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α-cluster structure and exotic states in a self-consistent model for light nuclei
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In this article we examine to what extent traces of α clustering can be found in mean-field ground states of nα

nuclei from 8Be through 36Ar as well as in some superdeformed states in 32S, 36Ar, and 40Ca. For this purpose
we calculate the overlap of the mean-field Slater determinant with one containing pure Gaussians and perfect
spin and isospin symmetry, optimizing the overlap by varying the α-particle positions and radii. In some cases a
coherent sum over different configurations is also employed. We find quite large overlaps for some of the lighter
systems that diminish for nuclei above 20Ne but again strong clustering in 36Ar.
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I. INTRODUCTION

For light nα nuclei, i.e., nuclei composed of 2n protons
and 2n neutrons, a description in terms of α clusters has
enjoyed considerable success for many years. In their simplest
form, these correspond to mean field with a restricted wave
function made up of α clusters: quadruples of particles with
both spin and isospin orientations and with Gaussian wave
functions in space centered at given positions. These positions
are then varied to obtain an optimal many-body wave function.
Later variations of this method also allow variation of the
radii, allow deformed clusters, and exploit the computational
efficiency of the approach to calculate projected states (see [1]
and references therein).

In the full Hartree-Fock or mean-field approach, the wave
functions can be quite complicated in their spatial behavior
and indeed in many modern calculations are freely variable
over a coordinate grid, so that typically thousands of values
are varied to optimize the many-body wave function. Since the
mean-field state is a pure Slater determinant, it does not contain
correlations in the conventional sense, which seems to exclude
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correlated objects like α particles. A closer examination
reveals, however, that correlations come in through the mean
field. The identical wave functions assumed for each set of four
particles in an α-cluster model are present in the full mean-field
solution to a certain extent because the eigenfunctions in the
same mean-field potential will be filled with four particles, the
main cause for deviations from the identical wave functions
being spin-orbit coupling (destroying spin degeneracy) and
Coulomb effects (destroying isospin degeneracy).

In this article we address the following questions:

(i) To what extent do the mean-field states agree with an
nα-cluster model; i.e., can they be represented by cluster
model wave functions?

(ii) Does this agreement depend in a systematic way on spin
orbit strength and the mass of the nuclei?

(iii) Is the mean-field state better represented by a correlated
cluster state, in the sense of a coherent sum over different
cluster configurations?

(iv) Are there indications for more exotic cluster states
producible in the mean-field approach?

It is, of course, interesting to compare the results with
cluster model interpretations of these nuclei. In the following
discussion, we refer to the geometric configurations suggested
by Zhang, Rae, and Merchant [2] based on a cranked
version of the Block-Brink α-cluster model. In some cases
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a comparison to deformed-basis antisymmetrized molecular
dynamics (AMD) [3] calculations was also performed.

II. THE MEAN-FIELD CALCULATIONS

A. Method of calculation

We represent the single-particle wave functions on a
Cartesian grid with a grid spacing of 1 fm. The grid size is
typically 243 for ground states and 36 × 242 for superdeformed
states. This accuracy was shown to be sufficient to provide
converged configurations. The numerical procedure is the
damped-gradient iteration method [4], and all derivatives are
calculated using the Fourier transform method.

In the case of shape isomeric states, convergence is
sometimes difficult to establish. Experience has shown that the
observation of the change in total energy alone is not sufficient
to judge convergence: this value usually typically decreases
rapidly to δE/E ≈ 10−9, which may indicate simply that the
calculation is getting stuck and convergence is really stalled.
A much better criterion turned out to be the mean-square
deviations in the single-particle energies, summed over all
states. These uncertainties thus measure how far the states still
are from true eigenstates of the single-particle Hamiltonian.

In practice it has often been seen that the total energy
seems to converge perfectly well, while the fluctuations in
the Hamiltonian stay at a relatively high level of 10−3. In such
cases usually the system will stay in this configuration for
several thousand iterations and then transit to the ground state
relatively rapidly. The underlying situation can be visualized
as a steep descent that arrives at some saddle point, where the
direction of the descent must be modified strongly, keeping
the system at this point for a very large number of iterations.
Alternatively it may be caught in a shallow local minimum
from which the accumulation of small changes in the wave
functions enable the system to escape during further iterations.

B. Interactions and symmetries

We take four different Skyrme forces that all perform very
well with regard to nuclear bulk properties but that differ in
details: SkM∗ as a widely used traditional standard [5], Sly6
as a recent fit that includes information on isotopic trends and
neutron matter [6], and SkI3 and SkI4 as recent fits that map the
relativistic isovector structure of the spin-orbit force [7]. SkI3
contains a fixed isovector part analogous to the relativistic
mean-field model, whereas SkI4 is adjusted allowing free
variation of the isovector spin-orbit term. Thus all forces
differ somewhat in their actual shell structure. Besides the
effective mass, the bulk parameters (equilibrium energy and
density, incompressibility, symmetry energy) are comparable.
In addition we consider two relativistic mean-field models.
NL3 is a commonly used parameter set that includes nonlinear
interactions of the σ mesons that generate the scalar interaction
between the nucleons [8]. The model χm is based on a chiral
flavor SU(3) effective Lagrangian, which is discussed in detail
in [9].

It will be seen that the results are generally in quite good
agreement, with mainly the spin-orbit strength producing
differences among the Skyrme forces; SkM∗ systematically

deviates somewhat from the others. For NL3 and χm the spin-
orbit interactions are a direct consequence of the relativistic
description of the nucleon wave functions. The treatment of
the center-of-mass motion in SkM∗ is considerably different
from that in the other forces; because we do not include a
center-of-mass correction, there are considerable differences
in the binding energies of light nuclei.

The wave functions were not subject to any symmetry
requirements, having neither good spin nor good parity
quantum numbers; in fact, the initialization purposely avoided
symmetries to make sure that they were not accidentally
maintained.

The calculations included pairing in the BCS approximation
with a delta force, taking into account three times the number
of occupied states without pairing. The parameters were the
ones usually associated with each Skyrme force.

C. Observables

The principal observables that will be quoted are the
total binding or excitation energy, the spin-orbit energy,
the deformation, and the intrinsic quadrupole moment. The
quadrupole moment was calculated in the standard way as

Q =
∫

d3rρ(�r)(3z2 − r2) (1)

for the case that the z axis is the axis of axial symmetry. A
deformation parameter is then obtained as

β20 =
√

π

5

Q

AR2
, (2)

where A is the mass number and R the mean-square radius of
the system. This prescription is, of course, not unique, because
the dependence on the mean-square radius is somewhat arbi-
trary, but follows [10]. Oblate deformations are recognizable
by the negative sign in Q20 and β20.

III. METHODS OF ANALYSIS

To investigate possible molecular structure, three different
methods of analyzing the mean-field Slater determinant |�〉
were employed. In this section the procedures are described;
detailed results for the various nuclei are given in Secs. V
and VI.

A. nα-cluster model

We investigated the clustering structure by constructing a
model many-body wave function with clustering aspects built
in and maximizing its overlap with the Slater determinant
obtained from the mean-field calculation. As the single-
particle wave functions have no good quantum numbers aside
from the energy, only the overlap of the complete Slater
determinants can be meaningfully investigated. In the case
of the relavistic models we used the upper components of the
wave functions to calculate the overlap.

In the simplest case, which we refer to as the nα-model,
the model wave function is constructed completely out of
α-particle configurations. For a nucleus with A nucleons,
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we use Nα = A/4 clusters located at �rk, k = 1, . . . , Nα , and
with radius parameters σk . Depending on the total number
of α particles, we usually constrained their radii to be equal,
but sometimes, when total computing time allowed, we also
allowed them to vary to see whether the overlap was thereby
improved. The resulting improvement was of the order of a few
percent typically; therefore, in most cases we will quote results
only with one common value of σ adjusted for maximum total
overlap.

The spatial part of the wave functions then is given by

φk(�r) = Ak exp

[
− (�r − �rk)2

2σ 2
k

]
, k = 1, . . . , Nα, (3)

with Ak a normalization factor that is computed numerically.
The numerical normalization factor calculated on the same
spatial grid with 1 fm grid spacing as the mean-field wave
functions was found to agree with the analytic one to five
significant digits, so that the spatial grid appears sufficiently
accurate for the overlap calculations. Each of these wave
functions occurs four times in the model Slater determinant:
for proton and neutron and with spin up or down.

Note that the nα-cluster single-particle wave functions are
not orthogonal. As a consequence, the norm of the model
Slater determinant must be calculated as the determinant of
the single-particle overlaps

N = det(〈φ∗
j |φk〉). (4)

This determinant can become very small if the wave functions
have large overlaps, which occur frequently in the optimal
configurations, indicating that the cluster description does not
correspond to clearly separated α particles, but generates the
mean-field states largely by antisymmetrization. For example,
two Gaussians with the centers placed very close to each other
generate an odd-parity state through antisymmetrization.

The overlap O = |〈�|
〉|2 given in the tables below is
always the absolute square of the matrix element between the
mean-field Slater determinant and the normalized nα-cluster
wave function |
〉; therefore, it describes the probability for
the mean-field state to agree with the cluster model state.
Because the mean-field wave functions have good isospin
but are mixed in spin projection, the total overlap could be
simplified by decomposition into a proton and a neutron factor.
Although the effects of Coulomb are practically negligible, the
calculation did treat the two isospins separately.

B. Calculation of nα-cluster configurations

The most effective method to search for the optimal
positions and sizes of the nα-cluster positions was a search
with an optimization algorithm starting from random positions
(within a box roughly corresponding to the nuclear volume)
and a standard starting value for the radius parameters of
1.8 fm. We found that optimizing the logarithm of the overlap
of the two Slater determinants with the algorithm of Stewart
[11] (available as routine “dmnfb” in NETLIB) led to very
rapid convergence even when the individual particles were
placed very badly initially with a starting overlap of <10−15

with the mean-field Slater determinant.

The final configurations could in all cases be decomposed
into

(i) isolated α particles in a very well-determined position
characterizing the cluster geometry, and

(ii) groups of α particles spaced very closely at distances
typically < 0.1 fm. These represent cores made up of
larger nuclei, usually 12C or 16O. Because the wave
functions in these clusters serve mostly to generate
higher shell-model states through antisymmetrization,
their geometrical layout appears random. It was found that
the overlap with the mean-field wave functions changes
only by about 2% when the distance between the particles
increases from 0.01 to 0.8 fm. It is largest for the smallest
distance, but this can cause numerical problems because
of the nearly degenerate wave functions.

It should be noted that the positions found usually showed
some alignment with the Cartesian axes even for spherically
symmetric nuclei, because the representation on a Cartesian
grid violates that symmetry to a small but noticeable degree.

In some cases a fixed geometry was also employed to check
how different cluster geometries compete in describing the
Hartree-Fock (HF) ground state. In these cases a small number
of geometric quantities were varied to achieve optimal overlap.

C. Model of core nucleus with additional α particles

In some cases, a model wave function was used where
a core of 12C or 16O replaced the corresponding number
of α particles. Note that the wave functions used for these
were simply static mean-field solutions for those core nuclei,
without any adjustable parameters (except for the position of
their centers). In the cases where three or four α particles
tended to contract into the same location, this may produce
more stable numerical results because of the norm going to
zero for the α-particle case. The most interesting application of
this technique is to the interpretation of the strongly deformed
state of 32S as an 16O + 16O configuration.

D. Overlap with a collective cluster space

In some cases it was tried to allow some parameter
determining the nα-cluster configuration to vary in the model
wave function and to calculate the overlap with the collective
space generated in this way. As an example, in the case of
the strongly deformed 32S with Slater determinant state |�〉
interpreted as an 16O + 16O configuration, the Slater deter-
minants |
i〉 consisting of the antisymmetrized combination
of two 16O nuclei at distances di, i = 1, . . . , N , were used
as a nonorthogonal basis. The matrix elements of the overlap
kernel for this basis are Aij = 〈
i |
j 〉. The probability for
the state |�〉 to be within this space is given by

O =
N∑

i,j=1

(A−1)ij 〈
j |�〉〈�|
i〉. (5)

The result depends on N , but converges rapidly as soon as
the collective space is sufficiently spanned. The value of N of

044311-3



J. A. MARUHN et al. PHYSICAL REVIEW C 74, 044311 (2006)

course needs to be chosen carefully. We found that numerically
the results remain stable for N < 20, but usually n ≈ 5 is
already sufficient for convergence.

The criterion of Eq. (5) to extend the Slater state |�〉 can
be reproduced by a coherent superposition of α-model states

|�(model)〉 =
∑

i

|
i〉ci, (6)

with optimized coefficients ci . This ansatz is the discrete
version of the celebrated generator coordinate method (GCM)
[12] which had, in fact, one of its early successful applications
in the realm of the α-cluster model [13]. Note that the criterion
(5) compares somewhat different concepts. The mean-field
state |�〉 is the optimum one can achieve in the space of
pure Slater states. The GCM ansatz (6), on the other hand, is
restricted to Slater states within the α model but goes beyond
Slater space in that it can include substantial correlations in
its coherent superposition. Despite, or just because, of this
conceptual difference, it is most interesting to investigate the
mutual overlap of these two lines of approach in Eq. (5).

IV. GENERAL FEATURES OF THE RESULTS

A general feature of all nuclei considered was that the
ground states are axially symmetric as well as reflection
symmetric for all the forces considered, although neither the
initialization nor the computation enforced these symmetries.

We found in all cases that the converged stationary states
showed no pairing, so that calculations without pairing might
appear sufficient. There is, however, the danger that in
iterations using the restricted single-particle space of the
occupied wave functions the two fragments may get stuck
in a local configuration. It is known that without pairing the
deformation energy curve is an envelope of many relatively
steep curves corresponding to specific configurations and not
all of the narrow minima produced for such a configuration
remain minima in the envelope.

In practice it was found that only part of the highly
deformed states were still produced in the calculation if
pairing was included. Although again in the final result pairing
disappeared; we therefore discuss only these ultimately stable
configurations.

The freedom allowed by the three-dimensional code was
found not to be necessary in these pure mean-field cases, as the
stationary states in all cases turned out to be axially symmetric.
A comparison with nα-cluster model wave functions of
course required three-dimensional geometry. A code with axial
symmetry and the facility for quadrupole constraints was used
in some cases to support the results and check deformation
dependence.

V. GROUND STATES OF nα NUCLEI

Next we summarize the properties of the nα-nuclei below
40Ca. Density contour plots are shown only for cases with
interesting structure and only for SkI3; in these the contour
lines are spaced by 0.01 fm−3. The contour lines sometimes
appear nonsmooth; this is because the graphics program does

TABLE I. Binding energies in MeV calculated for the nuclei
considered in this article with the four Skyrme force parametrizations
used.

4He 8Be 12C 16O 20Ne

Exp. 28.3 56.5 92.2 127.6 160.6
SkI3 27.8 49.7 89.3 128.9 156.8
SkI4 27.7 49.8 89.3 128.6 157.3
SLy6 27.2 49.0 88.6 127.4 155.9
SkM∗ 26.8 50.1 93.5 128.0 157.9
NL3 33.9 52.9 91.2 128.7 156.6
χm 39.3 53.6 88.9 132.3 161.9

24Mg 28Si 32S 36Ar
Exp. 198.3 236.5 271.8 306.7
SkI3 194.7 233.0 267.1 304.8
SkI4 196.11 234.9 269.4 305.5
SLy6 194.4 233.1 268.5 304.0
SkM∗ 197.6 237.9 275.1 305.5
NL3 194.1 231.8 265.6 302.2
χm 197.0 235.0 269.5 308.8

not interpolate. The physical wave functions are quite smooth
owing to Fourier expansion. In all the tables, we use Els for the
spin-orbit energy, and O for the overlap with nα- or collective
cluster configurations.

For some specific nuclei we also mention the overlap
between the mean-field wave function and the AMD wave
function and also that between AMD and the nα-cluster
wave function. Here the AMD wave function is obtained
using the Gogny D1S force [14]. The use of a different type of
force will, of course, reduce the agreement with the mean-field
calculations, but a comparison is nevertheless instructive.

A. Binding energies

In Table I the binding energies obtained in all of the
ground-state calculations are listed for reference together
with the experimental values. All calculations contain a large
contribution from the center-of-mass correction, which is
calculated in different ways: the Skyrme forces SkI3, SkI4,
Sly6 and the χm model contain a microscopically calculated
correction; NL3 uses the harmonic oscillator approximation;
and SkM∗ contains a correction to the nucleonic mass m →
m − m/A.

B. Cluster configuration overview

The optimal cluster configurations obtained are described
below in detail. To facilitate visualization, we show an
overview of the geometry in Fig. 1. Those cases where there is
a trivial configuration as well as those without clear structure
preference are omitted.

C. The nucleus 4He

The α particle itself is of course an extreme case for
a mean-field description. We summarize its properties in
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20Ne

28Si

32S*

28Si*

40Ca*

24Mg

FIG. 1. Visualization of the cluster geometry present in the mean-
field ground or excited superdeformed states (denoted by asterisks)
for the nontrivial cases. The figures only illustrate the topology; no
attempt was made to reproduce correct scale lengths. Double links
between particles indicate very small distances. The triangles and
pentagon are perpendicular to the linear links.

Table II mostly because it allows us to judge how justified it
is to use Gaussian wave functions for the overlap calculations
with an nα-cluster structure in heavier systems and how the
optimum radius depends on the force. For calculating the
overlap of the α particle itself with the Gaussian model wave
functions, only the radius parameter σ was varied with the
optimum value given in the table. In all cases the overlap is
remarkably close to one, showing that the use of the Gaussian is
a good approximation. Note that in the case of the relativistic
descriptions the width of the Gaussian is somewhat smaller
than that for the Skyrme forces, which leads to smaller widths
throughout the α-cluster analysis presented in this section.

D. The nucleus 8Be

This nucleus is a clear-cut case for a molecular interpreta-
tion. For all Skyrme forces considered it turned out to have
a necked-in shape agreeing well with a double-α structure
interpretation. Density isolines illustrate this in Fig. 2, while
other properties are summarized in Table III. The physical

TABLE II. Physical properties of 4He for the different forces
considered together with data describing the optimum reproduction
by Gaussian wave functions. Note that for the relativistic cases there
is no separate LS-force, so no Els values are given.

Force Els Rrms Gaussian model
(MeV) (fm)

O(%) σ (fm)

SkI3 0 2.06 99.5 1.67
SkI4 0 2.07 98.8 1.68
Sly6 0 2.12 98.8 1.72
SkM∗ 0 1.97 99.4 1.61
NL3 1.87 99.4 1.54
χm 1.89 89.8 1.54

1 3 5

3

2

1z
[fm

]

x [fm]

FIG. 2. Density contour lines for 8Be.

properties are quite similar, with SkM∗ being the odd force
out, as expected.

The nα-cluster analysis naturally found two α particles
positioned symmetrically along the symmetry axis with a
distance d and a radius of σ . The results in the table indicate
that this interpretation works exceedingly well, as even the
radius parameters σ agree remarkably well with those for the
free α particle. There is, however, a notable nonorthogonality
of the two clusters.

This nucleus also gave a good opportunity to test the overlap
with α-GCM cluster wave functions as described in Sec. III D.
We first used the distance d as a collective coordinate,
distributing 10 points in the interval between d = 1 fm and
d = 5 fm and varying σ to maximize the overlap. The result
is given in the “α-GCM” column in the tables. The overlap
increases noticeably. This calculation was performed only for
the Skyrme forces.

It is remarkable that the optimum σ values are smaller
for the “α-GCM” case. It may be that for the single-distance
analysis the α particles have to widen a bit to simulate the effect
of orbital motion; one should not, however, read too much into
this as the difference in overlap between the different σ values
is of the order of 3%.

The AMD wave function also has a quite large overlap
of 96% with the collective two-α-cluster model space. The
overlap between the AMD and the mean-field wave function
is a little bit smaller at 85%.

E. The nucleus 12C

The surprising feature in this nucleus is the discrepancy
in ground-state properties, see Table IV. While three of
the Skyrme forces used have a spherical ground state, SkI3
produces a strongly deformed oblate shape. To understand
this, a constrained axially symmetric calculation was also
performed, which showed that the structure is really quite
similar in all cases: the potential is very flat as a function of
deformation, and it just happens that the oblate point is about
half a MeV lower than the spherical one for SkI3, while this is
reversed for the other three forces.

The search for the optimal nα-cluster configuration in all
cases yielded the α particles very close to the center-of-mass of
the nucleus in a roughly triangular configuration. The overlap
is much larger for the oblately deformed nucleus, because there
is a preferred spatial alignment for the triangle in this case. A
calculation with fixed triangular geometry yielded very similar
results.

An interpretation with an α-GCM cluster configuration was
attempted in two ways. First, a number of different sizes of
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TABLE III. Physical properties of 8Be for the four Skyrme forces considered. For the
cluster model interpretation the overlap is given together with the optimum distance and
radius of the clusters. The last two columns indicate the overlap with an α-GCM model
state and the optimal σ obtained.

Force Els β2 Q20 Cluster analysis α-GCM
(MeV) (fm2)

O(%) d (fm) σ (fm) O(%) σ (fm)

SkI3 2.5 0.677 46.8 82 2.70 1.68 98 1.65
SkI4 2.7 0.669 46.2 81 2.64 1.69 97 1.64
Sly6 2.4 0.666 48.0 81 2.68 1.73 97 1.68
SkM∗ 4.6 0.593 38.0 71 2.20 1.68 82 1.62
NL3 0.679 40.7 85 2.52 1.56
χm 0.671 41.8 68 2.60 1.60

the triangles were used. The configuration that gave converged
results was 10 points distributed between 0.01 and 3 fm. This
improved the overlap very little, for example, to 30% for SkI3.

Alternatively rotated configurations were included. Adding
the Slater determinants for the triangle rotated in its plane
by 2–10 equally spaced angles changed the overlap by less
than 1%; adding three-dimensional rotations also produced
similarly small effects.

The overall disappointingly small overlap with α clusters
in this nucleus appears to be due to the large spin-orbit energy,
with only the deformed state for SkI3 a better candidate for
clustering. This appears to be in contrast to recent FMD [15]
as well as older AMD calculations [16,17], which generally
show an overlap of about 50% (for later AMD work [18] should
be mentioned). To investigate this, we performed calculations
with systematically reduced spin-orbit coupling with two of
the Skyrme forces. The results, given in Table V, show that
the deformation and the cluster overlap are strongly correlated
and depend very sensitively on the spin-orbit coupling. Much
larger overlaps seem to be possible, but the mean field does
not predict the cluster structure very reliably. As the oblate
and spherical states are close in energy and not separated by
a barrier, including vibrational correlations in the mean-field
model will again change the predictions significantly.

A study mixing cluster and shell-model configurations [19]
found features qualitatively similar to those of the present
work: clustering depends strongly on the spin-orbit force and

TABLE IV. Physical properties of 12C for the four Skyrme forces
considered. The other columns give the maximum overlap with an
α-particle configuration for a fixed triangle with side length 0.01 fm.

Force Els β2 Q20 Cluster analysis
(MeV) (fm2)

O(%) σ

SkI3 15.8 −0.256 −24.7 28 1.72
SkI4 21.6 0.000 0.00 1 1.66
Sly6 19.8 0.000 0.00 1 1.68
SkM∗ 23.6 0.000 0.00 1 1.64
NL3 0.000 0.00 1 1.48
χm 0.129 11.4 2 1.64

depending on the interaction the α particles can collapse to a
point and approach spin-orbit coupled shell-model configura-
tions in this limit. Since parity and angular momentum were
also projected, a quantitative comparison is not useful.

F. The nucleus 16O

For this nucleus all forces produce a spherical ground
state, so that in this case the mean-square radius is also an
interesting quantity to compare. It is shown in Table VI and it
is remarkable that the radii agree very well for all four forces.

The cluster analysis with free placement produced results
similar to those of the spherical 12C nuclei: the α particles
tended to the same position at the center-of-mass, indicating
that one is not dealing with well-separated clusters but again
with wave functions produced mainly by antisymmetriza-
tion. The optimization located the particles at positions
(d, 0, 0), (0, d, 0), (0, 0, d), and (−d, 0,−d), with d = 0.01
(as mentioned, results are insensitive to the exact value
of d). This is not a natural arrangement, but seems to indicate
that the principal requirement is that the four particles not be
coplanar. The small variation in the σ values reflects that in
the mean-square radii.

A cluster analysis was attempted using a tetrahedron of
α particles, with the particles’ radii and mutual distance
as parameters. The result was that maximizing the overlap

TABLE V. Physical properties of 12C for the two Skyrme forces
with reduced spin-orbit coupling. The coefficient of the spin orbit
strength is multiplied by the factor given, and the consequences for
deformation and cluster overlap are shown.

l ∗ s reduction factor SkI3 Sly6

β2 O(%) β2 O(%)

1.0 −0.256 28 0.00 1.68
0.8 −0.326 53 −0.017 1.97
0.6 −0.356 68 −0.303 46
0.4 −0.371 77 −0.337 62
0.2 −0.379 82 −0.356 72
0.0 −0.381 84 −0.367 79
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TABLE VI. Properties of 16O for the four Skyrme forces together
with results for free cluster placement.

Force Els Rrms Cluster analysis
(MeV) (fm)

O (%) σ (fm)

SkI3 1.0 2.65 96 1.76
SkI4 1.0 2.65 96 1.76
Sly6 0.9 2.69 96 1.79
SkM∗ 1.1 2.68 96 1.78
NL3 2.56 95 1.72
χm 2.58 79 1.71

drives this distance toward zero at σ ≈ 1.76 fm. In this case
the limiting overlap is quite close to 1, showing that the
tetrahedral symmetry is a good basis for expanding the true
wave functions. Like in the case of 12C, however, the cluster
interpretation is thus invalid in this case. It should be noted
that the overlap, which reaches 98% for a distance of 0.01 fm,
only goes down to 97.5% at 0.2 fm. This opens the alternative
of either using 16O wave functions or the four-α structure to
look for the presence of an 16O core in heavier nuclei.

That the precise arrangement of the clusters is not important
was also demonstrated by using fixed geometry. Using an
exact tetrahedron configuration produced identical results;
only when the particles were coplanar did the overlap vanished
immediately.

Our results are in complete agreement with the cluster
model of [2].

In view of the good description of this nucleus by static
cluster wave functions we did not perform multiconfiguration
studies in this case.

G. The nucleus 20Ne

In this case the shape of the nucleus, shown in Fig. 3,
shows a strong prolate deformation with a suggestion of a
central, more or less spherical part, with two additional mass
distributions added on both sides. The physical properties are
given in Table VII. This would suggest a 12C core with two
α particles added, and this is indeed what was produced by the
unconstrained search. This is quite close to the interpretation
in [2], although there the central 12C has an annular structure.
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FIG. 3. Density contour lines for 20Ne.

It appeared expedient to try different radii for the
α particles in this case. Letting the program optimize all the
radii simultaneously instead of using a common σ led to an
improvement of <2% in overlap and naturally showed the
three particles in the core with the same radius, while the two
displaced ones also were identical. The final configuration,
for which details are listed in the table, thus has three
α particles with radius σ1 in a triangle at the central position
and perpendicular to the longest axis of the nucleus, while two
with radius σ2 are positioned at ±d along that axis.

An attempt with a multiconfiguration analysis yielded
disappointing results: rotating the central triangle gave less
than 1% improvement, while allowing the outer particles to
move along the axis yielded up to 2%. Adding different sizes
of the central triangle gave similar values.

The same 5α configuration is also obtained in an AMD
calculation without parity projection before variation. The
overlap with the pure nα configuration amounts to 57%. A
larger overlap of 61% is obtained by including parity projection
before variation. In this case, the optimum configuration
corresponds to an α + 16O cluster nature. The overlap between
the AMD intrinsic wave function obtained without and with
parity projection and mean-field wave functions is 78 and
37%, respectively. The intrinsic wave function of AMD in the
projected case tends to be parity asymmetric, so that naturally
the overlap with the mean-field configuration decreases.

Tomoda and Arima [20] did a very detailed study of an
alternative interpretation: an 16O core with an α particle
added, which was described by an orbital wave function.
This configuration was in turn mixed with a shell-model
configuration. For the Skyrme forces we tried a similar
configuration by calculating the overlap with a central 16O
core and an α particle symmetrized at a distance ±d from

TABLE VII. Physical properties of 20Ne for the four Skyrme forces considered. The parameters for
the cluster analysis are described in the text.

Force Els β2 Q20 Cluster analysis
(MeV) (fm2)

O(%) d (fm) σ1 (fm) σ2 (fm)

SkI3 8.5 0.423 91.0 53 1.91 1.78 1.71
SkI4 9.2 0.412 88.0 49 1.86 1.78 1.71
Sly6 8.5 0.409 89.8 47 1.84 1.80 1.74
SkM∗ 11.1 0.371 79.2 36 1.59 1.77 1.73
NL3 0.425 84.4 59 1.83 1.74 1.65
χm 0.439 90.6 50 1.89 1.74 1.69
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TABLE VIII. Analysis of 20Ne in terms of an 16O core and a
symmetrized α particle at ±d . A GCM variation with the α-particle
distance varying is also given.

Force 16O+static α 16O + α GCM

O(%) d (fm) σ (fm) O(%) σ (fm)

SkI3 52 2.7 1.59 54 1.56
SkI4 48 2.5 1.62 49 1.52
Sly6 48 2.6 1.66 49 1.55
SkM∗ 36 2.4 1.64 36 1.53

the core (symmetrization applied to each single-particle wave
function separately). Surprisingly this yielded an even better
overlap than the unconstrained pure α configuration, probably
because the 16O core contains some of the spin-orbit effects
reducing overlap for the pure cluster case. The results,
shown in Table VIII, show a somewhat smaller distance
between the core and the α particle than the 3.1 fm given in
Ref. [20], but are also characterized by smaller radii for the
α particle.

We also employed a “GCM” calculation as described in
Sec. III D with 10 equidistant values for d between 2 and
4 fm, which produced only small enhancement in the overlap
as seen in the table. Varying the number and values of the
different d had little effect, but using an unsymmetrized
α particle and introducing symmetrization through the GCM
distribution reduced the overlap to less than half.

A similar calculation with a 12C core and two α particles
on both sides produced results similar to those obtained with
the unconstrained pure cluster analysis.

H. The nucleus 24Mg

This nucleus is characterized by a strong quadrupole
deformation for all forces considered, as seen in Table IX
and Fig. 4.

The unconstrained positioning of the α particles led to a
grouping in doublets in the following way: with the x axis
being the symmetry axis, two doublets are arranged at x = ±p

with the particles displaced at slightly positive and negative
y values (around ±0.01), while the third doublet is obliquely
shifted from the axis to ±(0, q, r) with p and q surprisingly
at larger values. While this appears to show some indications
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FIG. 4. Density contour lines for 24Mg (left) and 28Si (right).

of true clustering, the overlap is disappointingly small. The
oblique positioning of the central doublet again indicates the
need for having the spatial degrees of freedom sufficiently
represented.

Alternative interpretations with fixed geometrical shape
were also explored:

(i) Two equilateral triangles displaced to x = ±d and either
aligned the same way perpendicular to the symmetry axis
or rotated by 30◦ relative to each other. In both cases the
maximum overlap that could be achieved by varying the
triangle size and d was <0.016. Taking the overlap with
two 12C nuclei displaced along the symmetry axis yielded
very small overlap (<10−9).

(ii) Placing a square with vertices at x = 0, y, z = ±q and
two additional particles at x = ±p yielded microscopic
overlaps of about 0.0002. Clearly this arrangement does
not catch the symmetry of the single-particle space near
the center.

(iii) Attempts at putting an 16O nucleus into the center,
accompanied by two α particles on both sides, lead to
much smaller overlap.

The interpretation of Ref. [2] in this case does not agree
well; they favor the second of the three choices given. The
large value of the spin-orbit energy in our case seems to make
a cluster expansion less applicable.

The strong effect of the spin-orbit force to dissolve the
cluster structure is also confirmed by the AMD analysis. When
the spin-orbit force is switched off, the AMD wave function has
a 2α + 16O cluster structure and large overlap (56%) with the
nα-cluster wave function, but a small overlap of a few percent
with the mean-field wave function. When the spin-orbit is
included, however, the situation turns around: the overlap with
the pure nα-cluster wave function is reduced to a few percent,
whereas that with the mean-field one goes up to 68%.

TABLE IX. Physical properties of 24Mg. The parameters for the cluster analysis are described in the text.

Force Els β2 Q20 Cluster analysis
(MeV) (fm2)

O (%) p (fm) q (fm) r (fm) σ (fm)

SkI3 22.6 0.423 117.2 2.3 1.40 0.17 0.37 1.77
SkI4 23.5 0.416 114.1 2.2 1.38 0.10 0.41 1.76
Sly6 21.6 0.413 116.5 2.2 1.39 0.04 0.40 1.79
SkM∗ 25.4 0.389 107.0 1.8 1.31 0.15 0.41 1.77
NL3 0.416 103.9 2.0 1.37 0.17 0.45 1.71
χm 0.431 115.2 2.0 1.38 0.25 0.31 1.74
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FIG. 5. Density contour lines for 32S and 36Ar.

I. The nucleus 28Si

Except for SkM∗, which shows a relatively pure quadrupole
deformation, all forces have this nucleus oblate deformed but
with a strong hexadecupole contribution visible in the high-
density contour lines (see Fig. 4). The oblate deformation is in
agreement with other calculations [10,21–23]. Full results are
given in Table X.

As suggested by this geometrical shape, the optimal place-
ment resulted in five α particles in a pentagon perpendicular to
the symmetry (z) axis and two further particles at symmetric
positions on either side. The distances between the particles
again tended toward zero, and because of that the pentagon
was not a regular polygon. Doing the calculation with a regular
pentagon gave identical results for the overlap. The mean-field
wave functions thus seem to indicate a preference for the
pentagon symmetry, especially in view of the fact that the
overlaps are quite large in this case.

J. The nucleus 32S

This nucleus again shows a strong dependence on the
force, as seen in Table XI. For SkI3 and SkI4 it is prolate
but with the strange feature of an oblate central part at high
densities (see Fig. 5), whereas it is spherical for the other two
forces. Other self-consistent calculations [10,21–24] generally
prefer a prolate deformation. The unconstrained search for an
α configuration in this case produced very small overlaps;
the geometric positions in all cases appeared almost random,
filling a cube near the center-of-mass. The distances, however,
in this case were up to the order of 0.5 fm, showing that the
overlap is quite insensitive to the particle placement. The very
small overlap may be due to the 1s1/2 filling and the large
contribution of the spin-orbit force.

TABLE X. Physical properties of 28Si and optimum cluster
parameters.

Force Els β2 Q20 Cluster analysis
(MeV) (fm2)

O(%) σ (fm)

SkI3 30.2 −0.318 −108.5 7.8 1.86
SkI4 33.6 −0.294 −98.6 4.5 1.85
Sly6 31.7 −0.289 −98.8 4.0 1.87
SkM∗ 40.6 −0.224 −73.7 0.8 1.83
NL3 −0.303 −93.5 6.2 1.80
χm −0.351 −117.9 14.9 1.85

TABLE XI. Physical properties of 32S for the four Skyrme forces
considered.

Force Els β2 Q20 Cluster analysis
(MeV) (fm2)

O(%) σ

SkI3 29.6 0.222 90.6 1.6 1.87
SkI4 37.0 0.147 58.7 0.3 1.86
Sly6 40.0 0.000 0.0 0.04 1.87
SkM∗ 44.7 0.000 0.0 0.03 1.86
NL3 0.228 86.24 1.8 1.83
χm 0.253 101.1 2.2 1.85

The AMD wave function in this case is closer to the mean-
field one with an overlap of 40%, but has only a few percent
overlap with the nα-cluster wave function.

K. The nucleus 36Ar

This nucleus (results in Table XII) appears as just the
opposite of 32S: it is oblate with a deformation in agreement
with other calculations [10,21–23], but shows an inner core
of prolate deformation at high density. The geometry of the
nα-cluster configurations found appeared as random as in
the case of 32S, but the distances to the center-of-mass were
again of the order of <0.1 fm, which together with the much
larger overlaps shows that is again a case of a dominating
antisymmetrization effect. This comes close to the almost
spherical geometry preferred by [2].

It is, of course, somewhat unexpected that in this nucleus
clustering appears stronger than for all the others heavier than
20Ne. This should be due to the much reduced role of the spin-
orbit coupling in this nucleus as witnessed by the spin-orbit
energy being only half of that for 32S.

VI. STRONGLY DEFORMED STATES

A. Technique for searching such states

The search for strongly deformed isomeric states in the
mean-field approximation has usually been done with con-
straints. We tried a new method that has the potential for
producing more exotic configurations: initialization of the
mean-field calculation with a fragment configuration. Thus,
e.g., one may place two 16O nuclei at a certain distance d

TABLE XII. Physical properties of 36Ar and cluster analysis.

Force Els β2 Q20 Cluster analysis
(MeV) (fm2)

O (%) σ

SkI3 13.5 −0.183 −90.3 28 1.92
SkI4 15.2 −0.171 −83.8 21 1.91
Sly6 15.1 −0.162 −81.0 17 1.93
SkM∗ 19.1 −0.133 −65.9 7 1.92
NL3 −0.186 −87.3 33 1.90
χm −0.194 −94.1 29 1.89
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from each other into a numerical grid, orthogonalize, and then
iterate to converge to a stationary state. For small distances
it may converge into the ground state (although we find this
rarely happens, because the antisymmetrization produces quite
a different set of single-particle orbitals than that of the ground
state); for a large d the nuclei may be driven apart; and, finally,
for some range convergence may happen in a highly deformed
configuration.

The attractive feature of this method is that initial config-
urations are highly flexible and might lead to configurations
that cannot easily be reached with a constraint. For example, a
chain or a triangle of three α particles may be used to look for a
strongly deformed exotic state in 12C, or one might try various
asymmetric mass configurations to investigate whether they
all converge to the same deformed state.

With pairing omitted, we found a large number of exotic
states, which, however, corresponded to local minima under
the constraint of a fixed single-particle configuration. Such
minima may be important for the dynamics, as they correspond
to a large collective mass when the collective motion in the
deformation is slow enough to crossover to another single-
particle configuration, but clearly are not isomeric states.
We therefore used pairing in the iterations, which made most
of the minima disappear; the final states, however, as for the
ground states, did not show significant pairing.

B. General features of superdeformed states

A large number of different combinations of nα nuclei
leading to compound systems up to 40Ca were considered and
the static calculations with different initial fragment positions
were performed. Before going into the detailed results given
in Table XIII and the following sections, let us summarize the
main points of the findings:

(i) Superdeformed shapes were found in the majority of
cases, but none of these appears to be of clearly molecular
type.

(ii) These exotic states were always axially and reflection
symmetric, even if the calculation was started with two
nuclei of different mass.

(iii) For the superdeformed states only Skyrme forces SkI3 and
Sly6 were employed. Generally the two Skyrme forces
yielded similar results, with the excitation energy some-
what more force-dependent than the deformation. We
only present results for SkI3 and mention discrepancies
to Sly6 where they appear interesting.

(iv) For these cases a comparison to the results of Ref. [2] is
not given: although the densities are roughly similar at
least in the case of 32S, they did not use a spin-orbit force,
which makes the comparison of the cluster interpretations
problematic.

The results are summarized in Table XIII.

C. The compound system 24Mg

In the combination of two 12C nuclei, no indication of
a superdeformed state was found. The iterations always led
either to the ground state of 24Mg or to further separation.

TABLE XIII. Physical properties of highly deformed states for
the Skyrme force SkI3 and the chiral model χm.

System E∗ Els β2 Q2 Cluster analysis

(MeV) (MeV) (fm2)
O (%) σ (fm)

SkI3
28Si 13.2 25.6 0.773 325.9 1.3 1.80
32S 8.9 12.3 0.737 377.4 34.5 1.79
36Ar 8.7 29.1 0.529 283.4 3 1.88
40Ca 26.3 28.1 0.983 859.8 0.8 1.80

χm
28Si 11.1 0.775 314.4 1.2 1.77
32S 5.7 0.743 368.6 36.2 1.75
36Ar 9.2 0.533 278.9 1.2 1.84
40Ca 23.7 0.982 829.41 0.8 1.77

D. The compound system 28Si

This is formed in the combination 12C+16O. The iterations
led – aside from the ground state of 28Si – to one superdeformed
state. Its properties, like those of all the states found, are
summarized in Table XIII. The density contour lines show
a bit of a double-humped structure at high density (see
Fig. 6). The unconstrained cluster analysis showed that along
the symmetry axis the particles are grouped in the following
way: one is located at a central x position but with a half-fermi
displacement in the y and −z directions (this displacement is
probably accidental and not significant for the overlap, because
it violates overall reflection symmetry). At ±1.23 fm there are
pairs of particles on both sides of the axis at a relative distance
of about 0.1 fm, while finally two particles are located at
±3.1 fm on the axis. The overlap with the nα-cluster
configuration is, however, quite small.

E. The compound system 32S

This was studied in two different configurations: 12C+20Ne
and 16O+16O, so that an interesting aspect is whether the
initial asymmetry is lost. It was found that both configurations
converge rapidly into the same state, which is shown in
Fig. 6. A state of similar deformation and excitation energy is
well known in the literature with similar properties [25–31].
It shows a slight amount of necking-in, making this the best
candidate for a “molecular” configuration.

The relatively small spin-orbit energy, compared to that
of the other superdeformed states, makes a cluster analysis
much more attractive. The unconstrained α analysis shows all
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FIG. 6. Density contour lines for 28Si and 32S superdeformed states.
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FIG. 7. (Full curve) Overlap of the strongly deformed state found
in 32S with a configuration of two 16O nuclei placed symmetrically
at a given distance. (Dashed curve) Norm of the combined Slater
determinant of the two 16O nuclei.

particles very close (the usual 0.01 fm) to the symmetry axis
with two triplets at ±1.9 fm and additional single particles at
±2.82 fm. The center-of-mass of the four particles on each
side is at ±2.1 fm. This is a clear indication of a molecular
structure with somewhat distorted 16O nuclei at a distance of
about 4 fm.

For this reason an analysis of this system based on a
double-16O configuration was also attempted. Two ground-
state configurations were inserted into the grid at a specified
distance, with the two nuclei being displaced symmetrically
from the center-of-mass of the compound system along the
axis of symmetry. The resulting overlap is shown in Fig. 7
together with the norm of the combined Slater determinant.
The resulting maximum overlap indicates that this molecular
configuration is not a perfect match; it is only near 6% and,
moreover, falls off relatively slowly as the distance is varied.
On the other hand, the norm of the model wave function (after
orthogonalization) is already close to unity, indicating the
possibility of molecular structure at this distance, and using
undistorted 16O nuclei for the overlap analysis is a strong
constraint.

The small overlap, however, is not the full story. Doing an
analysis along the lines of Sec. III D with 20 different c.m.
distances used between 3 and 8 fm, we find a total overlap
with this collective space of 35%, which agrees surprisingly
well with the unconstrained α-particle analysis. The much
more comprehensive analysis of this system done by Kimura
and Horiuchi [30] gives a somewhat larger overlap of 57%,
but is based on a very different wave function and technique,
i.e., a comparison of deformed-basis AMD [3] with generator
coordinate method to a resonating-group wave function for
the double-16O system. It is not surprising that a mean-field
description of this strongly deformed state contains less of an
nα-cluster configuration than the AMD description. The AMD
wave function, on the other hand, was found to have a larger
overlap with the mean-field one; also its spin-orbit energy is
in surprisingly good agreement with the mean-field one. This
could be an interesting point for future studies.
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FIG. 8. Density contour lines for 36Ar (left) and 40Ca (right)
superdeformed states.

A similar attempt to increase the overlap with the nα-
cluster configuration by varying the distance between the two
quadruplet positions brought no further improvement.

F. The compound system 36Ar

This is somewhat similar in showing a slight necking-in
effect, and again the iterations proceeding from the two
different initial configurations 16O+20Ne and 12C+24Mg led
to the same final state. The shape is shown in Fig. 8. It is
interesting that for this system the calculation with pairing
found this superdeformed state rapidly from a wide range of
initial distances, whereas the unpaired calculation tended to
get stuck near β = 1 and only relaxed to the correct state after
several thousand iterations.

The unconstrained α-cluster analysis showed a diffuse
picture. The configuration yielding the overlap quoted had
two particles at ±2.7 fm, a quadruplet in a distorted rectangle
at −0.3 fm, and a triplet at +0.4 fm. The overlap depends only
weakly on the precise positioning; this is also consistent, e.g.,
with the central seven particles placed in two triangles facing
each other and a single α between at the center-of-mass.

G. The compound system 40Ca

This is really hyperdeformed as seen in Fig. 8. The density
shows a triple-humped structure, which is also borne out
by the unconstrained placement of α particles. It produced
a configuration characterized by two particles near ±4.3
fm, two particles at the center-of-mass, and two triangular
triplets near ±2.9 fm along the symmetry axis. The overlap
was quite small, however, and seemed to depend only
weakly on the exact placement of the particles, so that the
individual particles were up to half a fermi from symmetric
positions along the axis. The lateral displacement was always
�0.2 fm, though. A further indication that at this point the
cluster interpretation becomes quite fuzzy is that for Sly6,
which showed a practically identical density distribution, one
of the α’s from the triangles move closer to those on the end
positions.

VII. EXOTIC α-PARTICLE STRUCTURES

It should be briefly mentioned that the present code also
allows the search for more exotic α-clustering structures, such
as chains and polygons, by initializing the static mean-field
calculation with such a geometric arrangement. No interesting
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state was found for three- and four-α particles, however,
and as an example we confirmed the results of Itagaki and
collaborators [32] that a three-α linear chain is unstable with
respect to triaxial deformations also for the mean field.

VIII. SUMMARY

The results obtained in this article give a large amount of
information on the relationship between cluster wave functions
and ground-state mean-field ones. Let us summarize the main
features of the ground-state analysis first:

(i) The automatic search for nα-cluster configurations with
maximal overlap to the mean-field state worked sur-
prisingly well and appears to really produce the best
configurations, as all analyses with specific geometric
assumptions showed. The geometry of the clusters ap-
pears similar to what is produced in cluster calculations.

(ii) Even when it was freely varied, the radius parameter for
the α’s always had reasonable values. It slowly increased
with the mass of the nucleus, indicating the diminishing
localization of the particles.

(iii) In all cases, the overlap decreased as the spin-orbit energy
produced by a certain force parametrization increased.
As expected the spin-orbit coupling destroyed the spin-
symmetric cluster structures.

(iv) The overlap with clusters also decreased when going
to heavier systems. The growing effects of spin-orbit
coupling and Coulomb explain that naturally.

(v) Also as expected the cluster wave functions worked better
for the lighter systems up to 20Ne. There was, however,

again enhanced overlap for 28Si and 36Ar. It is interesting
that the AMD model deviates from a pure nα-structure in
the same way and stays closer to the mean-field model.

(vi) In many cases the optimal nα-structure contains groups
of α particles spaced very close together. They do not
represent a true α-cluster configuration, but correspond
to heavier clusters.

(vii) The attempts at including correlations in the form of
collective superpositions were disappointing, producing
only minor improvements in the overlaps. Apparently
their relatively large size compared to the total nucleus
enables the clusters to fill the nucleus without additional
spreading.

(viii) The relativistic model results were generally very similar
to the Skyrme force ones. The only remarkable difference
is in the cluster radii, which were systematically smaller
for the relativistic version.

For the superdeformed states the clearest example of cluster
structure is 32S, and it is especially interesting that the overlap
with the double-16O system agrees very well with that of the
unconstrained α configuration.
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