just those characterizing the
CSM model. In this limit we know already the effective
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FIG. 6. (Color online) The same as in Fig. 3 but for 238U.

quadrupole boson Hamiltonian. When the quadrupole defor-
mation is going to zero the system exhibits vibrations around
an octupole deformed equilibrium shape. We consider for the
octupole Hamiltonian an harmonic structure because the non-
harmonic octupole terms can be simulated by the quadrupole
anharmonicities. As for the coupling between quadrupole and
octupole bosons, we suppose that this can be described by a
product between the octupole boson number operator, N̂3, and
the quadrupole boson anharmonic terms that are involved in the
CSM Hamiltonian. Indeed, it has been proved that including
octupole anharmonicities in the coupling terms these terms
provide an angular moment dependence for the corresponding
matrix elements similar to the one already generated by the
terms involving only the operator N̂3 in the coupling with the
quadrupole bosons. Also, the scalar product of the angular
momenta carried by the quadrupole ( �J2) and octupole bosons
( �J3), respectively, and the total angular momentum squared
( �J 2) are included. Thus, the model Hamiltonian has the

expression:

H = H ′
2 + B1N̂3(22N̂2 + 5�

†
β ′�β ′ ) + B2N̂3�

†
β�β

+B3N̂3 + A(J23) �J2 �J3 + AJ
�J 2. (15)

Detail arguments in favor of this choice are presented in our
previous publications on this subject. This Hamiltonian was
used in Refs. [6–8] to study the ground and Kπ = 0− bands.
As shown in the quoted articles, the coupling term �J2 �J3 is
necessary to explain the low position of the state 1− in the
even-even Ra isotopes. Indeed, this term is attractive in the
state 1−, whereas for other angular momenta it is repulsive.
Although this Hamiltonian has been introduced based on
phenomenological ground, each of the terms involved can be
microscopically obtained from a two-body interaction by using
the boson expansion technique. This result can be found in one
of our works [19], where the quadrupole-octupole interaction
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FIG. 7. (Color online) The same as in Fig. 3 but for 238Pu.

was studied in terms of quadrupole and octupole QRPA
(quasiparticle random phase approximation) boson operators.

Due to the specific structure of the CSM basis states the
only nonvanishing off-diagonal matrix elements are those
connecting the states of the ground and γ and of the 0−
and 2− bands. The energies of the six bands are defined
as eigenvalues of the model Hamiltonian in the model
space of the projected states. They depend on the structure
coefficientsAk[k = 1, 2, J, (J23)] andBk, (k = 1, 3) defining
the model Hamiltonian and the two deformation parameters,
d and f . Therefore there are eight parameters that are to be
determined, by fitting the data for excitation energies with
the theoretical energies normalized to the ground-state energy.
For the considered isotopes, the structure coefficients obtained
in this manner have a smooth behavior when we change
A or Z.

The connection between the present description and the
rotational bands, as defined in the liquid drop model, was

established in Ref. [14]. Indeed, as shown in Ref. [14] the
projected states are linear superposition of states with definite
K-quantum number. Moreover, in the asymptotic limit of
the deformation parameter a single K prevails for each set
of projected states, associated to the intrinsic unprojected
states, respectively. Assigning to each band that K that
labels the dominant component of the superposition quoted
above, one may assert that the projected states, given by
Eq. (13), comprises two Kπ = 0+, two Kπ = 0−, one Kπ =
2+, and one Kπ = 2− subsets. Note that the K quantum
number is equal to the eigenvalue of Jz, corresponding
to the unprojected states �k with k = g, β, γ . Thus, the
symmetry breaking in the wave functions given by Eq. (8)
is equivalent to choosing an auxiliary intrinsic frame of
reference.

The bands associated to these quantum numbers are
conventionally denoted by g±(Kπ = 0±), β±(Kπ = 0±), and
γ ±(Kπ = 2±).
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FIG. 8. (Color online) The angle between quadrupole and octupole angular momenta in the negative (up triangle) and positive (dagger)
ground bands for the nuclei mentioned in the four panels.

III. THE DIPOLE BANDS

Extending further the ECSM formalism, by adding some
new bands with keeping the basic principles of CSM unaltered,
is a difficult task. Indeed, first one has to find an intrinsic
state that is orthogonal onto other three states defined so far.
Moreover, the orthogonality property has to be preserved also
after projecting the angular momentum and parity. Suppose
that this step has been already overcome. The next step
is, then, to extend the model Hamiltonian by adding new terms
that are mainly responsible for the description of the new states.
The new Hamiltonian should be effective in the extended
space of projected states, i.e., the off-diagonal matrix elements
are either equal to zero or very small comparing them with the
diagonal ones.

In the present article, we propose the following solution for
the intrinsic state generating, through the angular momentum

and parity projection, the member states of the dipole bands:

�(1,±) = �
†
3b

†
31�

∓
oc�g, (16)

where

�
†
3 =

(
b
†
3b

†
3

)
0
+ f 2

√
7
.

The states �(1,+) and �(1,−) are orthogonal because their scalar
product involves the overlap of components with different
number of bosons. Moreover, because �±

oc are vacuum states
for the operator �3, the intrinsic states for the dipole bands are
orthogonal onto the intrinsic states associated with the bands
g±, β±, γ ±. From these states one obtains two sets of angular
momentum projected states:

ϕ
(1,±)
JM = N (1,±)

J P J
M1�

(1,±), (17)
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FIG. 9. (Color online) The same as described in the legend to Fig. 8 but for 238U, 238Pu, and 226Ra.

with the projection operator defined by Eq. (7). The dipole
projected state can be written in a tensorial form:

ϕ
(1,±)
JM = N (1,±)

J

∑
J2,J3

C
J3 J2 J
1 0 1

[
N

(±)
31;J N

(g)
J2

]−1 [
ϕ

(±)
31,J3

ϕ
(g)
J2

]
JM

,

(18)

where the octupole factor state is defined by:

ϕ
(1,±)
31;JM = N

(±)
31;J P J

M1�
†
3b

†
31�

∓
oc. (19)

The norm factors N (1,±)
J , N

(±)
31;J are analytically given in

Appendix A.
It is worth to mention an useful property of the projected

state defined above. Taking into account the expression of �J3

in terms of octupole bosons:

J (3)
µ =

√
12

[
b
†
3b3

]
1µ

, (20)

one finds:

b
†
31�

∓
oc = 1

AJ
(3)
1 �±

oc, (21)

where

A = −
√

12C3 3 1
1 0 1f. (22)

Commuting the angular momentum and the rotation operators,
one arrives at the following expression for the octupole
projected state:

ϕ
(1,±)
31;JM = N

(±)
31;J

1

ACJ ′ 1 J
0 1 1

∑
µ,J ′

CJ ′ 1 J
M ′ µ MJ (3)

µ P J ′
M ′0�3�

±
oc. (23)

Denoting the Kπ = 0± projected state by:

ϕ
(±)
3;JM = N

(±)
3;J P J

M0�
†
3�

±
oc, (24)
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the Eq. (23) leads to:

ϕ
(1,±)
31;JM = N

(±)
31;J

1

ACJ 1 J
0 1 1

√
J (J + 1)

[
N

(±)
3;J

]−1
ϕ

(±)
3;JM. (25)

Because the two projected states involved in the two sides of
the above equation, respectively, are both normalized to unity
we have:

ϕ
(1,±)
31;JM = ϕ

(±)
3;JM,[

N
(±)
31;J

]−1 = 1

ACJ 1 J
0 1 1

√
J (J + 1)

[
N

(±)
3;J

]−1
. (26)

This equation provides technical simplifications for calculat-
ing the matrix elements corresponding the dipole projected
states.

Invoking the results obtained for the quantum number K ,
one can prove that the dipole projected states are Kπ = 1±
states, respectively. For a given J the projected states of
positive and negative parity are obviously orthogonal onto
each other. Moreover, they are orthogonal on the states of
similar angular momentum describing the member states of
the six bands that were previously defined.

The dipole projected states are weakly coupled to the states
of other bands by the B1 and B3 terms of H (15). Moreover,
these terms give large contribution to the diagonal matrix
elements [20] involving the projected dipole states. Aiming
at describing quantitatively the properties of the dipole states
two terms are added to the model Hamiltonian.


H = C1�
†
3�3 + C2�

†
3N̂2�3. (27)

The new terms affect only the diagonal matrix elements of
the dipole states. Their strengths are fixed as follows: C2 is
determined such that the corresponding contribution to the
particular state energy, in the negative dipole band, cancels
the one coming from the B1 term. C1 is fixed such that the
measured excitation energy of the state 1− is reproduced. With
the new parameters determined in this way, the effect of the off
diagonal matrix elements corresponding the B1 and B3 terms,
on the energies in the two dipole bands amounts of a few keV.
Due to this feature the energies of the two dipole bands are
obtained as the corresponding average values of the model
Hamiltonian, H + 
H .

IV. NUMERICAL RESULTS

A. Parameter description

The formalism presented in the previous section has been
numerically applied for seven nuclei: 158Gd, 172Yb, 226Ra,
228Th, 232Th, 238U, 238Pu. Because some results for 172Yb and
226Ra were earlier reported [21,22], for these nuclei we men-
tion only the features not presented there. The experimental
data are taken from Refs. [23–25] (158Gd), [26–29] (172Yb),
[30–32] (226Ra), [33] (228Th), [32,34–36] (232Th), [27,35,36]
(238U), [27,36,37] (238Pu). Moreover, three pairs of parity
partner bands have been treated in Refs. [9,10,12], where,
excepting the new strengths C1 and C2, all parameters have
been fixed through the least-squares procedure.

These new parameters have been fixed as explained in
the previous section. Because the dipole-state energies are
sensitive to changing B1 and B3, we change slightly the known
values of these parameters to improve the agreement in the
negative dipole band. However, changing the values of B1 and
B3 affects some of calculated energies in the other six bands.
Such corrections are washed out by a small change of one of
the parameters AJ ,AJ23. We have checked for few cases that
the results obtained in this way are similar to those provided
by a least-squares procedure applied for all eight bands. The
final results for the model parameters are listed in Table I.

B. Dipole bands energies

As we have already suggested before, the calculated
energies for g±, β±, γ ± are practically the same as in
Ref. [9,10,12] and therefore they are not given here. We stress
the fact that the volume of explained data with the mentioned
parameters is quite large. For example, in the previously
treated six bands of 232Th, about 55 excitation energies
are known. Also, with the fixed deformation parameters,
several experimental data concerning the transition reduced
probabilities are realistically described. It is interesting to
mention that these parameters have specific dependence on A

and Z, which means that applying the formalism to new cases,
the strength parameters can be considered fully determined

TABLE I. The deformation parameters d and f and the structure coefficients
involved in the model Hamiltonian, obtained as described in the text, are listed for
several isotopes. The deformations are dimensionless, while the remaining coefficients
are given in units of keV.

158Gd 172Yb 226Ra 228Th 232Th 238U 238Pu

d 3.00 3.68 3.00 3.10 3.25 3.90 3.90
f 0.30 0.30 0.80 0.30 0.30 0.60 0.30
A1 21.49 26.94 20.29 17.72 14.26 20.64 18.84
A2 −12.28 −17.68 −17.21 −12.67 −8.34 −9.59 −8.63
AJ 3.50 4.72 0.49 1.32 2.26 2.14 2.26
AJ23 15.00 4.70 7.17 8.38 6.00 5.00 5.00
B1 −11.68 −24.29 −1.53 −2.79 −6.25 −11.97 −8.43
B3 3414.62 8327.68 523.07 858.37 2047.04 4483.28 3254.09
C1 −3096.52 −8853.24 −217.31 −603.58 −1879.04 −4663.88 −3265.85
C2 285.93 594.45 38.18 68.16 152.87 295.64 206.29
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TABLE II. Experimental (left column) and theoretical (right
column) excitation energies for the dipole band Kπ = 1+ states are
given in units of MeV for the isotopes 158Gd,172 Yb,228 Th,232 Th.

J + 158Gd 172Yb 228Th 232Th

Exp. Th. Exp. Th. Exp. Th. Exp. Th.

1+ 2.534 2.531 2.010 1.880 1.247 1.489 1.508
2+ 2.539 2.563 2.047 1.897 1.250 1.519
3+ 2.631 2.638 1.970 1.311 1.561 1.567
4+ 2.698 2.073 1.984 1.301 1.573 1.578
5+ 2.829 2.133 1.426 1.673
6+ 2.927 2.156 2.139 1.409 1.687
7+ 3.108 2.368 1.595 1.827
8+ 3.256 2.370 1.587 1.851
9+ 3.470 2.676 1.818 2.029

10+ 3.681 2.683 1.832 2.073
11+ 3.911 3.056 2.092 2.276
12+ 4.189 3.078 2.139 2.347
13+ 4.423 3.506 2.412 2.567
14+ 4.771 3.552 2.497 2.669
15+ 5.001 4.023 2.774 2.899
16+ 5.417 4.101 2.899 3.033
17+ 5.636 4.606 3.174 3.628
18+ 6.118 4.719 3.338 3.435
19+ 6.323 5.251 3.606 3.672
20+ 6.870 5.403 3.808 3.871

from the previous analysis. As shown in Figs. 1 and 2, the new
parameters C1 and C2 exhibit also a smooth dependence on the
variable A − 0.5(N − Z). Adding the third isospin component
to A we avoided the situation when for the isotopes of the same

TABLE III. The same as in Table II but for 226Ra, 238U, 238Pu.

J + 226Ra 238U 238Pu

Exp. Th. Exp. Th. Exp. Th.

1+ 1.363 1.354 1.367 1.310 1.343
2+ 1.345 1.380 1.357
3+ 1.422 1.420 1.425 1.401
4+ 1.359 1.442 1.420
5+ 1.526 1.531 1.506
6+ 1.432 1.546 1.525
7+ 1.684 1.684 1.656
8+ 1.587 1.582 1.698 1.677
9+ 1.896 1.882 1.851

10+ 1.806 1.901 1.879
11+ 2.158 2.126 2.092
12+ 2.094 2.156 2.132
13+ 2.465 2.413 2.376
14+ 2.433 2.460 2.433
15+ 2.812 2.743 2.702
16+ 2.812 2.811 2.780
17+ 3.193 3.113 3.067
18+ 3.223 3.205 3.171
19+ 3.602 3.521 3.471
20+ 3.662 3.639 3.601

TABLE IV. The same as in Table II, but for the Kπ = 1− band.

J − 158Gd 172Yb 228Th 232Th

Exp. Th. Exp. Th. Exp. Th. Exp. Th.

1− 1.856 1.856 1.155 1.155 0.952 0.952 1.078 1.078
2− 1.895 1.912 1.198 1.207 0.968 0.989 1.100 1.110
3− 1.978 1.970 1.222 1.257 1.017 1.140
4− 2.091 1.331 1.375 1.104 1.213
5− 2.184 1.353 1.443 1.142 1.257
6− 2.366 1.541 1.636 1.281 1.372
7− 2.500 1.567 1.716 1.330 1.428
8− 2.727 1.828 1.986 1.512 1.582
9− 2.911 1.849 2.077 1.578 1.654

10− 3.165 2.193 2.421 1.791 1.839
11− 3.404 2.209 2.524 1.880 1.931
12− 3.672 2.630 2.935 2.113 2.140
13− 4.970 2.646 3.053 2.227 2.255
14− 4.237 3.134 3.523 2.470 2.479
15− 4.598 3.661 2.613 2.619
16− 4.857 4.182 2.860 2.854
17− 5.281 4.342 3.033 3.021
18− 5.526 4.906 3.277 3.261
19− 6.013 5.091 3.481 3.456
20− 6.240 5.692 3.719 3.699

A one obtains different values of the considered parameters,
which results in having a ill-defined function. The calculated
energies for the dipole bands are collected in Tables II–V.
Only the states with angular momentum not larger than 20
are listed. Note that except for 172Yb, [28,42] only few data

TABLE V. The same as in Table III but for the Kπ = 1− band.

J − 226Ra 238U 238Pu

Exp. Th. Exp. Th. Exp. Th.

1− 1.080 1.049 0.967 0.967 0.963 0.863
2− 1.102 1.090 0.988 0.998 0.986 0.992
3− 1.108 1.035 1.033 1.019 1.025
4− 1.211 1.053 1.100 1.083 1.089
5− 1.227 1.153 1.138
6− 1.394 1.259 1.240
7− 1.409 1.326 1.302
8− 1.631 1.472 1.443
9− 1.647 1.553 1.516

10− 1.913 1.736 1.695
11− 1.933 1.831 1.781
12− 2.233 2.048 1.994
13− 2.258 2.157 2.093
14− 2.584 2.405 2.336
15− 2.619 2.529 2.450
16− 2.962 2.802 2.719
17− 3.012 2.942 2.851
18− 3.365 3.237 3.140
19− 3.434 3.392 3.291
20− 3.790 3.707 3.597
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are known for these bands. From the energy analysis, several
common features can be seen. We note that in both Kπ = 1−
and Kπ = 1+ bands a doublet structure shows up. For us it is
not clear whether this doublet structure is an indication of two
bands of odd and even spins, respectively. This suspicion is
somehow confirmed in 228Th and 226Ra, where in the low part
of the spectrum the doublet members have not a natural energy
ordering.

The excitation energies were further used to represent, in
Figs. 3–7, the dynamic moment of inertia as function of angular
frequency defined as:

h̄ωI = dE

dI
≈ 1

2
(EI − EI−2),

(28)
J (2)

h̄2 =
(

dh̄ω

dI

)−1

≈ 2

h̄(ωI − ωI−2)
.

The common feature of the moments of inertia is the zigzag
structure in both the negative- and positive-parity bands. For
the 1+ band, the moments of inertia of odd and even spins
are lying on smooth curves, respectively. The curve for the
odd spins lies above that of even spins. The same is true
also for the negative-dipole band with the difference that the
curve corresponding to the even angular momenta is higher
than that for odd values of angular momentum. Due to the
relative position of the four curves comprising the moments
of inertia of even and odd spin states of positive and negative
parity, respectively, for some nuclei (172Yb, 226Ra, 238U, and
238Pu) it turns out that for some ranges of angular momenta
the (odd, positive); (even, negative) and (even, positive); (odd,
negative) states have moments of inertia lying on similar
curves, respectively. This interleaved structure might be a
signature for an octupole deformation in these states. To get
a confirmation for such an expectation we plotted in the low
panels of the above quoted figures the first- and second-order
energy displacement functions defined as:

δE(J−) = E(J−) − (J + 1)E[(J − 1)+] + JE[(J + 1)+]

2J + 1
,


E1,γ (J ) = 1

16
[6E1,γ (J ) − 4E1,γ (J ) − 4E1,γ (J )

+E1,γ (J ) + E1,γ (J )],

E1,γ (J ) = E(J + 1) − E(J ). (29)

If the parity partner bands have a similar J (J + 1) pattern
in a certain range of angular momentum, then the function
δE is vanishing for J belonging to the mentioned range.
The reverse statement, if valid, asserts that for the angular
momenta where the first-order displacement function vanishes,
the partner bands have identical moments of inertia, which
further infers that the two bands can be viewed as being
associated to a sole intrinsic state. However, the J dependence
of the excitation energies for the considered nuclei deviates
from the J (J + 1) law. If the energies can be described by
a second-order polynomial in J (J + 1) and, moreover, the
partner bands are characterized by the same strength for
the [J (J + 1)]2 term, the second-order energy displacement
function is vanishing. Conversely, if 
E1,γ is vanishing, this
is a sign that the two partner bands have a similar [J (J + 1)]2

pattern. Concerning the second-order energy displacement
function, one should mention that there are two distinct
functions of angular momentum differing by the set of states
involved. In one function the lowest state is 1+ (the black
squares), whereas for the other function the state 1− is the
lowest in energy. The parity assignment for the states involved
in 
E is conventionally taken as follows [43]. The states
whose angular momenta differ by two units have the same
parity, whereas those that differ by unity are of different
parities. Inspecting Figs. 6 and 7 from the present article,
Fig. 3 of Ref. [21] and Fig. 2 of Ref. [22], we remark that for
172Yb, 238U, and 238Pu the second-order energy displacements
vanish for two to three consecutive values of angular momenta,
whereas for 226Ra this is zero or very close to zero for I � 11.

In the right upper corner of Figs. 3–7, we plotted the angle
between the angular momenta carried by the quadrupole and
octupole bosons, respectively in the dipole states of positive
as well as of negative parity. Such angle is defined as:

cos ϕ =
〈
ϕ

(k)
JM

∣∣ �J2 · �J3

∣∣ϕ(k)
JM

〉
√〈

ϕ
(k)
JM

∣∣Ĵ 2
2

∣∣ϕ(k)
JM

〉〈
ϕ

(k)
JM

∣∣Ĵ 2
3

∣∣ϕ(k)
JM

〉 , k = 1,+; 1,−.

(30)

Note that this angle is a decreasing function of angular
momentum and that the angles for odd and even spin states
of positive parity, respectively, lie on smooth curves. The
same is true for the angles characterizing the negative-parity
band. Moreover, for I � 7 the curves for odd-spin states of
positive parity and for even-spin states of negative parity are
very close to each other. The same is valid for the curves of
even spin and positive parity and odd spin states of negative
parity. Similarly, one could calculate the angle between the
two angular momenta in the other parity partner bands. In
Figs. 8 and 9 we give the results for the bands 0+ and 0−.
For these bands we did not consider the admixture with the γ -
band states of similar angular momenta, because the numerical
results for the isotopes considered, the mixing amplitudes
are small. For a better presentation we omitted the state 0+
where the angle is equal to π . The angles for the two bands
exhibit minima that are achieved for different values of angular
momenta. However, for 226Ra and 238U the two minima are
almost equal to each other and are reached for close values
of angular momenta. After reaching the minima the angles
increase and approach the limit value of π/2 in both bands. In
the remaining cases this limit is met first by the band 0− and
much later in the ground band. Let us comment on the states
where the angular momenta determined by the quadrupole
and octupole bosons, respectively, are perpendicular on each
other, respectively. The system under such a state constitute a
precursor of a chiral symmetry [44]. Indeed, we could imagine
a system of nucleons moving around a phenomenological
core described by the quadrupole-octupole boson Hamiltonian
considered here. Suppose that the coupling of the particle and
core subsystems is such that the angular momentum carried
by particles, say �j , is perpendicular to the plane ( �J2, �J3). If
the system energy corresponding to the situation when the
set ( �j, �J2, �J3) form a right triad is degenerate with the energy
corresponding to the situation when the three vectors define
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TABLE VI. Calculated gyromagnetic factors for the states belonging to the dipole Kπ = 1+

(left column) and Kπ = 1− (right column) bands are given in units of nuclear magneton µN , for
158Gd, 172Yb, 228Th, 232Th.

J 158Gd 172Yb 228Th 232Th

Kπ = 1+ Kπ = 1− Kπ = 1+ Kπ = 1− Kπ = 1+ Kπ = 1− Kπ = 1+ Kπ = 1−

1 0.645 0.865 0.645 0.789 0.645 0.851 0.645 0.832
2 1.081 0.403 0.859 0.379 1.042 0.399 0.989 0.392
3 0.503 0.548 0.424 0.452 0.489 0.530 0.469 0.506
4 0.939 0.316 0.760 0.286 0.910 0.310 0.869 0.302
5 0.476 0.486 0.395 0.405 0.461 0.472 0.441 0.452
6 0.821 0.293 0.697 0.263 0.803 0.386 0.776 0.280
7 0.457 0.448 0.381 0.383 0.444 0.437 0.425 0.422
8 0.723 0.281 0.642 0.254 0.712 0.276 0.695 0.269
9 0.439 0.417 0.372 0.366 0.428 0.409 0.412 0.398

10 0.645 0.273 0.592 0.249 0.638 0.269 0.627 0.263
11 0.422 0.391 0.363 0.352 0.412 0.386 0.398 0.377
12 0.584 0.267 0.548 0.245 0.579 0.263 0.573 0.258
13 0.406 0.370 0.355 0.340 0.398 0.366 0.386 0.359
14 0.536 0.261 0.511 0.241 0.533 0.258 0.528 0.253
15 0.391 0.353 0.347 0.329 0.384 0.349 0.374 0.344
16 0.498 0.256 0.480 0.238 0.496 0.253 0.492 0.249
17 0.376 0.338 0.339 0.319 0.371 0.336 0.362 0.331
18 0.476 0.252 0.453 0.237 0.466 0.250 0.463 0.246
19 0.364 0.327 0.332 0.310 0.359 0.324 0.352 0.321
20 0.442 0.249 0.431 0.234 0.440 0.246 0.438 0.243

a left triad, one says that the system has a chiral symmetry.
Of course, such a situation is an ideal picture and in practice
one expects that the two energies are only approximatively
degenerate. The symmetry breaking is expected to yield some
properties that are specific for the new nuclear phase.

C. Electromagnetic transition probabilities

The E1 and M1 transitions are determined by the following
transition operators:

E1µ = T
(h)

1µ + T
(anh)

1µ ,

T
(h)

1µ = qh

∑
µ2,µ3

C3 2 1
µ3 µ2 µ

(
b
†
3µ3

+ (−)µ3b3,−µ3

)

× (
b
†
2µ2

+ (−)µ2b2,−µ2

)
,

T anh
1µ = [b†3(Ĵ3Ĵ2)]1µ + [(Ĵ2Ĵ3)b3]1µ, (31)

M1µ = g2(Ĵ2)µ + g3(Ĵ3)µ

+ g′
2{[Ĵ2(b†3b

†
3)2]1µ + ((b3b3)2Ĵ2)1µ}

+ g′
3{[Ĵ3(b†2b

†
2)2]1µ + ((b2b2)2Ĵ3)1µ}.

The reduced matrix elements1 of interest for these operators
are given analytically in Appendix C. Let us first discuss the
magnetic properties of the dipole bands. First, we calculated

1Throughout this article the Rose convention for the Wigner Eckardt
theorem is used [20].

the gyromagnetic factors for the states of the two bands
by considering only the lowest-order boson terms in the
expression of the M1 transition operator. In Ref. [45] we
derived an expression for the M1 transition operator by
quantizing its classical expression. The important result was
that the gyromagnetic factors g2 and g3 were expressed in
terms of the Hamiltonian structure coefficients. The values
obtained for 238U are:

g2 = 0.371 µN, g3 = 2.266 µN. (32)

These values have been adopted for all nuclei considered here.
The results are presented in Tables VI and VII. We remark
that the gyromagnetic factor of the state 2− is very close
to the phenomenologically adopted value for nuclei in the
ground state, i.e., Z/A. This value is met in the positive-parity
band for the state 13+. The gyromagnetic factor of even-spin
states of positive parity is constantly much larger than those of
negative parity. By contrary, the odd-spin states of positive and
negative parity have close gyromagnetic factors. For J � 5 the
odd-spin states of positive parity have gyromagnetic factors
that are slightly larger than those characterizing the odd-spin
states of negative parity. Starting with J = 7, the ordering of
gyromagnetic factors of odd-spin states in the two bands is
changed.

The transition from the band 1+ to the ground band is caused
by the anharmonic term of the transition operator, whereas the
intraband transitions as well as the gyromagnetic factors have
been calculated by using only the lowest-order boson terms.
The factors g2 and g3 have been taken as mentioned before.
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TABLE VII. Gyromagnetic factors for the states belonging to the dipole Kπ =
1− and Kπ = 1+ bands.

J 226Ra 238U 238Pu

Kπ = 1+ Kπ = 1− Kπ = 1+ Kπ = 1− Kπ = 1+ Kπ = 1−

1 0.645 0.931 0.645 0.793 0.645 0.773
2 1.100 0.427 0.813 0.381 0.806 0.374
3 0.510 0.644 0.409 0.461 0.407 0.431
4 0.959 0.351 0.719 0.289 0.712 0.279
5 0.484 0.592 0.378 0.417 0.375 0.385
6 0.841 0.334 0.667 0.268 0.659 0.257
7 0.467 0.563 0.366 0.398 0.363 0.365
8 0.745 0.329 0.621 0.260 0.614 0.248
9 0.451 0.544 0.358 0.386 0.355 0.352

10 0.670 0.330 0.579 0.255 0.572 0.243
11 0.437 0.531 0.351 0.377 0.347 0.340
12 0.614 0.332 0.542 0.253 0.534 0.239
13 0.423 0.522 0.344 0.369 0.341 0.330
14 0.572 0.337 0.509 0.252 0.500 0.236
15 0.412 0.514 0.338 0.362 0.334 0.320
16 0.541 0.342 0.480 0.251 0.472 0.234
17 0.403 0.507 0.332 0.356 0.328 0.312
18 0.518 0.348 0.457 0.250 0.447 0.232
19 0.395 0.499 0.327 0.351 0.322 0.304
20 0.500 0.354 0.436 0.250 0.426 0.230

Therefore, the branching ratios for the M1 transitions:

R10
++ =

[〈
ϕ

(1,+)
J

∣∣|M1|
∣∣ϕ(g,+)

J+1

〉
〈
ϕ

(1,+)
J

∣∣|M1|
∣∣ϕ(g,+)

J−1

〉
]2

,

R11
++ =

[〈
ϕ

(1,+)
J

∣∣|M1|
∣∣ϕ(1,+)

J+1

〉
〈
ϕ

(1,+)
J

∣∣|M1|
∣∣ϕ(1,+)

J−1

〉
]2

, (33)

R11
−− =

[〈
ϕ

(1,−)
J

∣∣|M1|
∣∣ϕ(1,−)

J+1

〉
〈
ϕ

(1,−)
J

∣∣|M1|
∣∣ϕ(1,−)

J−1

〉
]2

,

are free of any adjustable parameter. The calculated values for
these ratios are given in Tables VIII and IX. The branching
ratios to the ground band have a minimum for 7 � J � 9 and
a maximum for 15 � J � 19. Exceptions are for 238U and
238Pu, where the maximum values are reached for J = 23. The
dominant ratios are those for odd values of angular momentum.
The same is true for the intraband transition for the band 1+.

By contrast, in the negative-parity band the ratios corre-
sponding to even angular momenta prevail. One notices that
for 158Gd, R11

++ has a minimum value for J = 9, whereas R11
−−

has a maximum for J = 8. These extreme values change from
one nucleus to another. The dominant intraband M1 transitions
for the band 1+ are those from even-spin states. Moreover,
they increase with the angular momentum. For example, for
232Th the B(M1) value is 0.25 µ2

N for J = 2 and 4.23 µ2
N for

J = 30. As for the band 1− the dominant transitions are those
from odd-spin states. Indeed, for the isotope mentioned above
the B(M1) value increase from 0.45 for J = 3 to 2.06 µ2

N

for J = 29. Except for the first transitions (2+ → 1+) all
others B(M1) values are larger than the ones associated to

negative-parity band. Due to these facts we say that the band
1+ has a dominant magnetic character. It is worth noting that,
although the collective magnetic states of scissors nature are
determined by the angular vibration, in a scissors fashion, of
the symmetry axis of the proton and neutron systems, that angle
being quite small, here the angle between �J2 and �J3 (which
might be assimilated with the angle between the axis of the
maximal moments of inertia of the quadrupole and octupole

FIG. 10. The experimental branching ratios for the bands Kπ =
1− (black circle) and Kπ = 0− (down triangle) in 172Yb are given
as function of angular momentum. For comparison the calculated
branching ratios, represented by stars and up triangles, respectively,
are given as function of angular momentum. The transition operator
involves the anharmonic term given by Eq. (31).
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TABLE VIII. M1 branching ratios for the Kπ = 1+ and Kπ = 1− bands for 158Gd, 172Yb, 228Th, 232Th.

J 158Gd 172Yb 228Th 232Th

1+ → 0+ 1+ → 1+ 1− → 1− 1+ → 0+ 1+ → 1+ 1− → 1− 1+ → 0+ 1+ → 1+ 1− → 1− 1+ → 0+ 1+ → 1+ 1− → 1−

1 0.376 0.369 0.375 0.373
2 7.72 4.272 6.819 5.838
3 0.348 11.51 0.343 639.1 0.347 15.740 0.346 27.233
4 20.45 6.335 15.802 11.561
5 0.160 5.22 0.185 21.14 0.164 6.144 0.170 8.015
6 97.87 12.495 58.746 33.428
7 0.004 4.17 0.037 9.755 0.008 4.613 0.015 5.446
8 2326 27.790 465.40 139.730
9 0.300 4.00 0.024 6.998 0.214 4.262 0.128 4.743

10 978.40 72.40 8901 2025
11 3.114 4.15 0.478 5.979 2.275 4.302 1.466 4.595
12 223.83 258.3 410.81 2105
13 23.821 4.45 2.535 5.574 15.494 4.524 8.870 4.691
14 122.40 2548 172.680 353.600
15 549.200 4.84 11.065 5.455 189.61 4.848 66.498 4.916
16 87.86 6013. 110.845 173.600
17 506.600 5.28 60.088 5.493 1629 5.238 1018 5.220
18 71.37 680.7 84.690 116.470
19 108.700 5.77 1442 5.627 146.60 5.670 281.311 5.576
20 61.92 294.14 70.747 90.154
21 60.940 6.28 624.060 5.825 70.577 6.133 94.363 5.968
22 55.79 181.68 62.177 75.443
23 40.070 6.81 138.120 6.066 48.986 6.617 57.697 6.386
24 51.42 132.16 56.352 66.146
25 37.760 7.36 73.400 6.345 39.639 7.118 43.756 6.825
26 48.06 105.31 52.066 59.725
27 33.710 7.90 49.530 6.598 34.548 7.618 36.520 7.259
28 45.68 91.05 49.189 55.694
29 31.070 8.41 37.290 6.768 31.257 8.082 31.951 7.649
30 5.17 6.167 5.338 5.568

systems, respectively) is large. In this respect we could call the
magnetic states from the band 1+ shares like states.

FIG. 11. The same as in Fig. 10 but for 226Ra. For a better
representation the results for the Kπ = 1− band are divided by 5.
The experimental data for this band are lacking.

Comparing the values of R11
++ with those describing the M1

branching ratios for the transitions relating the bands 1− and
0−, one finds out that the former ones prevail. The dominant

FIG. 12. The reduced matrix element for the electric dipole
transition J − → (J − 1)+ with J = odd and J + → (J − 1)− for
J = even.
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TABLE IX. The same as in Table VIII but for 226Ra, 238U, 238Pu.

J 226Ra 238U 238Pu

1+ → 0+ 1+ → 1+ 1− → 1− 1+ → 0+ 1+ → 1+ 1− → 1− 1+ → 0+ 1+ → 1+ 1− → 1−

1 0.376 0.368 0.368
2 15.218 4.408 3.821
3 0.350 10.097 0.344 2820 0.343 1322
4 222.04 6.857 5.144
5 0.165 4.760 0.192 37.780 0.190 42.575
6 152.144 14.929 9.061
7 0.007 3.819 0.050 13.244 0.048 14.215
8 29.201 41.279 17.435
9 0.220 3.640 0.006 8.489 0.007 8.989

10 14.793 190.470 36.714
11 2.315 3.717 0.263 6.769 0.283 7.135
12 10.067 1713 88.845
13 15.399 3.901 1.412 6.005 1.508 6.323
14 7.908 416.900 282.240
15 171.476 4.127 5.457 5.652 5.888 5.959
16 6.768 113.800 1951
17 2646 4.365 21.402 5.511 23.781 5.827
18 6.134 58.266 7584
19 171.74 4.596 123.160 5.491 149.878 5.832
20 5.786 37.904 1090
21 79.553 4.815 1569 5.547 1153 5.923
22 5.612 27.941 411.090
23 54.482 5.017 443.440 5.651 355.806 6.073
24 5.552 22.205 237.690
25 43.842 5.207 131.470 5.797 118.581 6.277
26 5.566 18.540 165.700
27 38.210 5.383 68.750 5.896 64.481 6.430
28 5.636 16.357 132.420
29 34.744 5.543 44.709 5.909 42.722 6.475
30 0.469 1.318 6.480

ratios for the transitions 1− → 0− are those corresponding to
even values for the angular momentum.

FIG. 13. The B(E2) values for the intraband transitions for the
Kπ = 1+ and Kπ = 1− divided by the value corresponding to the
transition 2†

g → 0†
g are given as function of angular momentum.

The ratio is denoted by Rq according to Eq. (35). For comparison,
the intraband B(E2) values characterizing the ground band are also
given.

Now let us turn our attention to the electric transitions
E1 and E3. In Tables X and XI we listed the calculated E1
branching ratios:

R10
+− =

[〈
ϕ

(1,+)
J

∣∣|E1|
∣∣ϕ(g,−)

J+1

〉
〈
ϕ

(1,+)
J

∣∣|E1|
∣∣ϕ(g,−)

J−1

〉
]2

,

(34)

R10
−+ =

[〈
ϕ

(1,−)
J

∣∣|E1|
∣∣ϕ(g,+)

J+1

〉
〈
ϕ

(1,−)
J

∣∣|E1|
∣∣ϕ(0,+)

J−1

〉
]2

.

Concerning the ratio R10
−+, two situations have been consid-

ered, namely when the transition operator is harmonic and
when the anharmonic term defined above has been included.
In that case we need the ratio qanh/qh. These ratios are to
be fixed so that a certain experimental data for the branching
ratio is reproduced. Such experimental data are available for
the cases of 172Yb and 226Ra and the determined values for
the ratio of anharmonic and harmonic weights of the transition
operator are equal to −1.722 and −1.4, respectively. The first
value has been adopted also for 158Gd, whereas the second
value was assigned for the ratio characterizing the remaining
nuclei considered here.
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TABLE X. Calculated E1 branching ratios for the Kπ = 1+ and Kπ = 1− bands in the isotopes for 158Gd, 172Yb, 228Th, and 232Th. Results
given in the first and second columns are obtained with a harmonic structure for the transition operator, whereas those listed in the third column
correspond to an anharmonic structure given by Eq. (31) with qanh/qh equal to −1.722 for 158Gd and 172Yb and −1.4 for Th isotopes. These
values were obtained by fitting the experimental value corresponding to the state 1− in 172Yb and 226Ra, respectively.

J 158Gd 172Yb 228Th 232Th

1+ → 0− 1− → 0+ 1− → 0+ 1+ → 0− 1− → 0+ 1− → 0+ 1+ → 0− 1− → 0+ 1− → 0+ 1+ → 0− 1− → 0+ 1− → 0+

1 11.637 5.321 28.700 6.537 13.197 5.991 16.013 6.329
2 3.156 2.641 3.065 2.939
3 1.948 1.871 2.056 1.828 1.955 1.869 1.974 1.858
4 1.559 1.299 1.512 1.448
5 1.311 1.598 1.305 1.478 1.301 1.546 1.292 1.516
6 1.650 1.407 1.608 1.550
7 7.144 2.899 8.280 2.470 7.163 2.967 7.290 2.849
8 2.221 1.935 2.177 2.112
9 7.312 3.022 7.197 2.452 7.157 3.048 7.025 2.892

10 5.365 4.089 5.136 4.825
11 8.294 3.252 7.252 2.539 7.976 3.252 7.624 3.058
12 5.909 4.415 5.627 5.255
13 9.594 3.520 7.630 2.666 9.099 3.499 8.518 3.266
14 6.774 4.899 6.405 5.928
15 11.115 3.808 8.194 2.816 10.429 3.768 9.603 3.498
16 7.815 5.453 7.336 6.726
17 12.846 4.108 8.906 2.982 11.952 4.052 10.861 3.746
18 9.011 6.066 8.401 7.632
19 14.771 4.417 9.742 3.158 13.652 4.346 12.276 4.005
20 10.356 6.737 9.597 8.644
21 16.877 4.732 10.687 3.342 15.517 4.646 13.836 4.271
22 11.846 7.469 10.921 9.762
23 19.152 5.050 11.732 3.532 17.537 4.951 15.532 4.542
24 13.480 8.279 12.373 10.988
25 21.587 5.370 12.870 3.727 19.704 5.258 17.358 4.816
26 15.257 9.149 13.952 12.323
27 23.944 5.686 13.646 3.915 21.755 5.560 19.008 5.085
28 17.188 10.128 15.676 13.789
29 26.073 6.013 14.234 4.131 23.574 5.877 20.426 5.374
30

In Fig. 10, the calculated branching ratios for the transitions
of the negative dipole band to the ground band are compared
with the corresponding data for the case [42] of 172Yb. One
notices a good agreement between the two sets of data. In
Fig. 10 we also compare the calculated and experimental
branching ratios for the band 0−. One sees that these ratios
are slowly decreasing with J up to J = 11 when a plateau
is reached. By contrast, the branching for the dipole band
decreases up to J = 5, has a small maximum at J = 7, a flat
minimum at J = 9, and then is increases with J . Note that
the dipole band has larger branchings than the band 0−. One
notes that although the two experimental ratios for the band
0− are quite well described by those predicted by the Alaga
rule, i.e., 2.0 and 1.33, respectively, large deviations from the
Alaga rule are seen for the branching ratios characterizing
the dipole band with Kπ = 1−. For example, for J = 1 and
3, the experimental ratios are about 6.5 and 2, respectively,
whereas the predictions of the Alaga rule are 0.5 and 0.75.
Our results and Alaga rule predictions are at variance not only
in the region of low spin but also for high spin states. Indeed,

for J larger than nine, the Alaga rule predictions are close
to 0.9, whereas in our case, starting with J = 9, where the
attained value is equal to about 2.5, our calculated ratios are
increasing with J.

In Fig. 11 we compare three sets of data, namely the
theoretical and experimental branching ratios characterizing
the band 0− and the branching ratio associated to the negative-
parity dipole band in 226Ra. For a better representation, the
dipole branching ratios have been divided by 5. Remarkable
the fact that modulo the factor 5, the calculated ratios for
the two bands have similar behavior as function of J . It is
interesting to see how the matrix elements of the E1 transition
operator depend on the angular momentum for the bands with
Kπ = 0− and Kπ = 1−. Comparison of the two sets of matrix
elements is made in Fig. 12. Note that for J =odd, the matrix
element characterizes the transition from the states J− to the
state (J − 1)+, whereas for J =even, this links the states J+
and (J − 1)−. For both situations an anharmonic structure for
the transition operator has been considered. The parameters
involved in the T1µ operator have the values: qanh/qh = −1.4
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TABLE XI. Calculated E1 branching ratios for the Kπ = 1+ and Kπ = 1− bands in the isotopes 226Ra, 238U,
238Pu. Results given in the first and second columns are obtained with a harmonic structure for the transition
operator, whereas those listed in the third column correspond to an anharmonic structure given by Eq. (31) with
qanh/qh = −1.4. This value was obtained by fitting the experimental value corresponding to the state 1− in 226Ra.

J 226Ra 238U 238Pu

1+ → 0− 1− → 0+ 1− → 0+ 1+ → 0− 1− → 0+ 1− → 0+ 1+ → 0− 1− → 0+ 1− → 0+

1 10.500 5.815 37.24 8.036 39.380 8.072
2 3.141 2.518 2.521
3 1.890 1.840 2.090 1.850 2.108 1.858
4 1.545 1.236 1.239
5 1.294 1.523 1.321 1.443 1.325 1.449
6 1.635 1.344 1.347
7 5.954 2.932 8.531 2.542 9.178 2.567
8 2.188 1.845 1.851
9 6.104 2.988 7.178 2.460 7.569 2.484

10 5.100 3.742 3.778
11 7.010 3.156 7.087 2.503 7.349 2.528
12 5.624 4.043 4.072
13 8.402 3.364 7.326 2.591 7.502 2.619
14 6.464 4.474 4.498
15 9.341 3.525 7.631 2.696 7.858 2.738
16 7.491 4.957 4.976
17 10.375 3.688 8.079 2.817 8.364 2.875
18 8.510 5.467 5.497
19 11.460 3.851 8.632 2.947 8.989 3.024
20 9.628 6.019 6.062
21 12.554 4.015 9.269 3.085 9.715 3.182
22 10.827 6.612 6.670
23 13.671 4.182 9.976 3.226 10.532 3.347
24 12.091 7.260 7.339
25 14.807 4.356 10.741 3.369 11.430 3.518
26 13.412 7.965 8.069
27 15.898 4.533 11.105 3.500 11.857 3.676
28 14.791 8.766 8.906
29 16.945 4.718 11.371 3.657 12.149 3.875
30

and qh = 10−2 fm. We note that the matrix elements describing
the transition of the dipole state J−, multiplied by a factor of 5,
stays quite close to the similar matrix elements characterizing
the band 0−.

In Fig. 13 we study the intraband E2 transitions in the two
dipole bands. The calculated B(E2) values are divided by the
B(E2) value corresponding to the transition 2†g → 0†g .

Rq = B[E2; J → (J − 2)]

B(E2; 2+
g → 0+

g )
. (35)

Results were obtained with a harmonic quadrupole transi-
tion operator and by neglecting the admixture of γ -band states
in the structure of the ground-band states. For comparison, we
also plotted the reduced transition probability in the ground
band with a similar normalization. The intraband quadrupole
transitions have similar dependence on angular momentum
in the two dipole bands. Moreover, the B(E2) values for the
transitions J− → (J − 2)− with J even lie close to the curve
corresponding to the ground band.

The dipole bands may perform a E3 transition to the ground
bands. To study the E3 properties of the dipole bands we have
used an harmonic transition operator:

T3µ = q3(b†3µ + (−)µb3,−µ). (36)

These transitions turns out to be weak. To have a flavor about
the relative values of these transitions, comparing them to those
from the band 0−, we normalize each transition to the B(E3)
value associated for the transition 3−

g → 0+
g .

In Table XII we list the calculated values for the ratios:

T 10
−+(3; J ) = B[E3, J− → (J + 3)+g ]

B(E3; 3−
g → 0+

g )
,

(37)

T 10
+−(3; J ) = B[E3, J+ → (J + 3)−g ]

B(E3; 3−
g → 0+

g )
.
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TABLE XII. The calculated val-
ues for the B(E3) values, normalized
to the B(E3) value for the transition
3−

g → 0+
g , are listed for the transi-

tions of the dipole band states of
angular momentum J to the states of
angular momentum (J + 3) from the
ground bands. The calculations were
performed for 226Ra.

J T 10
−+(3; J ) T 10

+−(3; J )

1 0.002
2 0.000
3 0.012
4 0.011
5 0.030
6 0.021
7 0.057
8 0.036
9 0.090

10 0.054
11 0.126
12 0.076
13 0.163
14 0.102
15 0.199
16 0.133
17 0.234
18 0.167
19 0.267
20 0.205
21 0.297
22 0.244
23 0.328
24 0.284
25 0.358
26 0.325
27 0.389

V. CONCLUSIONS

In the previous sections we developed a formalism that
appends the description of dipole bands to the extended
coherent state model, which results in obtaining a simultaneous
and consistent model of eight rotational bands, four of positive
and four of negative parity. Because, for the seven nuclei
considered, the results for three parity partner bands were
already reported in some earlier publications, here we focus
on the description of the dipole bands. The present article is the
first devoted to the formalism description giving the analytical
results describing the states and the matrix elements of the
model Hamiltonian and transition operators.

The eight rotational bands are obtained by projecting out the
angular momentum and parity from four intrinsic states that
are quadrupole and octupole deformed functions and moreover
orthogonal onto each other. By construction the four states
have the property that the eight sets of projected states are
all orthogonal. The model states depend on two real parame-
ters that simulate the quadrupole and octupole deformation,

respectively. In the spherical limit, i.e., both deformations
tend to zero, specific multiphonon states of definite angular
momentum, seniority, and number of bosons, respectively,
are obtained. In the large deformation regime the projected
states have a definite value for the K quantum number. In the
restricted space of projected states, an effective quadrupole-
octupole boson Hamiltonian is considered. Indeed, for the
model Hamiltonian the only nonvanishing matrix elements are
those involving the states (J †

g , J †
γ ) with J = even and (J−

g , J−
γ )

with J = odd. The structure coefficients defining the model
Hamiltonian as well as the deformation parameters have been
fixed by fitting through the least square procedure the energies
in the bands g±, β±, γ ± and the energy of the head state in the
Kπ = 1− band. Also, one parameter (C2 has been determined
so that the contribution of the B3 term to a particular state (2−)
is canceled. This condition seems to be sufficient to decrease
the off-diagonal matrix elements involving the dipole band
states to negligible values.

It is worth noting that dynamic moment of inertia of
the odd and even angular momenta states lie on separate
smooth curves, which could suggest that the two sets of states
form distinct bands. This happens for both the positive- and
negative-dipole bands. However, two pairs of these curves,
one for positive and one for negative subsets of states, have an
interleaved structure. These made us suspect that an octupole
static deformation shows up. To confirm this suspicion we
calculated the first-order and the second-order energy dis-
placement functions. Both functions vanish for similar angular
momenta in 172Yb, 226Ra, 238U, and 238Pu. The only isotope
where the vanishing persists in a relatively long range of
angular momentum is 228Ra. For other nuclei mentioned above
the vanishing takes place in one to three states. In Ref. [21]
we interpreted the vanishing of the displacement function for
a very short interval of J in a way that conciliates between the
band intersection and static octupole deformation. Indeed, for
such states it may be that they could be obtained by projection
from an octupole deformed state that is different from the
chosen model state for the dipole bands. Moreover, from
this deformed state one could generate, through the angular
momentum projection procedure, another two bands that are
deformed all along and intersect the dipole bands considered
here for the mentioned angular momentum. In this respect
one could assert that bands intersection does not exclude the
octupole deformation settlement.

Because the decay properties of the states depend on
the corresponding boson structure, we calculated the angle
between the angular momenta carried by the two kinds of
bosons in the states of the ground bands, g±. The result is
that for high angular momentum states, this angle approaches
the value π/2. This value is reached first in the negative and
then in the positive band. Exception is for 226Ra and 238U
where the angles in the two bands go simultaneously to the
limit value π/2. We expect that for these systems, by adding a
coupling set of particles, one could reach a chirally symmetric
picture.

For the sake of a complete description of the dipole states
of positive and negative parity, by using the eigenstates of
the model Hamiltonian, the intra- and interband transitions of
electric as well as of magnetic nature have been calculated.

044312-19



A. A. RADUTA, AL. H. RADUTA, AND C. M. RADUTA PHYSICAL REVIEW C 74, 044312 (2006)

Comparison with the experimental data is made in terms of
the branching ratios of the negative-parity states. Also, these
are compared with those characterizing the negative-parity
band with Kπ = 0−. The gyromagnetic factors for the two
bands were also calculated. One notices a strong dependence
on angular momentum for the gyromagnetic factors.

Comparing the intraband B(M1) values obtained for the
two dipole bands, one concludes that the strength of magnetic
transitions in the band Kπ = 1+ is larger than the one associ-
ated with the band Kπ = 1−. Due to this feature we say that
the Kπ = 1+ band has a magnetic character. It is interesting to
see whether the magnetic states studied in this article share a
similar nature with the other known magnetic states. It is well
established that the magnetic dipole states of scissors type [46]
have energies smaller than 4 MeV and are excited by the orbital
part of the magnetic dipole transition operator. They describe
the angular oscillations, of a scissors fashion, for the proton
and neutron systems’ symmetry axes. The collective nature of
these modes is confirmed by the fact that the total magnetic
strength, in the range of 0–4 MeV, is proportional to the nuclear
deformation squared [47]. Also, the energy depends on nuclear
deformation. However, in Ref. [5] a sequence of magnetic
states characterized by small or even vanishing deformation
were identified in several nuclei. There, the collective magnetic
nature is determined not by the nuclear deformation but by the
angular momentum. The protons fill prolate orbitals, whereas
the neutrons fill oblate orbitals. Moreover, the individual
angular momenta for protons and neutrons are coherently
summed up, respectively. The optimal energy state is met
when the angle between the angular momenta for protons
and neutrons are perpendicular onto each other. Due to this
feature, these bands are called shares bands. Under certain
circumstances, such a configuration asures a global spherical
symmetry and a large total angular momentum. Recently, we
studied microscopically the magnetic excitations that change
the isospin of the system. The properties of such states are
different from those of scissors states [48]. Of course the spin
operator involved in the dipole magnetic transition operator
may generate collective effects. The corresponding states are
named magnetic spin-flip states and, in general, lie beyond
the 4-MeV limit. Although they show up very seldom, the
presence of the spin states below 4 MeV cannot be excluded
(see, for example, Ref. [49]). In addition to the collective states
mentioned above there are many two quasiparticle dipole states
whose strengths are determined by the magnetic moments
of the individual quasiparticles, participating in building up
the dipole state. By contrast to all formalisms mentioned
above, here the magnetic properties are not caused by the
isospin degrees of freedom. Indeed, we do not distinguish
between the proton and neutron bosons. Instead, we use two
bosons of different multipolarity. In the present formalism the
magnetic properties of the dipole states are determined by
the angular momenta carried by the quadrupole and octupole
boson systems, respectively. The quadrupole and octupole
components rotate around a distinct axis, which makes an
angle varying from about 170◦ in the state 1+ to 57◦ for
29+ and 36◦ in the state 30+. Again, we mention that the
angles characterizing the odd-spin states of positive parity lie
on a smooth curve, whereas those for even-spin states stay on

another smooth curve. This suggests that the two sets of states
belong to distinct bands, which is consistent with the results for
the dynamic moment of inertia of the dipole bands. Although
in the state 1+, the axis for quadrupole and octupole systems
are close to each other but of different orientation, the motion
is not of the scissors type, as can be seen from the associated
branching ratio given in Tables VIII and IX. Indeed, the ratio
(1+ → 2+

g )/(1+ → 0+
g ) varies from 0.368 to 0.376 for the

isotopes considered here, which is smaller than the branching
ratio characterising a scissors mode. We may conclude that
the magnetic states belonging to the band Kπ = 1+ have
a shares character and, moreover, characterize a deformed
system. To decide whether the phenomenological model for
the positive-parity dipole states provides a realistic description,
more experimental data concerning the M1 properties are
necessary. These data would be a serious test for both the
present model and the microscopic descriptions that assign to
such states a two-quasiparticle character.

Concerning the E1 transition from the parity partner
dipole bands to the g± bands, the strength characterizing the
Kπ = 1− band prevails over the one associated to the positive-
parity band. Due to this feature we say that the band Kπ = 1−
has an electric nature. It is worth mentioning the role of parity
projection in determining the magnetic or electric nature of
the two bands.

Now let us say few words about the distinctive features of
our formalism. The procedure is interesting not only because
it is able to describe a relatively large volume of data with
a relatively small number of parameters but also because it
provides a consistent description of the rotational degrees of
freedom. Indeed, all formalisms based on quadrupole and
octupole boson interaction overestimate the contribution of
the rotational degrees of freedom. That happens because in the
intrinsic frame the Eulerian angles associated to the quadrupole
and octupole coordinates are independent variables. Such a
redundancy is automatically removed in the present formalism
due to the projection operation. Another salient feature of
the coherent state formalism is that it represents the ideal
framework for the description of the semiclassical aspects
of the collective motion. In particular, it provides a suitable
description for the high-spin states, where the nuclear system
behaves semiclassically, as well as for the quadrupole and
octupole deformed systems.

Moreover our formalism provides an unified description of
negative as well of positive-parity bands for both the spherical,
transitional, and well-deformed nuclei.

Moreover, the mechanism for a static octupole deformation
is different [12] from the traditional one where a fourth-order
octupole boson term is necessary [38]. As explained in
Ref. [12], in our formalism a second-order octupole boson term
is sufficient for obtaining a stable octupole deformed shape.

An octupole-shaped system may have nonvanishing electric
dipole moment. Also, due to the fact that the angular
momentum is built up by both quadrupole and octupole bosons,
one expects that the magnetic properties in a given state depend
on its boson composition. Such properties may show up in
dipole bands. Until now, the set on of the octupole deformation
was associated with a jump in the dipole matrix element
J− → (J − 1)+g (see the case of 226Ra), where J− belongs
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to the band 0−. We pointed out that the positive-parity state
having static octupole deformation (the value of J where the
energy displacement function vanishes) exhibit a large M1
branching ratio to the ground band. This, in fact, is a distinctive
feature for the dipole bands, comparing them with the other
pairs of parity partner bands. As mentioned, the angle between
angular momenta carried by the quadrupole and octupole
bosons, respectively, depends on the angular momentum of
the dipole states in a specific manner.

It is worth investigating how the negative-dipole band
compares to the the lowest negative-parity band, i.e., the
Kπ = 0− band. As shown in Figs. 10 and 11, the band 1−
is characterized by E1 branching ratios that are larger than
those corresponding to the band 0−. Moreover, as mentioned,
the angle of angular momenta carried by the quadrupole and
octupole bosons, respectively, have different dependences on
the total angular momentum.

Before closing this section, we want to comment on the
nature of the excited bands. Many authors believe that the
states of nonvanishing K cannot be of a collective nature. To
give an example, the authors of Ref. [28] invoke the arguments
from Ref. [39] and interpret the dipole states of negative
parity in 172Yb as two quasineutron states. However, based
on microscopic studies with surface δ interaction, the authors
of Ref. [40] concluded that the Kπ = 1−, 2− bands of some
actinides have, however, a collective nature. Actually, this is
not the only example in the literature when one proves that the
microscopic interpretation of the negative parity states, as two
or four quasiparticle states, is not unique. Indeed, the double
bending, one backward and one forward, seen in the ground
and 0− bands of 218Ra, interpreted in Ref. [41] as caused by
successive intersections of a collective band, a two-neutron
and a two-neutron-plus-two-proton quasiparticle band, are
fairly well reproduced by the phenomenological description
provided by ECSM [9]. Although the dipole states for 172Yb
are considered in Ref. [28] as two quasineutron states, the
branching ratios of the Kπ = 0−, 1− low-lying states are real-
istically described within an IBA-sdf formalism in Ref. [42].
Moreover, as we have already shown, the present article
provides also a good description of the electric transitions
in this nucleus. In the examples mentioned above the effect
of single-particle degrees of freedom is simulated by the
competition between various anharmonic terms involved in
the model Hamiltonian or in the transition operator. More
experimental data regarding both the excitation energies and
transition probabilities in the dipole bands would be a decisive
test for the predictive power of our formalism.

One should mention that many formalisms were devoted
to the study of the negative-dipole bands. They are either
phenomenological [37,42,50–52] or microscopic methods
[39,40,53,54]. However, none of the quoted formalisms treat
the dipole negative and positive bands on an equal footing.
Moreover, the dipole negative bands are considered in isolation
or, at best, together with a few adjacent bands. In contrast,
the present formalism treats simultaneously eight rotational
bands, four of positive and four of negative parity. Moreover,
the treatment includes the region of high spin and the strongly
deformed systems, a virtue that is lacking, for example, in
the case of the popular formalism of IBA. Moreover, the two

dipole bands are projected out from a sole function, exhibiting
both quadrupole and octupole deformation. The magnetic
and electric properties mixed up in the intrinsic function are
separated due to the parity projection.

APPENDIX A

Here we list the explicit expressions for the norms of all
projected states defined in the previous sections. The norm of
the states obtained by projecting out the angular momentum
and the parity from the octupole boson coherent state have the
expression:

[N (±)
oc,J ]−2 = e−y3 (2J + 1)I (±)

J (y3), y3 = f 2, (A1)

where I (±) stands for the overlap functions:

I (+)
J (y3) =

∫ 1

0
PJ (x)ch[f 2P3(x)]dx,

(A2)

I (−)
J (y3) =

∫ 1

0
PJ (x)sh[f 2P3(x)]dx,

with PJ (x) denoting the Legendre polynomial of rank J.
The norms of the dipole states are expressed in terms of

norms characterizing the projected states associated to the
quadrupole and octupole state factors:

[N (1,±)
J ]−2 =

∑
J2,J3

[
N

(±)
31;J3

]−2[
N

(g)
J2

]−2(
C

J3 J2 J
1 0 1

)2
,

[
N

(±)
31;JM

]−2 = 1

ACJ ′ 1 J
0 1 1

√
J (J + 1) [N (±)

3,J ]−1,

(A3)[
N

(±)
3,J

]−2 = [N (±)
oc,J ]−2

[
2 + 4

7
f 2 I

(±)′
J

I (±)
J

]
,

A = −
√

12C3 3 1
1 0 1f.

The standard notation for the Clebsch-Gordan coefficient
C

j1J2j
m1m2m has been used.

APPENDIX B

Here we give the analytical expressions for the matrix
elements of the terms involved in the model Hamiltonian. For
what follows it is useful to introduce the notation:

(1)X
J2J3
Jk = [

N
(1,k)
J

]2[
N

(k)
31;J3

N
(g)
J2

]−2(
C

J3 J2 J
1 0 1

)2
. (B1)

The final results for the matrix elements are:

〈
ϕ

(1,±)
JM

∣∣N̂2

∣∣ϕ(1,±)
JM

〉 =
∑
J2,J3

(1)X
J2J3
J± d2 I

(1)
J2

I
(0)
J2

,

〈
ϕ

(1,±)
JM

∣∣N̂3

∣∣ϕ(1,±)
JM

〉 =
∑
J2,J3

{
2 + 18

7
f 2

I (±)′
J3

I (±)
J3

[
N

(±)
oc;J3

]−2

+ 4

7
f 4

∑
J1

(
C

J1 3 J3
0 0 0

)2 I (∓)′
J1

I (∓)
J1
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× [
N

(∓)
oc;J1

]−2

}
(1)X

J2J3
J±

[
N

(±)
3;J3

]2

〈
ϕ

(1,±)
JM

∣∣N̂2N̂3

∣∣ϕ(1,±)
JM

〉 =
∑
J2,J3

{
2 + 18

7
f 2

I (±)′
J3

I (±)
J3

[
N

(±)
3;J3

]2

× [
N

(±)
oc;J3

]−2 + 4

7
f 4

(
C

J1 3 J3
0 0 0

)2

× I (∓)′
J1

I (∓)
J1

[
N

(±)
3;J3

]2[
N

(∓)
oc;J1

]−2

}

× (1)X
J2J3
J± d2 I

(1)
J2

I
(0)
J2

,

〈
ϕ

(1,±)
JM

∣∣ �J2 �J3

∣∣ϕ(1,±)
JM

〉 =
∑
J2,J3

(1)X
J2J3
J± [J (J + 1) − J2(J2 + 1)

− J3(J3 + 1)], (B2)

〈
ϕ

(1,±)
JM

∣∣�†�
∣∣ϕ(1,±)

JM

〉 =
∑
J2J3

{
4 + 144

49
f 2

I (±)′
J3

I (±)
J3

[
N

(±)
oc,J3

]−2

+ 16

49
f 4

∑
J ′

3

(
C

J ′
3 3 J3

0 ;0 ;0

)2 I
(∓)′
J ′

3

I (∓)
J ′

3

× [
N

(∓)
oc,J ′

3

]−2

}
(1)X

J2J3
J±

[
N

(±)
3J3

]2
,

(B3)〈
ϕ

(1,±)
JM |�†N̂2�|ϕ(1,±)

JM

〉 =
∑
J2J3

{
4 + 144

49
f 2

I (±)′
J3

I (±)
J3

[
N

(±)
oc,J3

]−2

+ 16

49
f 4

∑
J ′

3

(
C

J ′
3 3 J3

0 ;0 ;0

)2 I
(∓)′
J ′

3

I (∓)
J ′

3

×(
N

(∓)
oc,J ′

3

)−2

}
(1)X

J2J3
J±

[
N

(±)
3J3

]2
d2 I

(1)
J2

I
(0)
J2

.

APPENDIX C

The reduced matrix elements for the harmonic part of the
E1 transition operator relating the dipole states to the states
from the ground bands are:〈

ϕ
(1,+)
J

∣∣∣∣T (h)
1

∣∣∣∣ϕ(g,−)
J ′

〉 = q1N
(1,+)
J N

(g,−)
J ′

∑
J2,J3,J

′
2,J

′
3

C
J3 J2 J
1 0 0 1

×C
J ′

3 J ′
2 J ′

0 0 0

[
N

(+)
31J3

]−1[
N

(g,−)
J ′

]−1

× 〈
ϕ

(+)
3,J3

∣∣|b†3 + b3|
∣∣ϕ(−)

oc;J ′
3

〉
× 〈

ϕ
(g)
J2

∣∣|b†2 + b2|
∣∣ϕ(g)

J ′
2

〉
,〈

ϕ
(1,−)
J

∣∣∣∣T (h)
1

∣∣∣∣ϕ(g,+)
J ′

〉 = q1N
(1,−)
J N

(g,+)
J ′

∑
J2,J3,J

′
2,J

′
3

C
J3 J2 J
1 0 0 1

×C
J ′

3 J ′
2 J ′

0 0 0

(
N

(−)
31J3

)−1(
N

(g,+)
J ′

)−1

× 〈
ϕ

(−)
3,J3

∣∣|b†3 + b3|
∣∣ϕ(+)

oc;J ′
3

〉

× 〈
ϕ

(g)
J2

∣∣|b†2 + b2|
∣∣ϕ(g)

J ′
2

〉
,

〈
ϕ

(+)
3,J3

∣∣|b†3 + b3|
∣∣ϕ(−)

oc;J ′
3

〉 = 2√
7

Ĵ ′
3

Ĵ3
f N

(+)
3;J3

N
(−)
oc;J ′

3

× [
N

(−)
oc;J3

]−2
C

J3 3 J ′
3

0 0 0 ,

〈
ϕ

(−)
3,J3

∣∣|b†3 + b3|
∣∣ϕ(+)

oc;J ′
3

〉 = 2√
7

Ĵ ′
3

Ĵ3
f N

(−)
3;J3

N
(+)
oc;J ′

3

× [
N

(+)
oc;J3

]−2
C

J3 3 J ′
3

0 0 0 . (C1)

The transition operator involves an anharmonic term, T anh
1µ .

Due to this component of the transition operator a given state
from a dipole band can decay to a state from the ground band
of opposite parity:〈

ϕ
(1,±)
J

∣∣|T anh
1 |∣∣ϕ(g,∓)

J ′
〉 = N

(1,±)
J N

(g,∓)
J ′

[
N

(±)
31;J3

]−1[
N

(g)
J2

]−2

×C
J3 J2 J
1 0 1 C

J ′
3 J2 J ′

0 0 0

× 5
√

15J2(J2 + 1)J ′
3(J ′

3 + 1)

× Ĵ2Ĵ3Ĵ
′
3Ĵ

′W (1113; 22)

×W (J ′
31J33; J ′

32)

×
∑
J4

(2J4 + 1)W (J3J2J1; J4J2)

×W (J3J22J ′; J4J
′
3)

×W (J ′2J1; J41)
〈
ϕ

(±)
31;J3

∣∣|b†3|∣∣ϕ(∓)
oc;J ′

3

〉
,

〈
ϕ

(+)
3;J3

∣∣|b†3 + b3|
∣∣ϕ(−)

oc;J ′
3

〉 = 2Ĵ ′
3f√
7Ĵ3

N
(+)
J3

N
(−)
oc;J ′

3

[
N

(+)
oc;J 3

]−2
C

J3 3 J ′
3

0 0 0 .

(C2)

Taking for the E2 transition operator an harmonic form, the
matrix elements describing the transitions within the dipole
bands are:〈
ϕ1,±‖b†2 + b2‖ϕ(1,±)

J ′
〉 = dN

(1,±)
J N

(1,±)
J ′ Ĵ ′

×
∑

J2J
′
2J3

C
J2 J3 J
0 1 1 C

J ′
2 J3 J ′

0 1 1 C
J ′

2 2 J2

0 0 0 Ĵ2

×W (2J2J
′J3; J ′

2J )
[
N

(±)
31;J3

]−1

×
{[

N
(g)
J ′

2

]−2 + 2J ′
2 + 1

2J2 + 1

[
N

(g)
J2

]−2
}

.

(C3)

The E3 operator

T3µ = q3
[
b
†
3µ + (−)1+µb3−µ

]
, (C4)

relates a dipole state with a state from the corresponding
ground band.〈
ϕ

(1,∓)
J

∣∣|T3|
∣∣ϕ(g,±)

J ′
〉 = q3

−2f√
7

N
(1,∓)
J N

(g,±)
J ′

×
∑

J2,J3,J
′
3

Ĵ ′
3Ĵ

′CJ2 J3 J
0 1 1 C

J2 J ′
3 J ′

0 0 0

×C
J3 3 J ′

3
0 0 0 W (JJ23J ′

3; J3J
′)
(
N

(∓)
31;J3

)−1

× (
N

(g)
J2

)−2
N

(∓)
3;J3

[
N

(∓)
oc;J3

]−2
. (C5)
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The corresponding transition rate is compared with the
octupole strength characterizing the transition ϕg,− → ϕg,+.

〈
ϕ

(g,−)
J

∣∣|b†3 + b3|
∣∣ϕ(g,+)

J ′
〉 = f N

(g,−)
J N

(g,+)
J ′

∑
J2,J3,J

′
3

C
J2 J3 J
0 0 0

×C
J2 J ′

3 J ′

0 0 0 C
J ′

3 3 J3

0 0 0 Ĵ3Ĵ
′W

(
3J ′

3JJ2

; J3J
′)[N (g)

J2

]−2
{[

N
(+)
oc;J ′

3

]−2

+ 2J ′
3 + 1

2J3 + 1

[
N

(−)
oc;J3

]−2
}

. (C6)

The dipole states may decay to the ground band states of
similar parity, by means of the M1 transition operator defined
by Eq. (31).

The nonvanishing matrix elements relating the dipole and
ground band states are:

〈
ϕ

(1,+)
J

∣∣|M1|
∣∣ϕg,+)

J ′
〉 = g′

2N
(1,+)
J N

(g,+)
J ′

∑
C

J2 J3 J
0 1 1 C

J2 J ′
3 J ′

0 0 0

× [
N

(+)
31;J3

]−1[
N

(g)
J2

]−1[
N

(+)
oc;J ′

3

]−1

×
√

J2(J2 + 1)T J2J3
JJ ′

× 〈
ϕ

(+)
3J3

∣∣|(b†3b†3)2|
∣∣ϕ(+)

oc;J ′
3

〉
,〈

ϕ
(1,−)
J

∥∥M1

∥∥ϕ
g,−)
J ′

〉 = g′
2N

(1,−)
J N

(g,−)
J ′

∑
C

J2 J3 J
0 1 1 C

J2 J ′
3 J ′

0 0 0

× [
N

(−)
31;J3

]−1[
N

(g)
J2

]−1[
N

(−)
oc;J ′

3

]−1

×
√

J2(J2 + 1)T J2J3
JJ ′

× 〈
ϕ

(−)
3J3

∣∣|(b†3b†3)2|
∣∣ϕ(−)

oc;J ′
3

〉
, (C7)

where
T

J2J3
JJ ′ = 1̂Ĵ2Ĵ3Ĵ

′ ∑
J4

(2J4 + 1)

×W (J ′
3J311; 2J4)

×W (J2J
′
3J1; J ′J4)

×W (J21JJ3; J2J4),

〈
ϕ

(±)
3J3

∥∥(b†3b
†
3)2

∥∥ϕ
(±)
oc;J ′

3

〉 = 4

7
f 22̂Ĵ ′

3N
(±)
3J3

N
(±)
oc;J ′

3

×
∑

J1=odd

C
J1 3 J3
0 0 0 C

J1 3 J ′
3 J ′

0 0 0

×W (J ′
32J13; J33)

[
N

(±)
oc;J1

]−2
. (C8)

As usual the abbreviation Ĵ = √
2J + 1 is used. When one

deals with the angular momentum operator, the hat suggests
the operatorial character.

The M1 transitions within the dipole bands as well as the
gyromagnetic factors of the dipole states were determined by
restricting the transition operator to the lowest order boson
terms:

M1µ = g2(Ĵ2)µ + g3(Ĵ3)µ. (C9)

The transition amplitudes are given by the reduced matrix
elements:〈
ϕ

(1,±)
J

∣∣|g2J2 + g3J3|
∣∣ϕ(1,±)

J ′
〉 = N

(1,±)
J N

(1,±)
J ′

∑
J2J3

C
J2 J3 J
0 1 1

×C
J2 J3 J ′
0 1 1

[
N

(+)
31;J3

]−2[
N

(g)
J2

]−2

× [
Ĵ2Ĵ

′W (1J2J
′J3; J2J )

×
√

J2(J2 + 1)g2 + Ĵ3Ĵ
′

×W (1J3JJ2; J3J
′)

×
√

J3(J3 + 1)g3
]
. (C10)

Using these expressions one could calculate the gyromagnetic
factors of the dipole states:

g±
J = 1√

J (J + 1)

〈
ϕ

(1,±)
J

∣∣|g2Ĵ2 + g3Ĵ3|
∣∣ϕ(1,±)

J

〉
. (C11)
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