
PHYSICAL REVIEW C 74, 044310 (2006)

Many-particles–plus–rotor description of magnetic bands at high spin
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The high-spin parts of shears bands observed in 198,199Pb are described by coupling several valence particles to
a deformed rotor core. To give the model enough freedom so that both the proton and the neutron spin vectors can
find their preferred direction, the use of five to six valence particles and holes is found to be necessary. Effective
parameters characterizing the rotor are deduced from the cranking model. The method is described and results
are presented concerning transition probabilities and energies in the high-spin regime for several rotational bands
in 199Pb. The possible termination of the rotational bands is also discussed.
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I. INTRODUCTION

Magnetic rotation [1] has been labeled a new mode of
excitation that differs from well-known excitation modes. It
occurs for relatively small deformations but gives rise to
regular sequences of states interpreted as the result of a gradual
alignment of two originally perpendicular angular momentum
vectors. The magnetic bands observed in the lead region have
been described as two protons preferring to align their angular
momenta with one axis and a couple of neutron holes that
align their angular momentum vector with a perpendicular
axis (see Refs. [1,2]). This coupling creates a large magnetic
moment perpendicular to the direction of the total nuclear
spin that gives rise to large magnetic dipole transitions. Spin
increases as the two spin vectors align, which creates a smaller
magnetic moment and a characteristic decrease of the magnetic
dipole transitions with increasing angular momentum. Because
the total angular momentum increases mainly due to the
alignment of two spin vectors, this mode of excitation has
been labeled the shears mechanism [3]. A special feature of
the shears mechanism is that the nuclear spin axis remains
at an essentially fixed angle when the spin increases. This
requires that both the high-j protons and the high-j neutron
holes have the freedom to build angular momentum both along
the symmetry axis and along the perpendicular axis.

As the magnetic bands reach the maximum spin that can be
built by the alignment, there is the question whether the bands
terminate [4,5], i.e., reach their end in an axially symmetric
state with the angular momentum pointing in the direction of a
symmetry axis of the potential in which case it is not possible
to build higher angular momenta within that configuration.
Such a termination would give rise to a decrease of the electric
quadrupole transitions, reflecting the changes in deformation
of the average nuclear field together with the reorientation of
the angular momentum vector. As an alternative to termination
it is also possible that couplings with states outside the valence
space are strong enough to generate higher spin states in a
collective manner in which case there would be no drastic
reduction of the electric quadrupole transitions [6].

The present work aims at gaining an increased insight
into the magnetic bands in the lead region while evaluating
an alternative model. Previous theoretical descriptions have
relied on the tilted axis cranking model (TAC) [1,7,8], which

has been successful in describing the observed large magnetic
dipole transitions [2]. In this model the energy is minimized
with respect to the orientation of the cranking vector and semi-
classical formulas are used to calculate transition probabilities
within rotational bands.

In the alternative approach presented here, the cranking
model is used for the bulk of the nucleons, with several
valence particles coupled to the bulk using the particle rotor
model (PRM [9]). This approach yields wave functions in the
laboratory frame having good total spin. From these wave
functions, transition probabilities can be calculated not only
within bands but also between bands and rotational bands can
be followed as they cross the boundary from the tilted regime
to the principal axis cranking regime. The method involves a
core that has to be treated as a macroscopic rotor. Furthermore,
it relies on the possibility to find a proper division between the
core and particle spaces.

The basic features of the model are discussed in Sec. II. Our
method to extract the properties of the rotor are described in
Sec. III, followed by a comparison with principal axis cranking
(PAC), a discussion of how the shell correction method can
be introduced and a comparison between results obtained for
different divisions between the particle space and the core
space. Different configurations of 199Pb are discussed in some
detail in Sec. IV and compared with experiment. Finally, in
Sec. V, the importance of allowing the neutron spin vector tilt
away from the perpendicular axis is demonstrated. In this first
article we concern ourselves only with the high-spin part of the
bands and discuss the evidence for an oblate to prolate shape
transition at high spin.

II. MODEL

The model presented here is based on single-particle
orbitals in a deformed potential in a similar way as the
two-quasiparticle plus rotor model of Ref. [10]. Compared
with Ref. [10], it is formulated for an arbitrary number
of (quasi-)particles but with the drawback that pairing is
neglected at present. It is illustrative to compare with the model
of Ref. [11], where also an arbitrary number of quasiparticles
is included but where the particle space is limited to a pure
j shell. Although the present model is formulated for triaxial
shapes, we have confined ourselves to axial symmetric shapes
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in the numerical calculations presented here. The Hamiltonian
can be written (cf. Refs. [10,12])

H = Hrot + hs.p. = Erot
0 +

3∑
k=1
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+ hs.p.

= Erot
0 +
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= 1

2
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) [(
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∑
i

eia
†
i ai + Erot

0 + hs.p., (1)

where hs.p. is a deformed single-particle Hamiltonian and
Hrot(J1,J2,J3) is the particle-rotor Hamiltonian [9]. A con-
stant Erot

0 has been added that represents the energy of the rotor
at spin zero. The indices 1,2,3 refer to the body-fixed frame,
where we will use the 3 axis as the symmetry axis in the case
of axial symmetry (J1 = J2). The energy is minimized with
respect to deformation and the moments of inertia for the core
are determined using cranking calculations as will be discussed
below. Thus the only free parameters enter in the description of
the mean-field potential where we have employed the modified
oscillator using the so-called standard parameters [13] and with
the shape of the potential parameterized using the (ε2, γ, ε4)
parametrization. In the present code, the pairing correlations
are not taken into account. Indeed, without pairing it is much
more straightforward to formulate a consistent formalism.
However, pairing should be included for a precise description
of the properties in the low-spin region while it should be a
good approximation to neglect pairing for the high-spin states
considered here.

The diagonalization of hs.p.(ε2, γ, ε4) leads to single-
particle states written as expansions [12]

a
†
tz,v

|0〉 =
∑
Nj�

c
(v)
Nlj� |Nlj�〉

with � restricted to . . . , −3/2, 1/2, 5/2, . . . and thus signature
[14] αi = 1/2. The conjugate orbitals with signature αi =
−1/2 can be defined as (see Appendix A)

a
†
tz ,̃v

|0〉 = e−iπj2a
†
tz,ve

iπj2 |0〉
=

∑
Nj�

(−1)j−�c
(v)
Nlj� |Nlj − �〉 .

If only protons are written explicitly the wave function |α〉
describing the particle space is defined as

|α〉 =
(

z1∏
i=1

a
†
1/2,βi

)(
z2∏

i=1

a
†
1/2,γ̃i

)
|0〉 .

Each creation operator is labeled using two quantum numbers.
They specify the isospin (proton, 1/2 and neutron, −1/2) and
the signature of the particle, where the second number is also

used to specify the ordering of the states within the symmetry
group. The rotated basis functions |̃α〉 can be written

|̃α〉 = (−1)z2 (−1)z1z2

(
z2∏

i=1

a
†
1/2,γi

)(
z1∏

i=1

a
†
1/2,β̃i

)
|0〉 ,

where the first phase factor is a minus sign for each particle
rotated a full revolution and the second one comes from
permuting the order so that signature 1/2 states comes first. The
total wave function is thus divided into four different groups
consisting of signature αi = ±1/2 protons and neutrons,
which is convenient when calculating matrix elements. The
number of neutrons and protons of a certain parity are
preserved quantum numbers in the model.

The total Hamiltonian H is diagonalized in the coupled and
symmetrized basis [9]

∣∣�I
MKα

〉 = NαK

1√
2

(1 + e−ij2πeiI2π )

√
2I + 1

8π2
|IMK〉|α〉

= NαK

√
2I + 1

16π2
(|IMK〉|α〉 + (−1)I−K|IM − K〉|̃α〉),

(2)

where |IMK〉 denotes the usual rotation matrix. The normal-
ization constant NαK is equal to one except when K = 0 and
the rotated state |̃α〉 = e−ij2π |α〉 is the same as |α〉, which
happens when an even number of particles are placed in
time-reversed orbits. In this case a different normalization is
required, NαK = 1/

√
2.

In the axially symmetric case the basis states can be labeled
with their projections on the symmetry axis k = kp + kn,
where kp and kn are the sums of the single-particle projections
� for protons and neutrons, respectively. In this case the core is
not allowed to build spin in the direction of the symmetry axis
(the 3 direction), which leads to the restriction K = k. When
evaluating the matrix elements of H , the operators in Eq. (1)
are written using second quantization as sums of one- and
two-body operators (see Appendix B). In the calculation, the
configuration space in the different symmetry groups typically
consists of 5–10 doubly degenerate orbitals from the deformed
single-particle Hamiltonian. Because all possible particle-hole
excitations within this space are considered the dimensions are
generally quite large for several particles. In these cases the
ARPACK routines [15] are used when solving numerically for
the lowest eigenvalues and corresponding wave functions.

The formulas for reduced transition probabilities are
straightforward to derive, leading to expressions that are
similar to those obtained for one particle in Refs. [12,16].
The resulting formula for the B(E2) value is

B(E2; Ii → If ) = 5e2

16π

∣∣∣∣∣∣
∑

Kf ,αf ,Ki ,αi

a
If αf
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Iiαi

Ki
NαiKi

Nαf Kf

×
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µ=−2,0,2

(
Qcore

2µ 〈αf |αi〉 + 〈αf |̂q2µ|αi〉
)

×〈IiKi2µ|If Kf 〉 + (−1)Ii−Ki
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× (
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,

where the contribution from the core Qcore
2µ is added to

the diagonal elements. The B(M1) transition probability is
obtained as (in units of µ2

N )
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2

.

Throughout this work we have used gs = 0.7gfree
s and gR

is obtained from cranking calculations as will be discussed
below.

III. METHOD OF CALCULATION

A. Properties of the rotor extracted from cranking calculations

The particle-rotor formalism is based on a division of the
relevant degrees of freedom into two parts. The rotor part that
is assumed to be an even-even nucleus is given the freedom to
build angular momenta in three different directions. The cost of
doing so is parametrized in the simplest case by three different
moments of inertias. Indeed, with the basis of Eq. (2), this is
the only possibility. If, however the basis is recoupled so that R
becomes a good quantum number [17], it is possible to use an
arbitrary parametrization for the core energies, where the VMI
expression [18] is one possibility. Such a recoupling becomes
involved with many valence particles but is implemented in
the two quasiparticles + rotor code of Ref. [10] and will be
used below.

To calculate transition probabilities one needs the effec-
tive gyromagnetic moment of the rotor together with the
quadrupole moments. Our method consists of extracting
these macroscopic parameters of the rotor from a cranking
calculation. Once the gross properties of the rotor are obtained
one can couple it to several valence particles to obtain the full
dynamics of the system. This appears particularly appealing
for a description of magnetic bands where the most important
physics comes from the orientations of a few valence particles.

The rotor properties are obtained by solving the principal
axis cranking (PAC) [14] Hamiltonian

HPAC = hs.p.(ε2, γ, ε4) − ωj1.

From the solutions to HPAC we extract energies, quadrupole
moments, and gyromagnetic moments. In this work we have
considered axially symmetric deformations only whereJ3 = 0
and J1 = J2. To extract this moment of inertia, the energy of
the core is calculated as a function of spin. First the cranking
frequency is determined from the condition

√
I (I + 1) = J1 =

Ac∑
i

〈
φω

i

∣∣j1

∣∣φω
i

〉
, (3)

where φω
i are the single-particle eigenfunctions of the cranking

Hamiltonian, HPAC, and where the summation is carried out
over the Ac single-particle states which are occupied in the
core. Then the total energy in the laboratory frame is calculated
as

EPAC(J1) =
Ac∑
i

〈
φω

i

∣∣hsp + ωj1

∣∣φω
i

〉
(see Ref. [14] for details). To obtain the moment of inertia for
the rotor we fit EPAC(J1) with J 2

1 /2J1 + Erot
0 and use J1 as

the moment of inertia for rotation around the 1 axis.
The effective gyromagnetic factor is obtained as

gR(J1) = [gl,π 〈jπ,1〉 + (gs,π − gl,π )〈Sπ,1〉 + (gs,v)〈Sv,1〉]/J1

and the quadrupole moment as the sum of the single-particle
moments Qcore

2µ (J1) = ∑Zc

i q2µ,i . For a well-behaved core, gR

and Qcore
20 are only weakly dependent on J1 and can thus be

approximated by their average values within the appropriate
spin interval.

B. Comparison between the particle-rotor and the principal
axis cranking model

When comparing PRM calculations with cranking, the
energy for the lowest states are often somewhat higher in the
PRM. This is illustrated in Fig. 1 and can be understood by
considering two limits. When the moment of inertia of the rotor
J becomes large the couplings caused by Hrot become small.
The wave function for the lowest state will then come close
to the Hartree-Fock vacuum obtained by occupying the lowest
single-particle states. The corresponding energy is not much
higher than the sum of the single-particle energies Es.p.. In the
other limit whenJ becomes small it becomes expensive to use
the rotor so the valence particles couple to a good spin and the
wave function becomes a sum of several slater determinants
with an increased energy.

To illustrate the present method, the result of PRM
calculations are compared with cranked Nilsson-Strutinsky
(CNS) [4,13] calculations in Fig 2. Panel (a) of Fig. 2
shows the calculated energy for a configuration in 158

66Dy92
having no i13/2 neutrons at a constant deformation of ε2 = 0.2
using the CNS model (lines). To be more precise, all orbitals
emerging from subshells below the Z = 50 and N = 82 gaps
are filled and in addition the lowest 10 and 6 proton orbitals,
respectively, of d5/2g7/2 and h11/2 character and the lowest
10 neutron orbitals of h9/2f7/2 character. This configuration is
used as a core in the PRM calculation and the dots indicate
the energy of the rotor fitted to this band. As seen a reasonable
fit can be obtained with a constant moment of inertia up to
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FIG. 1. (Color online) For two and four particles in a pure i13/2

shell, the energy calculated in the particle-rotor model for spin I = 0
is compared with the single-particle sum, Es.p.. As the moment of
inertia for the rotor grows, the particles take advantage of the rotor
and lower their energy by angular momentum fluctuations. A similar
picture illustrating the same effect can be found in Ref. [19].

around spin 35. Using this 158
66Dy92 configuration as a core we

couple it to one neutron constrained to 14 orbitals (7 of each
signature) originating from the deformed i13/2 shell and 10
additional low energy orbitals in the N = 6 shell. The result
is seen in the panel (b), where it is compared with cranking
calculations. The two models produce pretty similar results, the
main difference being a somewhat larger signature splitting for
the lowest K = 1/2 band predicted in the PRM. The difference
in the spin alignment between the particle-rotor and cranking
model was discussed in Ref. [20], where it was found that the
cranking model normally gives a smaller rotation-aligned spin
for an odd quasiparticle. The differences were investigated
for prolate shapes and found to be largest at low rotational
frequencies and with a Fermi level low in the i13/2 shell. The
explanation for the smaller alignment in the cranking model
was found to be the approximation that the average field can
be characterized by a constant frequency vector.

In the calculation shown in panel (b) of Fig. 2,
the maximum spin contribution from the odd particle is
jmax

1 = 6.5 and the PRM results are thus rather dependent
on the core properties. However by adding more particles the
system becomes less dependent on core parameters. A few
more particles can be taken into account explicitly as shown in
panels (c) and (d) of Fig. 2. Panel (c) shows the result of
coupling four neutrons to the 158

66Dy92 core and panel (d) the
results when using five neutrons. With the neutrons confined
to an approximately pure i13/2 shell, their maximum spin
contribution is roughly jmax

1 = 20.0 and 22.5 in the cases
of four and five neutrons, respectively, which is a large part
of the total spin. The different calculations shown in Fig. 2
use a core with the same numbers of particles. However,
the effective single-particle potential for the core is the one
valid for the mass number A of the total system of core plus
valence particles. Therefore, because of the A dependence of
the single-particle potential, the core parameters Ji ,Q20, and
gR become slightly different in each case.
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FIG. 2. Comparison of cranking (full and dotted lines) and
particle-rotor calculations (circles) for 0,1,4, and 5 i13/2 neutrons
coupled to a 158

66Dy92 core as defined in the text. Due to the expected
energy shift seen in Fig. 1 we have applied constant shifts of the
particle-rotor results, placing them so that they roughly agree with
the cranking results. Thus, as would be expected from Fig. 1 with
J ∼ 60, the energies are shifted by 0−0.3 MeV. The deformation is
kept constant at ε2 = 0.2.
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In the calculations shown in Fig. 2 the CNS and the PRM
give similar results for the energies. In such cases the main
advantage of using the more computational demanding PRM
is the possibility to calculate transition probabilities between
all states.

C. The shell correction method

In Fig. 2 the total energy was obtained as the sum
of the single-particle energies counting from the bottom
of the modified oscillator potential. When comparing with
experiments, the energy is usually Strutinsky renormalized
[21] to the average behavior of a liquid-drop model. In a
similar way, the smooth part of the rotational energy differs
from the experimental energy. Therefore, one usually performs
a Strutinsky renormalization also as a function of spin and
replaces the average cost of rotating with the energy of a
rotating rigid body. This is particularly necessary when using
the modified oscillator because the average moment of inertia
is roughly 30% larger than the rigid body value [22]. This
correction is usually referred to as renormalizing the average
moment of inertia and appears to be a quite reliable calculation
scheme. In the CNS calculations, the total energy is therefore
calculated as [4],

Etot(ε2, ε4, γ, J1) = EPAC(ε2, ε4, γ, J1) − Estrut(ε2, ε4, γ, J1)

+ELD(ε2, ε4, γ ) + J 2
1

2J rigid
1

, (4)

where J1 is defined in Eq. (3). The smoothed single-particle
energy sum Estrut(ε2, ε4, γ, J1) = ∑

ẽi(ω̃1, ε2, ε4, γ )|J̃1=J1
is

calculated using the Strutinsky procedure. Estrut thus represent
the average energy when the shell structure is smeared out.
In this way one can reproduce the local variations which the
single-particle potential is fitted to and replace the average
behavior with a rotating liquid-drop model. The smoothed cost
is calculated for each deformation only along the yrast line and
for each value of the spin J1, the same correction is then applied
to all calculated states. The rotating liquid drop energy, i.e., the
last two terms in Eq. (4) is described in Ref. [23] and consists
of using the LSD model [24] for the static liquid-drop energy
with the average moment of inertia J rigid

1 calculated from a
mass distribution with a diffuse surface.

We expect the same problem of the smooth part of
the energy differing from experiment when using the PRM
together with the modified oscillator potential. However, in
this case it is difficult to calculate a Strutinsky average as a
function of angular momentum. Because the energies obtained
in CNS and the PRM are similar, it seems reasonable as a
first approximation to apply the same correction also in the
PRM, i.e., to add the last three terms of Eq. (4) taken from
a CNS calculation to the energy calculated in the PRM. It
should be noted that this procedure does not affect the wave
functions, reduced transition probabilities, or spin orientation,
which is the main interest of this work. The correction makes
the average moment of inertia roughly 30% smaller and allows
us to compare our results for the energies with renormalized
CNS calculations.

D. The division between the particle space and core space

The division into a particle and a core space should be made
in such a way that the neglected couplings between the valence
particles and the core particles are small. To illustrate how
different divisions of core and valence spaces can be made,
calculations for 198

82Pb116 were performed. One of the magnetic
bands seen in this nucleus (band 3 in [2,25]) has been described
as built with one i13/2 proton together with one h9/2 proton
and four i13/2 neutron holes at a small oblate deformation
(labeled ABCD11 in Ref. [2,25]). At this deformation the
proton particles prefer to align their angular momentum with
the symmetry axis (3 axis) and the neutron holes with the
perpendicular axis. To describe this band using the PRM it is
possible to take all high-j particles as valence particles and
treat the remaining part as a rotor. Another possibility is to
assume that the spin vectors of the neutron holes stay oriented
perpendicular to the symmetry axis and treat them as part
of the rotor. These two different core choices are illustrated in
Fig. 3. When using the small core, the neutron holes are treated
as 10 neutron particles in a deformed i13/2 shell. The rotor is
thus made up from a nucleus having two less protons and 10
less neutrons than 198

82Pb116, i.e., from a fixed configuration
that, relative to a 208

82Pb126 core, has two N = 4 proton holes,
six N = 5 neutron holes, and no i13/2 neutrons. For the larger
core the cost of building spin cannot be parametrized with a
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FIG. 3. (Color online) Two different choices of valence spaces
for 198Pb. Particles relative to the closed core nucleus 208Pb are shown
with filled circles and holes by open circles. The boxes indicate the
particles or holes treated explicitly in the particle-rotor calculation. If
the core spin is only built from the j shells in this figure, the upper
choice of core has a maximum spin of Imax = 8 and the lower one has
Imax = 28.
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FIG. 4. (Color online) Calculations for 198Pb with a π (i13/2)1(h9/2)1v(i13/2)−4 configuration at a constant deformation of ε2 = −0.15. Left
panel shows two protons and four neutron holes coupled to a rotor and in the right panel the neutron holes are treated as part of the core. To
be able to compare with PAC calculations the PRM energies has been placed by demanding that the bandhead I = 2 states has the expectation
value of hs.p. of the dominating slater determinant in the wave function as their total energy. This means ignoring the correlation energy shown
in Fig. 1 and amounts to shifting the PRM energies in left panel by 974 keV and those right panel by 105 keV. Schematic figures illustrate the
coupling schemes in the different cases.

constant moment of inertia. The reason is the relatively small
rotational energy needed to align the spin of the i13/2 neutron
holes with the cranking axis. In this case the method mentioned
in Sec. III A [17] is used to expand the basis states in a basis
where the rotor spin is a good quantum number that can then
be used to specify the cost to build each unit of rotor spin.
The energy versus spin curves for the calculations using the
different choices of cores are shown in Fig. 4 and compared
with the result of PAC calculations.

As seen in the right panel, where the neutron holes have
been treated as part of the core, the result of the PAC calculation
coincides with the first excited PRM band corresponding to an
antiparallel coupling of the two protons. This is to be expected
since the spin component along the symmetry axis is neglected
in PAC calculations. Therefore bands with the parallel and
the antiparallel coupling of the protons are degenerate in this

model. In the PRM calculation the spin component along the
symmetry axis is accounted for which leads to a lowering of
the energy compared to the PAC result.

The left panel shows the result when using the larger valence
space. In this figure more states have been included. Many
of these additional states correspond to excitations among
the neutrons. The general features of the magnetic band is,
however, the same, whereas the band with the antiparallel
coupling of the protons is hard to distinguish. With this
small core the dimension of the Hamiltonian becomes rather
large, e.g., the basis size is 84084 for both the even- and the
odd-signature high-spin states.

Figure 5 shows the calculated transition probabilities for
the two different core choices. For both choices the B(M1)
values decrease at higher spins, whereas the B(E2) values
increase. The trend for the B(E2) values would, however, be
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FIG. 5. (Color online) Gyromagnetic factors and transition probabilities for the two choices of cores indicated in Fig. 3. The gR factors
used to calculate the B(M1) transitions are the mean values of those shown in the left panel of the figure. These mean values are also indicated.
For the B(M1) (middle panel) and B(E2) (right panel) transition probabilities, dashed lines correspond to the larger valence space and full
lines to the smaller one.

044310-6



MANY-PARTICLES–PLUS–ROTOR DESCRIPTION OF . . . PHYSICAL REVIEW C 74, 044310 (2006)

somewhat different for the highest spins if the deformation
was allowed to change as a function of spin as exemplified
for other configurations in Fig. 13 below. The calculation with
the smaller core produces smaller values both regarding the
B(E2) and B(M1) values. For the smaller core, discontinuities
are seen around I = 15 both in the B(E2) and B(M1) values
indicating a new band starting at I = 15. This new band, which
mixes with the K = 11 band, starts as a K = 15 band, where
the neutrons contribute with 4h̄ at the band head.

The angle the total spin vector makes with the symmetry
axis, ϑ = arccos(

√〈I 2
z 〉/√I (I + 1)), for the I = 27 state is

indicated in Fig. 5. A larger angle is calculated when the
neutrons are treated as part of the core and thus constrained to
point in the direction perpendicular to the symmetry axis. This
indicates that the neutrons use the freedom gained when treated
explicitly to tilt somewhat toward the protons. A smaller tilt
angle also leads to smaller B(E2) values according to the
approximate relation [2]

B(E2) = 15

128π
(eQ20)2 sin4 ϑ.

Thus, the inclusion of this degree of freedom in the model,
i.e., the possibility for the neutrons to tilt toward the symmetry
axis, gives a substantial correction to the reduced transition
probabilities.

The effective gR factors obtained from CNS calculations are
illustrated as a function of spin in the left part of Fig. 5 for the
two choices of core spaces. If the neutron i13/2 holes are treated
as part of the core, they give a negative contribution to the
effective gR factor that makes the total gR value negative.
The value gR = Z/A, which is sometimes used for gR [9],
is also indicated. As seen from this figure, the parameters
describing the core may differ substantially from macroscopic
estimates. Another strategy is then to extract parameters
like moments of inertia directly from experiments. However,
when treating many particles explicitly this may be difficult
because the preferred deformation of the core nucleus may
be very different from the one for core + valence particles.
Therefore, we have chosen to calculate the core parameters
microscopicly. With these recipes, the very different divisions
between core and particle spaces lead to rather similar
results and the remaining differences can to a large extent be
understood as being due to restricting the neutrons to point in
the direction of a principal axis.

The experimental transition energies are compared with
the calculated ones in Fig. 6. A good description of the
transition energies are obtained after the backbend at spin
I = 26. However, because there are no transition probabilities
measured when all particles are aligned, no comparison with
experimental B(M1) or B(E2) values is possible.

IV. MAGNETIC ROTATION IN 199Pb

In 199Pb transition probabilities have been observed [26]
above the backbend which makes it possible to compare with
unpaired calculations for these states. In all of our calculations
for this nucleus we use the same neutron configuration having
three i13/2 holes treated explicitly and six additional holes in
the N = 5 shell with respect to the N = 126 closed shell. Thus
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FIG. 6. (Color online) Spin versus transition energy for band 3
in 198Pb and comparison with the calculations in Fig. 4. It is only
in the region above the backbend that the experimental moment of
inertia becomes close to the unpaired value and where one can expect
a quantitative agreement with the PRM calculations.

the model space is chosen as in panel (a) of Fig. 3 but with
only three i13/2 holes.

A. Shapes and possible terminations in 199Pb configurations

Figure 7 shows deformation trajectories for four different
proton configurations calculated in the cranked Nilsson-
Strutinsky (CNS) formalism. When reaching the maximum
spin that can be formed in the valence space, Imax, config-
urations having just one high-j proton show larger tenden-
cies to terminate than those with two high-j protons. For
the π (i13/2)1(h9/2)1 configuration, the two high-j protons
can contribute with at most (13/2 + 9/2)h̄ = 11h̄ and the
two proton holes with (3/2 + 1/2)h̄ if they are allowed
to spread over the d3/2 and s1/2 subshells. Similarly, the
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FIG. 7. (Color online) Deformation trajectories calculated using
the CNS model. The curves show how the deformation changes as
a function of angular momentum in steps of 2h̄ for three different
configurations.
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is built close to termination. The deformation is the one relevant for
the bands with just one high-j proton (see Fig. 7).

maximum contribution from the three i13/2 neutron holes
is (13/2 + 11/2 + 9/2)h̄ = 16.5h̄ and from the six low-j
neutron holes (5/2 + 3/2 + 3/2 + 1/2 + 1/2 − 1/2)h̄ = 6h̄
if they are assumed to be equally distributed over the two
signatures. We thus arrive at Imax = 35.5 for this configuration.
The same arguments in the case when the proton configuration
has only one high-j proton (h9/2 or i13/2) leads to Imax = 28.5
and 30.5, respectively. However, Fig. 7 shows that these
configurations can be followed to higher spins, which is mainly
caused by mixing between the N = 5 neutron orbitals. Thus
these π (h9/2)1 and π (i13/2)1 configurations come very close
to termination at I = (31.5+, 32.5+) and I = (33.5−, 34.5−)
for the two signatures where the neutron configuration is
essentially the one illustrated in a tilted Fermi surface plot
in Fig. 8, i.e., with one neutron hole in h9/2 so that the
maximum neutron spin becomes 26.5 instead of 22.5. For
the π (i13/2)1(h9/2)1 configuration, these couplings (and also
the couplings within the N = 4 proton holes) become even
larger so that the corresponding rotational band can be
followed far beyond the Imax values calculated above.

In the present work we assume axial symmetry in the
PRM calculations, which according to the CNS calculations
(Fig. 7) should be reasonable for all states with the exception
of the highest spin states for the bands having just one
high-j proton. In the triaxial case the dimensions grow
rapidly because each basis state can be combined with several
K values, which makes calculations time consuming. We also
assume that the effect of the pairing interaction is negligible,
which is supported by the fact that in the high-spin regime we
consider, the moments of inertia are well described in unpaired
calculations (see Fig. 6 and Fig. 10 below and also Ref. [5]).

B. The (h9/2)2 configuration

Figure 9 compares CNS calculations with the result of the
PRM in the case of two h9/2 protons coupled to our neutron
configuration. The deformation trajectory of this configuration
falls close to the the one for the π (i13/2h9/2) configuration in
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FIG. 9. (Color online) Comparison between PAC (upper left
panel) and PRM (lower left panel) for the configuration with 2 h9/2

protons. The deformation is kept fixed at ε2 = −0.16. The orientation
of the different spin vectors calculated in the PRM is illustrated at
I = 20.5 and I = 30.5 in the panels to the right.

Fig. 7. The lowest band in the CNS calculations is obtained
when placing the two protons in opposite signatures, thus
coupling their spin in opposite directions and a corresponding
band is lowest also in the PRM calculations. This is contrary
to the case with the two protons in different shells (see
Fig. 4) where the parallel coupling was favored in the PRM
calculations. The yrast π (h9/2)2 band splits into two at low
spins which is due to the signature splitting of the highest i13/2

neutron level. The antiparallel coupling of the two protons
produces no large B(M1) values. To obtain a band with large
B(M1) values the protons have to align their spin vectors. In
the CNS model, this can be achieved by exciting one of them
within the h9/2 shell so that both are in orbitals of the same
signature. As seen in the top panel of Fig. 9 this produces
a I = 1 band labeled A at a higher energy. In the PRM
calculation shown in the lower panel this excitation energy
is reduced making this band close to the lowest one when
approaching I = 30. Because this magnetic band is not the
lowest (h9/2)2 band it may be more difficult to observe than
magnetic bands formed with the two protons in different shells
or with only one high-j proton. At I = 31.5 M1 transitions
within the magnetic band are calculated to be of similar
strength as M1 transitions connecting it with the lower band.
Approaching lower spins the strength of transitions between
the bands decreases rapidly. At higher spins (around I = 30)
the results obtained from the CNS model agree quite well
with the PRM. This is to be expected since with increasing
spin the orientation of the total angular momentum is driven
into the direction perpendicular to the symmetry axis where
the PAC descriptions should work well.

In the PRM, spin projections on any axis is always zero.
Therefore, to compare the spin orientation, expectation values
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FIG. 10. (Color online) Calculated rotational bands in 199Pb
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band observed in this nucleus which has not yet been linked to the
low-spin structures.

of the squares of the spin projection operators are calculated.
The results for the (h9/2)2 bands are illustrated in the right
panels of Fig. 9. At spin I = 20.5, the magnetic band labeled
A has a large proton spin projection on the symmetry axis,
which makes the total spin vector tilt toward the symmetry axis.
The total spin increases due to the alignment of the protons
with the collective spin component and also because of an
increase in collective spin. At spin 30.5 the collective spin
vector contributes with approximately 10 units for both bands.

C. PRM description and comparison with experiments

Figure 10 shows calculated configurations of 199Pb com-
pared with experiments [27]. The total energy for each
configuration and spin has been minimized with respect
to ε2 deformation using a mesh consisting of six different
values (ε2 = {−0.06,−0.08,−0.10,−0.12,−0.14,−0.16} ).
For the larger deformations the fit used to extract the moment
of inertia for the core could be done with a good accuracy with
a maximum discrepancies for any point less than 0.05 MeV.
For smaller deformations the core becomes less collective and
a smooth fit becomes more difficult. The biggest discrepancies,
which are about 0.2 MeV for some points, are found for
the smallest deformation. All configurations have the same
neutron configuration.

The valence neutrons are treated as 11 particles in a
deformed (i13/2) shell. The valence protons are also confined
to different deformed high-j shells. In the cases where there
is a single hole in the N = 4 shell the valence space for the
hole is taken to be the entire N = 4 shell with the exception
of orbits of g9/2 character. The total energy calculated using
different valence spaces is shown in Tables I and II. At the small
deformations considered, the j shells are not so mixed and the
strongest couplings of Hrot occur between orbitals originating
from the same deformed j shell. Therefore, increasing the
valence space much beyond the single deformed j shells is
found to have a small effect on the energy.

TABLE I. Effects of truncation of basis states on the energy levels
of 199Pb. The energies for the π (i13/2)1(h9/2)1v(i13/2)−3 configuration
at spin 20.5 and 30.5 is indicated as a function of the number of
basis states used for the i13/2 proton. The deformation is kept fixed at
ε2 = −0.14. The number of basis states for the h9/2 proton is fixed
at 12 and the for the neutron holes, the 256 lowest excitations within
the deformed i13/2 shell is used as a basis.

Number of basis states E(20.5) E(30.5)

4 −18.236 −14.353
6 −18.255 −14.574

10 −18.258 −14.684
14 −18.258 −14.697
16 −18.258 −14.698
18 −18.258 −14.698
24 −18.258 −14.699
30 −18.258 −14.699

The π (i13/2)1(h9/2)1 configuration has been suggested for
the experimental band on the basis of TAC calculations [28].
This assignment is consistent with the fact that the lowest
state observed has I = 25/2, which coincides with the band
head spin obtained from the parallel coupling of the two
high-j protons and the odd i13/2 � = 3/2 neutron. This is
also the dominating component (≈40%) in the calculated
wavefunction. However, this amplitude might change if pairing
was included in the model.

Comparing energies in Fig. 10, all bands have similar slopes
as the experimental band after the backbending around spin
20. The bands with just one high-j proton develop a signature
splitting at the highest spins that is not seen in the experimental
band. However, when performing CNS calculations for the
π (i13/2)1 band we found that this signature splitting is reduced
when triaxial deformations are allowed. Figure 11 compares
calculated transition energies for the π (i13/2)1(h9/2)1 and the
π (i13/2)1 configurations with the experimental ones. As seen
from this figure there is no sign of signature splitting in the
experimental data.

Figure 12 shows the calculated and observed [26] B(M1)
values for in-band transitions. The B(M1) values increase with
the number of particles having a angular momentum pointing
in the direction of the symmetry axis and decrease as the

TABLE II. Same as in Table I but as a function of the number of
basis states used for the h9/2 proton while the number of basis states
for the i13/2 proton is fixed at 14.

Number of basis states E(20.5) E(30.5)

4 −18.231 −14.468
6 −18.249 −14.540

10 −18.258 −14.689
12 −18.258 −14.697
16 −18.258 −14.698
18 −18.258 −14.698
22 −18.258 −14.702
28 −18.258 −14.702
30 −18.258 −14.702

044310-9



B. G. CARLSSON AND I. RAGNARSSON PHYSICAL REVIEW C 74, 044310 (2006)

200 400 600 800

Transition energy (keV)

15

20

25

30

Sp
in

,I
 [

h- ]

Exp.

π(i
13/2

)
1

π(i
13/2

)
1
(h

9/2
)

FIG. 11. (Color online) The calculated π (i13/2)1(h9/2)1 and
π (i13/2)1 configurations of 199Pb compared with the experimental
band 1 in a spin versus transition energy plot.

proton and neutron angular momenta align. The calculated
B(M1) values for the π (i13/2)1(h9/2)1 configuration are larger
than the ones obtained using the TAC model [26,28]. Close
to spin 20, TAC gives B(M1) ≈ 9µ2

N , whereas the PRM
gives B(M1) = 10.8µ2

N at spin 20.5. At higher spin the
differences increase. For example at spin 27.5 the PRM
gives B(M1) = 7.7µ2

N , whereas TAC predicts B(M1) ≈ 4µ2
N .

Small differences can be expected and may be a result of the
different models. One difference is that a constant deformation
of ε2 = −0.1 is used in the TAC calculation, whereas we obtain
ε2 ≈ −0.14. However, the sharper decrease with angular
momentum obtained in the TAC model is an indication that
there may be differences in the alignment process.

The best agreement with experiment for the B(M1) values
is obtained for the band with just one i13/2 proton that has
positive parity. The experimental band has been suggested
to have negative parity but the parity is not determined
experimentally [2].
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FIG. 12. (Color online) B(M1) values for the calculated bands in
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15 20 25 30 35

Initial spin, I
i
 [h-]

0

0.1

0.2

0.3

0.4

B
(E

2)
 [

e2
b

2 ]

(i
13/2

)
1
(h

9/2
)
1

(h
9/2

)
1

(i
13/2

)
1

FIG. 13. (Color online) Calculated B(E2) values for the 199Pb
configurations in Fig. 10 compared with observed values [26].
Deformation changes in steps of ε2 = 0.02 causes the staggering
seen in the theoretical curves that probably would become smoother
if more deformation points were used when minimizing the total
energy. The approximation that the initial and final states have the
same deformation, corresponding to the deformation of the initial
state, is made when calculating B(E2) and B(M1) values.

Figure 13 shows the calculated and observed [26] B(E2)
values. The experimental values show a rapid decrease toward
the highest spins observed. A similar decrease is seen for the
configurations having just one high-j proton, which is due to
the decrease of the quadrupole deformation with increasing
angular momentum. According to the CNS calculations these
configurations become triaxial at the highest spins observed,
which leads to a substantial reduction of the B(E2) values.
Thus one might expect a larger decrease and thus a closer
correspondence with experiment if triaxiality was taken into
account in the calculation. The π (i13/2)1(h9/2)1 configuration is
calculated to be more collective than the other configurations
and does not show the rapid decrease, which leads to large
discrepancies with experiment at the highest spins.

To investigate whether the sharp decrease of the ex-
perimental B(M1) values could be reproduced using the
assigned π (i13/2)1(h9/2)1 configuration, and with a reasonable
adjustment of the model parameters, we compare different
calculations in Fig. 14. The curve denoted by A is obtained
for a constant deformation of ε2 = −0.14, which is the
self-consistent value obtained by minimizing the energy with
respect to quadrupole deformation for spin values I <∼ 30.
By reducing the deformation substantially to ε2 = −0.06 the
protons become less strongly coupled to the symmetry axis
and align more with the total spin vector which reduces
the B(M1) values at the higher spins as seen for case B.
Note that in the previous TAC calculations for these bands
[2,28] using the theoretical model described in Ref. [29] the
deformation is largely treated as a free parameter in the sense
that the quadrupole coupling parameter is fitted to reproduce
experimental deformations. With a deformation of ε2 = −0.06
the B(M1) values can be further reduced by decreasing the
moment of inertia for the core by 30% as seen in case C.
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FIG. 14. (Color online) B(M1) transitions for the π (i13/2)1(h9/2)1 configuration of 199Pb. The curve denoted A is obtained using a constant
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inertia has been lowered with 30% with respect to case B. Experimental values for band 1 are shown with error bars. In the panels to the right
the spin orientation in the three cases, A, B, and C, is illustrated for I = 20.5 and I = 30.5.

A decrease of the moment of inertia could be achieved for
example if the h9/2 subshell was lowered so that the neutron
core was essentially confined to the low-j f5/2, p3/2, and
p1/2 subshells, see Fig. 8. However, as seen in in Fig. 14 the
resulting change in the B(M1) values is pretty small, indicating
that the results are not so sensitive to the moment of inertia
used for the rotor.

The calculated B(M1) values depend mainly on the
geometry of the spin vectors as illustrated in the right panel of
Fig. 14. At spin 20.5 the different parameter choices A, B, and
C predict almost the same spin orientations being reflected in
the almost identical B(M1) values. At spin 30.5, differences
in the alignment occur for the different parameter choices.
A smaller moment of inertia for the core makes it favorable
to build more spin by aligning the neutron and proton spin
vectors. The amount of core spin obtained at spin 30.5 for
ε2 = −0.14 is roughly

√
〈R2〉 = 8 units, which is a reasonable

value considering the Imax values discussed above. In our
calculations the core spin is always constrained to point in the
direction perpendicular to the symmetry axis. Thus at higher
spins we tend to get a situation where the proton spin is forced
to point in the direction of the rotor spin. If this constraint
was dropped it is possible that the core spin would tilt toward
the symmetry axis, which could lead to a decrease of both the
B(M1) and the B(E2) values. This situation may then be more
in agreement with results obtained from TAC calculations
where an almost constant tilting angle is calculated [2].

V. THE TILTING OF THE NEUTRON SPIN VECTORS

For the magnetic bands the anisotropy of the distribution
of the proton angular momentum projections on the symmetry
axis kp causes a division of the total wave function into two
uncoupled parts. This is easy to realize because in the axially
symmetric case couplings only occur between basis states

differing by kp � ± 1. Thus if the wave function can be
divided into two parts with positive and negative kp values,
respectively, which are separated by kp > ±1, these parts
will not couple.

In this case the total wave function can be written as
|�I 〉 = 1√

2
(|�+〉 + |�−〉), where the signs indicate that |�+〉

and |�−〉 contain only positive or only negative values of kp,
respectively. Explicitly the |�+〉 wave function can be written

|�+〉 =
∑

α,kp>0

aαNαK

√
2I + 1

16π2
|IMK〉|αkpkn〉

+
∑

α,kp<0

bαNαK

√
2I + 1

16π2
(−1)I−K |IM − K〉e−ij 2π

× |αkpkn〉,
with an analogous expression for |�−〉. These wave functions
are related through the operation |�−〉 = e−ij 2πeiI 2π |�+〉.
Because |�I 〉 is an eigenstate of the Hamilton operator,
H 1√

2
(|�+〉 + |�−〉) = 1√

2
E(|�+〉 + |�−〉). If the anisotropy

is sufficiently large H |�+〉 and H |�−〉 can be expanded
in states having only positive respectively negative values
of kp. In this case, the eigenvalue relation separates into
two uncoupled equations H 1√

2
|�±〉 = 1√

2
E|�±〉, showing

that |�±〉 are also eigenstates of the Hamiltonian with the
same eigenvalue. The 1√

2
(|�+〉 − |�−〉) wave function can

be expanded in basis states of “wrong signature,” i.e., basis
states that combines the two terms in Eq. (2) with the wrong
sign. Thus if the two solutions |�±〉 are degenerate the |�+〉
state can be obtained by solving the PRM within the basis of
“wrong signature” and then adding this solution to the normal
solution. This method was used in Ref. [30], where the case
of two particles coupled to a rotor was studied and compared
with TAC results. Even in cases when the wave function does
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FIG. 15. (Color online) Panel (a) shows calculated kp- and kn-
distributions for the π (i13/2)1(h9/2)1v(i13/2)−3 configuration of 199Pb
at a constant deformation of ε2 = −0.14. The same distribution is
illustrated in panel (b) for the π (i13/2)1(N = 4)−1v(i13/2)−3 config-
uration at a constant deformation of ε2 = −0.10. E indicates the
calculated energy difference in MeV between the two wave functions
with the correct and the “wrong” signature. If the deformation
is reduced substantially (ε2 = −0.06) the π (i13/2)1(h9/2)1v(i13/2)−3

configuration obtains a slightly larger maximum asymmetry in the
neutron distribution, (〈�+|jv

z |�+〉 = 4.1 at I = 28.5).

not not split up in components with positive and negative kp

values, we will define |�+〉 using the same procedure.
The wave function |�+〉 is illustrated for two of our

calculated bands in Fig. 15. This figure shows the probability
distributions with respect to kp both for |�I 〉 and |�+〉/√2
for different I values and the corresponding distribution for
the neutrons. For the π (i13/2)1(h9/2)1v(i13/2)−3 configuration
in panel (a) of Fig. 15 it is seen how the protons gradually
tilt away from the symmetry axis toward the neutrons.
The neutrons obtain a maximum asymmetry at spin 30.5,

where 〈�+|jv
z |�+〉 = 3.5, but this value becomes smaller

when the total angular momentum increases. At I = 30.5
the total 〈�+|jz|�+〉-value is 13.2, which is larger than the
maximum projection obtained for the protons alone. Thus
these calculations are consistent with the predictions of the
shears mode [3] in the sense that total angular momentum is
formed not by an alignment of the proton spin vector along
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FIG. 16. (Color online) Tilt angle as a function of spin for
the 199Pb configurations in Fig. 15. The tilt angle is obtained as
arccos[〈φ+|jz|φ+〉/√I (I + 1)].

the perpendicular direction but rather by the simultaneous
alignment of the proton and neutron spin vectors along the
total spin vector. The angle the total spin vector makes with the
symmetry axis is shown in Fig. 16. In the TAC calculations, this
angle is essentially independent of spin. The angle calculated
in the PRM for the π (i13/2)1(h9/2)1 configuration increases
somewhat from ϑ = 53◦ at spin 20.5 to ϑ = 66◦ at spin 31.
This increase is most likely caused by the increase in rotor
spin (compare Fig. 14).

The k distributions for the π (i13/2)1(N = 4)−1v(i13/2)−3

configuration is shown in panel (b) of Fig. 15. In this case
the asymmetry caused by the single i13/2 proton is not enough
to generate a splitting of the wave function at the highest spins.
Thus although the kp distribution still shows two bumps for
positive and negative kp values at I = 30.5, the two branches
are no longer uncoupled. The corresponding tilt angle is
illustrated in Fig. 16.

In our numerical calculations we found that diagonalizing
the PRM Hamiltonian in the basis with the wrong signature
gives eigenstates that interpolates the . . . , I, I + 2, . . . states
to the . . . , I + 1, I + 3, . . . states in a smooth way. The energy
difference between the interpolated solution with the wrong
signature and the ones with the correct signature at a certain
spin can then be taken as a measure of the signature splitting.
When these two solutions are degenerate, it implies that the
wave function can be separated into two uncoupled branches.
In panel (b) of Fig. 15 it is seen how couplings may appear in
the high spin regime when the K value is reduced. These
couplings breaks the degeneracy and a signature splitting
appears at higher spins in Fig. 10 for the corresponding
configuration. It is also interesting to notice that the above
scenario is not restricted to bands having large K projections.
For example, it is possible to have two protons of different
parity coupled to K ∼ 0 and neutrons with angular momenta
pointing on a perpendicular axis. If the kp values of the
individual protons are sufficiently large they will generate
an asymmetry giving rise to solutions |�±〉 and a vanishing
signature splitting. Thus also in this case with K ∼ 0 one
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would expect regular I = 1 sequences as exemplified for
bands with the antiparallel coupling of the two protons seen in
Fig. 4. If the two protons are in the same shell and coupled to
K ∼ 0 no such division can be made and one thus expects
regular I = 2 sequences as seen for the lowest band in
Fig. 9.

VI. CONCLUSIONS AND DISCUSSIONS

A particle+rotor model (PRM) has been developed where
several particles are coupled to a rotating core. The core is de-
scribed as a triaxial rotor while the basis space for the particles
are the orbitals of a deformed single-particle potential. The
limit of the number of particles that can be treated explicitly is
determined by the dimensions of the matrices that are set up
and diagonalized. The core parameters are determined from
cranking calculations. Although this is straightforward in the
axial case, it becomes questionable how to extract three mo-
ments of inertia in a consistent way for triaxial nuclei. For this
reason and also because of the large matrix dimensions in the
triaxial case, we have confined ourselves to axial nuclei in this
first application. In principle, it would be as straightforward
to consider quasiparticles rather than particles but the division
between the particle space and the core space would be less
transparent. Therefore, and because we are mainly interested
in high-spin states, pairing is not included in the present
applications.

The formalism has been applied to describe the magnetic
bands in the lead region. It turns out that the core parameters
become very different depending on the core space but the
final results become similar for different divisions of valence
and core spaces. There are, however, important differences
that can be understood mainly from the freedom given to
the particles to tilt away from the cranking direction. In the
magnetic bands in lead nuclei, it is evident that the spin vectors
of the high-K protons start out as pointing along the symmetry
axis and only slowly gets more aligned along the perpendicular
cranking direction. However, the tendency for the spin vectors
of the high-j neutron holes to tilt toward the symmetry axis
can be accounted for only if they are included in the particle
space. Although this tilting appears to have only small effects
on the energies, it is much more important for the transition
probabilities. The final result appears to be a shears effect
where the tilting angle of the total spin vector is relatively
constant in a large spin interval.

The feature of the PRM to treat some particles explicitely
while other particles are only included as building blocks of a
core is clearly somewhat artificial. This is not the case for the
TAC model, which thus has some advantages compared with
the present PRM calculations. However, the fact that the most
important single-particle angular momenta are considered
explicitely and coupled according to the laws of quantum
mechanics in the PRM model is often important or even
crucial. For example, while the TAC model assumes signature
degeneracy, the splitting of the two signatures is calculated in a
consistent way in the PRM model. Thus, it is possible to follow
how the two signatures of some magnetic bands might slowly
split apart when the bands come close to their maximum spin
values, corresponding to a transition from a tilted solution
to a PAC solution. This appears especially important for

calculated bands with only one high-j proton that have not
been considered previously. A transparent understanding of
this splitting and the underlying coupling between different
basis states is obtained by considering the K distribution of
the wave functions.

Another important special case is with both of the high-j
protons in the same high-j orbital. It then turns out that the
magnetic band is not lowest in energy that put doubts on some
of the assignments for observed bands in, e.g., 196Pb. Although
we cannot make any firm new configuration assignments in
199Pb the (to our knowledge) first comparison of calculated
B(E2) values with experiments presented here gives new
insight into the configurations of the bands. The experimental
B(E2) values decrease toward the highest observed spins
as would be expected for a terminating band. However,
our calculations suggest that the usual interpretation with
configurations having two high-j protons are too collective
to terminate at these spins. We also demonstrate that less
collective configurations with only one high-j proton gives
a better agreement with the experimental B(E2) values.
However, to make any firm assignments one would have
to make a more extensive study and consider more data
from several isotopes. More data on transition probabilities
in the high-spin regime where all high-j angular momenta are
essentially aligned would be especially valuable.

In addition to the applications on magnetic bands exempli-
fied above, it should be possible to apply the present many-
particles–plus–rotor formalism to describe other high-spin
phenomena such as the wobbling motion and chiral rotation
or to get a better understanding of the relative properties
of superdeformed bands. The model enables an intuitive
description of the coupling of the particle angular momenta
in different kinds of rotational bands.
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APPENDIX A

The expression for rotated creation operators may be
obtained using Schwinger’s oscillator model of angular mo-
mentum. The derivation below uses results from chapter 3.8
of Ref. [31].

e−ij2πa
†
j�eij2π

= e−ij2π

(
a
†
+
)j+�(

a
†
−
)j−�

√
(j + �)!(j − �)!

eij2π

= [e−ij2πa
†
+eij2π ]j+�[e−ij2πa

†
−eij2π ]j−�

√
(j + �)!(j − �)!

=
[
a
†
+ cos

(
π
2

)+ a
†
− sin

(
π
2

)]j+�[
a
†
− cos

(
π
2

)− a
†
+ sin

(
π
2

)]j−�

√
(j +�)!(j −�)!

=
[
a
†
−
]j+�[ − a

†
+
]j−�

√
(j + �)!(j − �)!

= (−1)j−�a
†
j−�
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This phase factor differs with a sign from the one in [9] since
the rotation is performed in the opposite direction.

APPENDIX B

As an example on how to evaluate matrix elements between
our basis states we take the j 2

3 operator. This operator acting
between two of our basis states may be written〈
�I

MK ′α′
∣∣j 2

3

∣∣�I
MKα

〉 = N ′N
[
δK ′,K〈α′|j 2

3 |α〉 + (−1)I−KδK ′,−K

×〈α′|j 2
3 |̃α〉],

where we have used the relation eij2πe−iI2πj 2
3 eiI2πe−ij2π =

j 2
3 . The total Hamiltonian Hrot can be divided into groups of

operators that fulfill ej2πe−I2πFeI2πe−j2π = F (see Ref. [9]
for details). The j 2

3 operator itself may be expressed as a sum

over one- and two-body operators

j 2
3 =

∑
i,j,k,l

〈i|j3|j 〉a+
i aj 〈k|j3|l〉a+

k al

=
∑
i,j,k,l

〈i|j3|j 〉〈k|j3|l〉a+
i aj a

+
k al

=
∑
i,l

〈i|j 2
3 |l〉a+

i al − 2
∑

i<k,l<j

(〈i|j3|j 〉〈k|j3|l〉

− 〈k|j3|j 〉 〈i|j3|l〉)a+
i a+

k ajal.

This form with a restricted summation is convenient when
calculating matrix elements (for details see [32]). The same
procedure as outlined here can be used for all matrix elements
of Hrot. Reference [12] describes how to evaluate the single-
particle matrix elements when using a basis of stretched
harmonic oscillator wave functions, which is the basis used
in our numerical calculations.
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[27] H. Hübel et al., Z. Phys. 358, 237 (1997).
[28] M. Neffgen et al., Nucl. Phys. A595, 499 (1995).
[29] S. Frauendorf, Nucl. Phys. A677, 115 (2000).
[30] S. Frauendorf and J. Meng, Z. Phys. A 356, 263 (1996).
[31] J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley

Publishing Company, Inc., Reading, Massachusetts, 1994).
[32] A. Bohr and B. R. Mottelson Nuclear Structure Vol. I (W. A.

Benjamin Inc., New York, 1969), Appendix 2A.

044310-14


