
PHYSICAL REVIEW C 74, 044306 (2006)

γ -soft analog of the confined β-soft rotor model

Dennis Bonatsos* and D. Lenis†

Institute of Nuclear Physics, N.C.S.R. Demokritos, GR-15310 Aghia Paraskevi, Attiki, Greece

N. Pietralla‡
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A γ -soft analog of the confined β-soft rotor model is developed by using a γ -independent displaced infinite-
well β potential in the Bohr Hamiltonian, for which exact separation of variables is possible. Level schemes
interpolating between the E(5) critical point symmetry (with R4/2 = E(4+

1 )/E(2+
1 ) = 2.20) and the O(5) γ -soft

rotor (with R4/2 = 2.50) are obtained; these exhibit a crossover of excited 0+ bandheads that lead to agreement
with the general trends of 0+

2 states in this region and is observed experimentally in 128,130Xe.
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I. INTRODUCTION

Critical point symmetries [1,2], related to shape/phase
transitions, have recently attracted considerable attention in
the study of nuclear structure, since they provide parameter-
free (up to overall scale factors) predictions supported by
experimental evidence [3–6]. The E(5) critical point symmetry
[1], in particular, is related to the shape/phase transition
between vibrational [U(5)] and γ -unstable [O(6)] nuclei,
whereas X(5) [2] is related to the transition between vibrational
and axially symmetric prolate [SU(3)] nuclei. A systematic
study of phase transitions in nuclear collective models has
been given in [7–9].

In both the E(5) and X(5) models, exact [in E(5)] or
approximate [in X(5)] separation of the β and γ collective
variables of the Bohr Hamiltonian [10] is achieved, and an
infinite square-well potential in β is used. (Various analytic
solutions of the Bohr Hamiltonian have been recently reviewed
in Ref. [11], and a recently introduced [12–14] computation-
ally tractable version of the Bohr collective model is already
in use [15].) Models interpolating between E(5) [or X(5)] and
U(5) have been obtained by using β2n potentials (with n = 1, 2,
3, 4) in the relevant [E(5) or X(5)] framework [16–18], whereas
an interpolation between X(5) and the rigid rotor limit has
been achieved in the framework of the confined β-soft (CBS)
rotor model [19], by using in the X(5) framework infinite
square-well potentials in β with boundaries βM > βm � 0,
with the case of βm = 0 corresponding to the original X(5)
model. The CBS rotor model showed considerable success in
describing transitional and strongly deformed nuclei in the rare
earths and actinides [20,21].
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In the present work an interpolation between E(5) and the
γ -soft rotor [O(5)] limit is achieved by using in the E(5)
framework γ -independent infinite square-well potentials in
β with boundaries βM > βm � 0. The model contains one free
parameter, rβ = βm/βM ; the case with rβ = 0 corresponds
to the original E(5) model, and rβ → 1 leads to the γ -soft
rotor [O(5)] limit. A special case with the two lowest excited
0+ states being degenerate occurs for rβc

= 0.171. Experi-
mental examples on the E(5) side and on the O(5) side of
rβc

are found to correspond to 130Xe and 128Xe, respectively.
The crossover of 0+ bandheads observed at rβc

is important
in reproducing the experimental trends of 0+

2 bandheads in
the R4/2 = E(4+

1 )/E(2+
1 ) region between 2.20 [E(5)] and 2.50

[O(5)].
In Sec. II the calculation of the energy spectra and B(E2)

transition rates is described; results are shown and compared
to experiment in Sec. III. An overall discussion of the present
results in given in Sec. IV.

II. THE MODEL

We consider the Bohr Hamiltonian [10]

H = − h̄2
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]
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∂
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L′2
k (θi)

4 sin2
(
γ − 2π

3 k
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where β and γ are the usual collective coordinates, L′
k

(k = 1, 2, 3) are the components of angular momentum in the
intrinsic frame, θi (i = 1, 2, 3) are the Euler angles, and B is
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the mass parameter. The potential U (β) depends only on the
collective coordinate β [22].

Using the factorized wave function �(β, γ, θi) =
F (β)	(γ, θi) [1,22] we can separate the Schrödinger equation
corresponding to the Hamiltonian (1) into two parts:

(a) an angular part,

−��	(γ, θi) = τ (τ + 3)	(γ, θi), (4)

where τ is the seniority quantum number and �� is a quadratic
invariant operator of the group SO(5) [22,23] (for a detailed
discussion see Ref. [23]), and

(b) a radial part,

d2F (β)

dβ2
+ 4

β

dF (β)

dβ
+

[
2B

h̄2 (E − U (β)) − τ (τ + 3)

β2

]
×F (β) = 0. (5)

In the radial equation (5) we consider an infinite-well
potential [1,22] confined between boundaries [19] at βm and
βM (0 < βm < βM ):

U (β) =
{

0, βm � β � βM

∞, 0 � β < βm, β > βM.
(6)

By defining k2 = 2BE/h̄2 and substituting F (β) =
β−3/2P (β), Eq. (5) in the interval β ∈ [βm, βM ] takes the form
of a Bessel equation of νth order:

β2P ′′(β) + βP ′(β) + (k2β2 − ν2)P (β) = 0, (7)

where ν = τ + 3/2. The boundary conditions at βm and βM

are

P (βm) = 0, P (βM ) = 0, 0 < βm < βM. (8)

The general solution of Eq. (7) is the cylindrical function

P (β) = aJν(kβ) + bYν(kβ), (9)

where Jν(z) and Yν(z) are the Bessel functions of the first and
second kind, respectively, of order ν = τ + 3/2, and (a, b) are
constants to be determined. The boundary conditions (8) lead
to a homogenous system for (a, b):

aJν(kβM ) + bYν(kβM ) = 0,

aJν(kβm) + bYν(kβm) = 0,

which has nontrivial solutions in (a, b) if its determinant is set
to vanish:

Jν(kβM )Yν(kβm) − Jν(kβm)Yν(kβM ) = 0. (10)

In this way the boundary conditions (8) lead to a discrete
spectrum of the parameter k, the values of which are the
positive roots of Eq. (10). Equation (10) can be written in
the form [19]

Jν(x)Yν(rβx) − Jν(rβx)Yν(x) = 0, (11)

where x = kβM and the parameter rβ denotes the ratio rβ =
βm/βM . Here we consider the case in which the parameter βM

is fixed and βm varies in the range 0 < βm < βM , the ratio rβ

taking values in the interval 0 < rβ < 1.

Let x
(rβ )
ξτ be the ξ th positive root of Eq. (11), and, respec-

tively, k
(rβ )
ξτ = x

(rβ )
ξτ /βM be the ξ th positive root of Eq. (10),

where ν = τ + 3/2. Then the normalized eigenfunctions
P

(rβ )
ξτ (β) can be represented in the form

P
(rβ )
ξτ (β) = ⌈

A
(rβ )
ξτ

⌉−1/2⌈
Jν

(
k

(rβ )
ξτ β

)
Yν

(
k

(rβ )
ξτ βm

)
− Jν

(
k

(rβ )
ξτ βm

)
Yν

(
k

(rβ )
ξτ β

)⌉
, (12)

where βm � β � βM and k
(rβ )
ξτ βm = rβx

(rβ )
ξτ . Then the normal-

ized solutions of Eq. (5) in the interval [βm, βM ] are

F
(rβ )
ξτ (β) = β−3/2P

(rβ )
ξτ (β). (13)

The constants A
(rβ )
ξτ in (12) are obtained from the normalization

condition∫ βM

βm

β4
⌈
F

(rβ )
ξτ (β)

⌉2
dβ =

∫ βM

βm

β
⌈
P

(rβ )
ξτ (β)

⌉2
dβ = 1. (14)

The corresponding energy spectrum is

Eξτ (rβ) = h̄2

2B

[
k

(rβ )
ξτ

]2 = h̄2

2Bβ2
M

[
x

(rβ )
ξτ

]2
. (15)

In the limiting case of βm → 0 (or rβ → 0) the spectrum and
eigenfunctions correspond to the E(5) critical point symmetry
[1].

The factorized wave functions are denoted by

|rβ ; ξτµLM〉 ≡ �
(rβ )
ξτµLM (β, γ, θi) = F

(rβ )
ξτ (β)	τµ

LM (γ, θi),

(16)

where τ is the seniority quantum number, µ =
0, 1, 2, . . . , [τ/3], and for a given value of µ the angular
momentum L takes values L = 2ρ, 2ρ − 2, 2ρ − 3, . . . , ρ +
1, ρ, where ρ = τ − 3µ. The angular part of the wave function
has the form [24]

	
τµ

LM (γ, θi) = N
−1/2
τµL

√
2L + 1

8π2

∑
K

φ
τµ

LK (γ )DL∗
MK (θi), (17)

where NτµL is a normalization constant and the index K

in the sum takes even values in the interval |K| � L. In the
present case we consider only states that are nondegenerate
with respect to the quantum number L in the framework of the
group embedding SO(5) ⊃ SO(3).

The reduced transition probabilities B(E2) for the E2
transitions,

B(E2; αiLi → αf Lf ) = |〈αf Lf ‖T (E2)‖αiLi〉|2
2Li + 1

, (18)

are calculated for the quadrupole operator T (E2) proportional
to the collective variable αm:

T (E2)
m ∝ β

{
D2∗

m0(θi) cosγ + 1√
2

[
D2∗

m2(θi) + D2∗
m−2(θi)

]
sinγ

}
.

(19)

As a result for the E2 transitions one has

B(E2; Lξτµ → L′
ξ ′τ ′µ′) = R2

ξ ′τ ′; ξτ (rβ) G2
τ ′µ′L′; τµL, (20)
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where

Rξ ′τ ′; ξτ (rβ) =
∫ βM

βm

βF
(rβ )
ξ ′τ ′ (β)F

(rβ )
ξτ (β) β4dβ, (21)

and Gτ ′µ′L′; τµL are geometrical factors corresponding to the
embedding SO(5) ⊃ SO(3). The selection rules for the matrix
elements of the quadrupole operator T (E2)

m defined in (19) are
|�τ | = 1 and |�L| � 2. We stress that all wave functions,
energy eigenvalues, and transition matrix elements are exact
analytical solutions of the Bohr Hamiltonian for the class of
potentials considered here.

III. ANALYTICAL RESULTS AND COMPARISON
TO EXPERIMENT

Analytical results for energy levels and B(E2) transition
rates are shown in Fig. 1. The main observation regards the
position of the lowest excited 0+ states. In E(5) [1] and for low
values of rβ < rβc

= 0.171, 0+
2 corresponds to (ξ = 2, τ = 0),
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FIG. 1. Energy levels (normalized to the excitation energy of the
2+

1 state) and B(E2) transition rates [normalized to B(E2; 2+
1 →

0+
1 )] for two different values of the structural parameter rβ = βm/βM

around the 0+
2,3 crossing.
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FIG. 2. Energy of 0+ states (normalized to the energy of the
2+

1 state), labeled as R0/2, vs the ratio R4/2 = E(4+
1 )/E(2+

1 ). The
parameter rβ on each curve starts from zero at the left end, increasing
to the right. The crossover of the (ξ = 2, τ = 0, L = 0) and the (ξ =
1, τ = 3, L = 0) curves occurs at rβc

≈ 0.171263, (R4/2, R0/2)c ≈
(2.27861, 3.77797).

whereas 0+
3 is provided by (ξ = 1, τ = 3). For higher values

of rβ > rβc
= 0.171 the picture is the opposite, with 0+

2
corresponding to (ξ = 1, τ = 3), and 0+

3 given by (ξ = 2, τ =
0). The latter eigenstate is shifted toward infinite energy as
the O(5) limit is approached for rβ → 1. The normalized 0+
bandheads are shown as a function of the R4/2 = E(4+

1 )/E(2+
1 )

ratio in Fig. 2. On each curve the parameter rβ starts from
rβ = 0 on the left, gradually increasing to the right. The
crossover of the (ξ = 2, τ = 0) and the (ξ = 1, τ = 3) curves
occurs at rβc

= 0.171.
The existence of the 0+ state’s crossover is crucial in

keeping the model predictions in agreement with the general
trends shown by the experimental R0/2 = E(0+

2 )/E(2+
1 ) ratio

as a function of the R4/2 = E(4+
1 )/E(2+

1 ) ratio, given in
Ref. [25]. In the region with 2.20 < R4/2 < 2.50, covered by
the present model, the experimental R0/2 values indeed stay
below 5.0, in agreement with what is seen in Fig. 2 for the
(ξ = 1, τ = 3) bandhead.

It is interesting to identify nuclei corresponding to pa-
rameter values near the region rβ = 0.15–0.20, in which the
crossover of the 0+ bandheads occurs. Below rβc

= 0.171
the situation resembles the one in E(5), with 6+

1 , 4+
2 , and 0+

3
states being nearly degenerate, whereas the 0+

2 state lies lower.
Beyond rβc

= 0.171 the near degeneracy applies to the 6+
1 , 4+

2 ,
and 0+

2 states, whereas the 0+
3 state lies higher. This situation

occurs in the neighboring nuclei 130Xe (corresponding to rβ =
0.12) and 128Xe (reproduced by rβ = 0.21), shown in Fig. 3.
(The parameter rβ has been fitted to the experimental R4/2

ratio of each nucleus.) In the latter case, known B(E2) values,
too, agree remarkably well with the theoretical predictions.

Both before and after the crossover, the 0+ bandhead with
(ξ = 1, τ = 3) is connected by a strong E2 transition to the
2+

2 state, whereas the 0+ bandhead with (ξ = 2, τ = 0) decays
less strongly to the 2+

1 level. These interband B(E2) values
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FIG. 3. Comparison of the model predictions for rβ = 0.12 (a) to the experimental data of 130Xe [26] (b), and of the model predictions for
rβ = 0.21 (c) to the experimental data for 128Xe [27] (d).

provide a stringent test to the model. However, their absolute
values are unknown experimentally.

It is nevertheless possible to unambiguously characterize
the predominant nature of the two excited 0+

2,3 states of
128,130Xe by considering their E2 decay branching ratios to
the lowest two 2+

1,2 states. We thus define the double-ratio

Z(0+
3/2) = B(E2; 0+

3 → 2+
2 )/B(E2; 0+

3 → 2+
1 )

B(E2; 0+
2 → 2+

2 )/B(E2; 0+
2 → 2+

1 )
(22)

=
(Eγ (0+

3 →2+
1 )

Eγ (0+
3 →2+

2 )

)5 Iγ (0+
3 →2+

2 )
Iγ (0+

3 →2+
1 )(Eγ (0+

2 →2+
1 )

Eγ (0+
2 →2+

2 )

)5 Iγ (0+
2 →2+

2 )
Iγ (0+

2 →2+
1 )

(23)

for which one expects values >1 for rβ < rβc
and <1 for

rβ > rβc
, respectively. Equation (23) involves γ -ray energies

and intensity ratios. The data [26–28] yield values ofZ(0+
3/2) =

52 ± 30 for 130Xe and Z(0+
3/2) = 0.32 ± 0.17 for 128Xe, as

given in Table I. The experimental values for 130Xe and
128Xe differ by two orders of magnitude. Despite the large

uncertainties that originate in the 50% uncertainty for the
low intensity of the initially forbidden 0+ → 2+

2 low-energy
transition [26–28], the data prove the crossing of the different
0+ configurations with (ξ = 2, τ = 0) and (ξ = 1, τ = 3)
between 130Xe and 128Xe, as predicted by the model from
a fit to the relative 4+

1 excitation energy R4/2.
Having identified the 0+ configuration crossing we can

analyze it quantitatively in a two-state mixing scenario.
These close-lying experimental 0+ states are considered as

TABLE I. Comparison of data [26–28] on 130,128Xe to the model
[O(5)-CBS] and the two-state mixing scenario (see Sec. III).

130Xe O(5)-CBS 128Xe O(5)-CBS
rβ = 0.12 rβ = 0.21

Z(0+
3/2) 52(30) ∞ 0.32(17) 0

α2
2 0.88(3) – 0.43(3) –

B(E2; 0+
1,3 → 2+

2 )

B(E2; 0+
2,0 → 2+

1 )
28(9) 2.8 3.7(1.0) 3.8
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an orthogonal mixture of the crossing model states 0+
2 =

α20+
ξ=2,τ=0 + α30+

ξ=1,τ=3 and 0+
3 = −α30+

2,0 + α20+
1,3 owing to

residual interactions not accounted for by the simple model.
This yields Z(0+

3/2) = (α2/α3)4 owing to the τ -selection rules
for the E2 operator in the unperturbed situation and allows the
mixing coefficients to be determined. The squared amplitudes
α2

2 quantify the 0+ configuration crossing. The contribution of
the 0+

ξ=2,τ=0 model state to the observed 0+
2 state drops from

88(3)% in 130Xe to 43(3)% in 128Xe, as displayed in Table I.
With this information a further test of the model prediction

for E2 transition rates can be performed by assuming only
the validity of the two-state-mixing scenario. The relative
strengths of the unperturbed interband E2 transitions can be
extracted from the experimental E2 branching ratios[

B(E2; 0+
1,3 → 2+

2 )

B(E2; 0+
2,0 → 2+

1 )

]
unperturbed

=
(

α3

α2

)2 [
B(E2; 0+

3 → 2+
2 )

B(E2; 0+
3 → 2+

1 )

]
expt

=

√√√√√
Iγ (0+

2 →2+
2 )

Iγ (0+
2 →2+

1 )

(Eγ (0+
2 →2+

1 )
Eγ (0+

2 →2+
2 )

)5

Iγ (0+
3 →2+

1 )
Iγ (0+

3 →2+
2 )

(Eγ (0+
3 →2+

2 )
Eγ (0+

3 →2+
1 )

)5
. (24)

The right-hand side (rhs) involves E2 intensity ratios in the
perturbed (experimental) situation. The experimental values
(rhs) are compared to the theoretical values for the left-hand
side of Eq. (24) at the bottom of Table I. The data on
128Xe coincide with the model within the uncertainties. The
data on 130Xe also exhibit the predicted dominance of the

B(E2; 0+
1,3 → 2+

2 ) value over the B(E2; 0+
2,0 → 2+

2 ) value but
by an order of magnitude more pronounced than theoretically
expected. This numerical deviation calls for better data on
the weak 0+

2 → 2+
2 672-keV decay intensity with its present

uncertainty of 50% [28].

IV. SUMMARY

A γ -soft analog of the confined β-soft rotor model has
been constructed and exactly solved analytically by using a
γ -independent displaced infinite-well β potential in the Bohr
equation, in which exact separation of variables is possible
in this case. The model obtained contains one free parameter,
the ratio rβ = βm/βM of the positions of the left wall (βm)
and the right wall (βM ) of the potential well, and interpolates
between the E(5) critical point symmetry, possessing R4/2 =
E(4+

1 )/E(2+
1 ) = 2.20 and obtained for rβ = 0, and the γ -soft

rotor O(5), having R4/2 = 2.50 and obtained for rβ → 1.
Owing to the explicit O(5) symmetry the model might be
addressed as the O(5)-confined β-soft rotor model [O(5)-CBS].
A crossover of excited 0+ bandheads as a function of R4/2 is
predicted, which is crucial in keeping the model predictions for
the 0+

2 bandhead in good agreement with experimental system-
atics in this region of R4/2 ratios. This crossover is manifested
in 128,130Xe, as is seen quantitatively from experimental E2
decay intensity ratios. Information on relative and absolute
E2 transitions in 128Xe are in good agreement with the model
predictions when simple configuration mixing is accounted for,
whereas more accurate experimental information on B(E2)′s
in 130Xe is desirable for further significant tests of the model.
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