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Comparison of local, semi-microscopic, and microscopic three-cluster models
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Two different three-body models are compared with a fully antisymmetrized microscopic three-cluster model.
The local model makes use of local effective interactions involving forbidden states among the three particles.
In the semi-microscopic model, nonlocal two-body interactions are derived within the resonating-group method
from the same nucleon-nucleon effective forces as in the microscopic model. In both cases, calculations are
performed in hyperspherical coordinates with the Lagrange-mesh method. The role of forbidden states and their
elimination are discussed. The models are applied to an ααn description of 9Be and an αnn description of 6He.
The local model results are affected by almost forbidden states and may be unrealistic for 9Be. A comparison of
the microscopic and semi-microscopic models shows that the effect of exchanges involving the three clusters is
weak. An overbinding of 9Be cannot be avoided with nucleon-nucleon forces reproducing αn and αα scattering
properties. On the contrary, 6He is underbound under the same conditions. This can probably be attributed to a
lack of three-nucleon forces.
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I. INTRODUCTION

Some nuclei present a multicluster structure, i.e., nucleons
appear to gather into well-bound entities called clusters, the
binding between those clusters being weaker than their internal
cohesion [1–3]. The best cluster candidate is the α cluster
composed of two protons and two neutrons, because of the
large binding energy of the α particle.

Although the existence of a cluster structure for a number
of light nuclei conforts physical intuition, the nature of the
clusters and of their interaction is undoutbly much more
complicated than it may seem at first sight. Because of the
indiscernibility of nucleons, it is not possible to say which
nucleons belong to a cluster. The precise contents of a cluster
is thus not well defined inside a nucleus. Accordingly, the
interaction between clusters is also difficult to define. It may
be very complicated and, in particular, nonlocal.

The simple point-cluster model with local forces (hereafter
denoted as local model) has been applied to some light nuclei
[4–8]. Most early calculations concerned the 3α system and
were based on shallow αα potentials. As they did not agree well
with experiment, it was argued that shallow potentials do not
simulate the nonlocality of the cluster-cluster interaction. The
effect of nonlocality can be simulated with deep potentials pos-
sessing unphysical “forbidden” states. These forbidden states
can be ignored in two-body systems but must be eliminated
in multicluster models [6,9]. Studies of the 3α system show a
strong sensitivity to the technique of elimination [6,10,11] that
has only recently received an explanation [12,13]: the presence
or absence of some almost forbidden states strongly affects the
energy.
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In parallel to that model, the microscopic cluster model
where all nucleons are taken into account and Pauli antisym-
metrization is treated exactly has met considerable success
for the spectroscopy of light nuclei as well as for reactions
between them [14–17]. Three-cluster microscopic models
have been used for some time but their treatment has recently
been improved by combining them with the hyperspherical
formalism [18]. The 12C nucleus is well described by a
3α microscopic model [14,15] but its results are not easily
comparable with those of the local model [11].

An intermediate model has been developed by Fujiwara and
coworkers for three clusters that in this article is termed “semi-
microscopic” model [19,20]. It resembles a point-cluster
model but for the use of microscopically founded cluster-
cluster interactions derived from a microscopic two-cluster
model known as the resonating-group method (RGM) [1].
Such interactions are nonlocal. Hence two-cluster aspects
of antisymmetrization are simulated in this model, i.e., all
nucleon exchanges between each pair of clusters, but triple
exchanges are ignored, i.e., nucleon exchanges involving all
three clusters. In the approach of Refs. [19,20], calculations
are performed in momentum space with the Faddeev equation,
where the nonlocality of the forces is handled easily. The
Coulomb forces require a special treatment.

This model is more realistic than the local model and
simpler than the microscopic model. We think that its main
merit is to provide a more physical understanding of the sim-
ilarities and differences between structureless-cluster models
and microscopic cluster models. The main goal of the present
work is to perform such a comparison.

During the previous years, in addition to the microscopic
three-cluster model, our group has developed techniques for
accurately solving three-body Schrödinger equations, first
with local forces [8] and then with nonlocal forces [21].
More precisely, we have developed a technique for treating
three-cluster systems with nonlocal forces in configuration
space [21]. The wave functions and energies are calculated
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with the Lagange-mesh technique, an approximate variational
calculation strongly simplified by the use of a Gaussian
quadrature [22,23]. This approach is (relatively) simple, fast,
and accurate. The treatment of Coulomb forces between
clusters raises no difficulties. The local case has already been
extended to studying the continuum [24].

In the present work, we perform a comparison of the local,
semi-microscopic, and microscopic cluster models to analyze
their properties, determine their limitations and, mainly, to
have a better understanding of their validity for nuclei with
such a structure. The models are applied to an ααn description
of 9Be and an αnn description of 6He.

In Sec. II, the microscopic two-cluster model is summarized
and the nonlocal interaction between the clusters is defined.
In Sec. III, a short presentation of the different three-cluster
models is done. The elimination of forbidden states is
considered in Sec. IV. Results are presented and discussed
in Sec. V. Section VI is devoted to concluding remarks.

II. TWO-CLUSTER RESONATING GROUP METHOD

A. RGM equation

The microscopic Hamiltonian hA of a nucleus involving A

nucleons can be written as

hA =
A∑

i=1

ti +
A∑

i>j=1

vij , (1)

where ti is the kinetic-energy operator of nucleon i and vij is
an effective interaction between nucleons i and j, including
spin-orbit and Coulomb forces. In the RGM, one searches for
approximate solutions of the Schrödinger equation

hAψ = EAψ, (2)

where EA is the total energy of the nucleus.
Let us consider in this section a system of A nucleons

separated into two clusters containing A1 and A2 nucleons.
In the RGM [1,2], this system is approximately described for
each partial wave by a microscopic wave function defined as

ψJMπ
lS = A[[φ1 ⊗ φ2]S ⊗ Yl(�)]JMr−1gJ

lS(r), (3)

where A is the nucleon antisymmetrization projector; r =
(r,�) is the coordinate between the cluster centers of mass;
and l, S, J , and π are, respectively, the relative-motion orbital
momentum, the total spin, the total angular momentum, and the
parity of the nucleus. The center-of-mass motion is described
by a plane wave that is not displayed here. The wave function
gJ

lS(r) of the relative motion of the clusters is the only unknown
function to be determined in Eq. (3). In the RGM, one indeed
assumes that the internal wave functions φi (i = 1, 2) are
approximated in the translation-invariant harmonic-oscillator
shell model as

φi = exp


− 1

2b2

Ai∑
j=1

(
r (i)
j − Ri

)2χi, (4)

where b is a common oscillator parameter for both clusters,
Ai is the number of nucleons that make up cluster i, r (i)

j is

the coordinate of the j th nucleon of cluster i, and Ri is
the coordinate of its center of mass. Spinor χi involving the
spin-isospin parts of the nucleon wave functions ensures the
antisymmetry of φi . The internal energies of the clusters are
approximated by the variational expressions

Ei = 〈φi |hAi
|φi〉. (5)

To simplify the presentation, we drop the spins in the rest of
this section.

Using the microscopic wave function (3) as an approximate
solution of the Schrödinger equation (2), the RGM leads to a
nonlocal Schrödinger equation for the relative motion [1],

− h̄2

2µ

[
d2

dr2
− l(l + 1)

r2

]
+ VD(r)gl(r)

+
∫ ∞

0
kl(ε, r, r

′)gl(r
′) dr ′ = εgl(r), (6)

where µ is the reduced mass of the two clusters and

ε = EA − E1 − E2 (7)

is the energy of the relative motion between the clusters.
This equation shows that an effective nonlocal potential acts
between the clusters. Its local part VD is usually called the
direct potential. The nonlocal part of the interaction contains
for each partial wave a kernel kl(ε, r, r ′) that depends on the
relative energy ε of the system. This property is a consequence
of exchanges of nucleons between the clusters, which arise
from the antisymmetrization operator A. The dependence of
kl(ε, r, r ′) on ε is linear,

kl(ε, r, r
′) = kHl(r, r

′) + ε kNl(r, r
′), (8)

where kHl and kNl are the Hamiltonian and norm kernels,
respectively. Explicit expressions of kernels are displayed in
Appendix A for the α + n and α + α systems. Spin effects can
be observed in the α + n case.

B. Effective interaction between clusters

The RGM equation can be interpreted as defining an
effective interaction V between two clusters according to the
relative-motion equation

(T + V )� = ε�, (9)

where T is the relative kinetic energy of the clusters. This
equation reads more explicitly[
− h̄2

2µ
	 + VD(r)

]
�(r) +

∫
K(ε, r, r ′)�(r ′)d r ′ = ε�(r),

(10)

where the nonlocal kernel is defined by

K(ε, r, r ′) = (rr ′)−1
∑
lm

Ym∗
l (�)Ym

l (�′)kl(ε, r, r
′). (11)

The interaction V between the clusters thus contains a local
part VD and a nonlocal part with kernel K . The nonlocal term
always depends on angular momentum. The local term may
(αn) or may not (αα) depend on it (see Appendix A).
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C. Forbidden states

For a given partial wave, by moving the part of kl

proportional to ε to the right-hand side, the Schrödinger
equation (6) can be rewritten formally as

Hlgl = εNlgl, (12)

where Hl and Nl are operators that are independent of ε.
When the microscopic wave functions (3) exactly vanish

A
[
φ1φ2Y

m
l (�)r−1gFS

l (r)
] = 0, (13)

for nonvanishing functions gFS
l , these functions gFS

l are clearly
unphysical and are known as Pauli forbidden states of the
relative motion of the two clusters.

Forbidden states correspond to zero eigenvalues of opera-
tors Hl and Nl ,

Hlg
FS
l = 0, (14)

Nlg
FS
l = 0. (15)

The eigenfunctions gFS
l satisfy Eqs. (12) and (6) for any value

of ε.

III. THREE-BODY MODELS

A. Local three-body models

In the local model, the nucleus is considered to be composed
of three structureless particles or clusters interacting through
local two-body interactions. These phenomenological inter-
actions are usually derived from scattering properties of the
physical nuclei corresponding to the interacting clusters [8] or
inspired from a nuclear model [25]. In other words, the internal
structures of the clusters and the interaction between each
pair of clusters is assumed to be unaffected by the presence
of a third cluster. The forces may support some additional
unphysical states to simulate effects of the Pauli principle
between nucleons. Although we call it local, the model may
contain some amount of nonlocality: (i) interactions may
depend on the angular momentum and (ii) the elimination
of forbidden states may involve nonlocal projection operators.

Let us distribute the A nucleons of a nucleus into three
clusters with mass numbers Ai such that A1 + A2 + A3 = A.
Assuming two-body forces only, the Schrödinger equation of
the system can be written as

 3∑
k=1

Tk +
3∑

i>j=1

Vij


�JMπ = E�JMπ, (16)

where Tk is the kinetic energy of cluster k, Vij is the potential
between clusters i and j , and E is the total energy of the
cluster relative motions. The wave function �JMπ depends on
two internal coordinates of the system as well as on the total
angular momentum J , its projection M , and the parity π of
the three-body relative motion.

As in our previous works [8,21], we make use of
hyperspherical coordinates. The wave function is expanded

in hyperspherical harmonics as

�JMπ (ρ,�5) = ρ−5/2
∑
γK

χJπ
γK (ρ)YJM

γK (�5), (17)

where ρ is the hyperradius, �5 represents the five angular
variables, and YJM

γK (�5) are hyperspherical harmonics. Index
K is the hypermomentum and index γ stands for different
orbital momenta and spins. See Ref. [8] and references therein
for details.

We apply the Lagrange-mesh technique [22,23] to solve Eq.
(16). In this approach, a set of N functions f̂i(u) is associated
with a set of N mesh points ui in such a way that each Lagrange
function f̂i vanishes at all mesh points but ui . The hat in f̂i

indicates that the functions are properly regularized [8,23].
The mesh points correspond to the zeros of a Gauss-Laguerre
quadrature. The hyperradial partial wave functions χJπ

γK are
expanded over the set of Lagrange functions as [8]

χJπ
γK (ρ) = h−1/2

N∑
i=1

cJπ
γKi f̂i(ρ/h), (18)

where h is a scaling factor aimed at adapting the mesh
to the physical extension of the system and the cJπ

γKi are
variational coefficients. An important simplification occurs in
the calculation because of the use of the Gauss quadrature
associated with the mesh. The variational equations take the
form of mesh equations without loss of accuracy [8,23].

B. Semi-microcopic three-body models

The semi-microscopic model is very similar to the local
model except that it makes use of two-body interactions
derived from the RGM rather than from phenomenological
interactions [19,20]. The nonlocal effective potential between
a pair of clusters is defined from the two-cluster RGM
equation (9). We use these potentials in three-body systems
described with the same Eq. (16) as in the local model. In that
case, expansions (17) and (18) remain valid. The only change
is that the potentials Vij become nonlocal,

Vij�
JMπ = VDij (r ij )�JMπ +

∫
d r ′

ijKij (ε, r ij , r ′
ij )�JMπ,

(19)

where r ij = r i − rj is the relative coordinate between clusters
i and j . We then solve the equation with the Lagrange-
mesh technique, which we have already extended to nonlocal
interactions [21].

RGM potentials are more physical because they are directly
derived from nucleon-nucleon interactions and verify the Pauli
antisymmetrization between a pair of clusters. However, they
depend on angular momentum and on energy. Each of these
potentials depends on a parameter ε that corresponds to the
energy of the relative motion of the two interacting clusters.
Because these energies are not fixed in a three-body system,
they appear here as parameters. This is a drawback of this
model, because we have to choose their values and there is no
unique way of making this choice. A possibility consists in
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using an average value according to a prescription of Fujiwara
et al. [19]. It is described and discussed in Sec. V A.

Other potentials can be defined for the semi-microscopic
model but we do not consider them here as they require more
difficult calculations. The two-body RGM equation (12) can
be rewritten as

N 1/2
l (T + V̂ − ε)N 1/2

l gl = 0. (20)

This expression is similar to the local Eq. (9) if N 1/2
l gl is taken

as wave function [2,25–27]. It defines an effective potential V̂

that has the advantage over the previous one that it does not
depend on energy and does not have the above-mentioned
drawback. The construction of this potential is formally well
known but very difficult in practice. The square root of Nl

must be calculated and its allowed part must be inverted.
A semi-microscopic three-body model based on this ap-

proach has been studied by Schmid [26] and the role of
three-cluster exchanges has been approximately evaluated
[28]. A general theoretical account is given in Ref. [27]. A full
numerical study of this model would also be very interesting
and should be attempted in the future.

C. Microscopic three-cluster models

Microscopic models are derived from basic principles of
quantum mechanics, such as the treatment of all nucleons
with exact antisymmetrization of the wave functions. The
Hamiltonian of an A-nucleon system is given by Eq. (1)
with some effective nucleon-nucleon force. Several versions
of three-cluster microscopic models exist, differing by the
treatment of the relative motion between the clusters [15–17].
Here we consider a recent version based on hyperspherical
coordinates [18].

In the hyperspherical formalism, the total microscopic wave
function is a direct extension of Eq. (17). It is defined by

�JMπ =
∑
γK

Aρ−5/2χJπ
γK (ρ)YJM

γK (�5)

× [φ1 ⊗ [φ2 ⊗ φ3]S23 ]SMS , (21)

where φ1, φ2, φ3 are the internal wave functions of the three
clusters as described in Sec. II A. These internal functions
depend on the internal coordinates of the clusters. An important
difference from the models of Secs. III A and III B is that
the hyperradius ρ and hyperangles �5 are now defined as a
function of the center-of-mass coordinates of the clusters and
are thus functions of the A nucleon coordinates. In the local
and semi-microscopic models, they depend only on the three
cluster coordinates.

In a microscopic model, calculations are thus very different
and we do not describe them here. The hyperradial wave
functions χJπ

γK (ρ) are expanded in terms of shifted Gaussian
functions, depending on a generator coordinate R. This makes
the basis functions equivalent to projected Slater determinants.
The matrix elements are computed from the numerical calcu-
lation of seven-dimension integrals (see Ref. [18] for details).

IV. REMOVAL OF PAULI FORBIDDEN STATES

A. Motivation

In the local and semi-microscopic models, forbidden states
may appear in the two-cluster relative motion. In the local
model, the notion of forbidden states corresponds to bound
states of the two-cluster system at unphysically low energies.
They occur thus for deep potentials selected to simulate the
correct node structure of the physical bound states located at
energies consistent with experiment. In the semi-microscopic
model, as explained in Sec. II C, forbidden states are eigen-
functions with zero eigenvalue of the norm operator. They are
not related with some energy.

Forbidden states can often just be ignored in two-cluster
systems. This is not true for three-body systems where two-
body interactions display forbidden states. They affect in an
unphysical way the energies of the system. Forbidden states
also exist in the three-cluster microscopic model but they do
not raise problems in a fully antisymmetrized treatment.

In the local and semi-microscopic models, the effect of
forbidden states must be eliminated. One imposes that the
three-body wave function does not contain two-body forbidden
states. For that purpose, two approaches are used that we now
summarize.

B. Pseudopotential method

In the pseudopotential method [9], an operator P is defined
as the sum of projectors on the forbidden states,

P =
3∑

i>j=1

Nij∑
n=1

∣∣gFS
n,ij

〉〈
gFS

n,ij

∣∣, (22)

where Nij is the number of forbidden states for the relative
motion between clusters i and j , and |gFS

n,ij 〉 are those forbidden
states. Notice that P is not a projector although it is a sum of
two-body projectors [6].

Different models lead to different types of forbidden states.
In the RGM approach, the two-body forbidden states are
described by harmonic-oscillator wave functions with a value
b/

√
µij of the oscillator parameter. In the local approach, two

options can be considered. (i) The forbidden states can be
those of the RGM [12,19,20]. (ii) They can also be “potential”
forbidden states obtained by solving the local two-body
equation with the considered potential [10,11]. In the local
case, we consider both approaches. In the semi-microscopic
model, only type (i) exists.

The method suggested by Kukulin et al. [9] consists in
adding a pseudopotential to the three-body Hamiltonian H ,
i.e., the operator P multiplied by a large coefficient � [9].
Indeed, in a variational calculation of the expectation value

EJπ = 〈�JMπ |H + �P |�JMπ 〉, � → ∞, (23)

the large coefficient � leads to an elimination of the forbidden
states.
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C. Elimination method

Another procedure can be developed by considering the
eigenvalues µJπ

λ and eigenvectors �JMπ
λ of P ,

P�JMπ
λ = µJπ

λ �JMπ
λ . (24)

The eigenvalues are positive. Eliminating the two-body for-
bidden states is equivalent to using a subset of �JMπ

λ defined
by

µJπ
λ = 0. (25)

In practice, because the eigenvalues of Eq. (24) are obtained
by using a finite basis, they are known approximately and
Eq. (25) is replaced by

µJπ
λ � µmax, (26)

where µmax is close to zero.
Both methods of elimination are equivalent at the limit

� → ∞ because the eigenvalues µJπ
λ are positive. They

should give almost identical results in practical calculations
if �〈P 〉 is negligible, as discussed below.

D. Comparisons within the local model

The conditions of the calculations will be detailed in
Sec. V A. The present discussion is performed for the
ααn model of 9Be. The αα interaction [25] contains two
forbidden states for l = 0 and one forbidden state for l = 2.
The αn potential [29] contains one forbidden state for l = 0.

As explained above, we perform two types of comparison,
i.e., between the projection and elimination techniques on the
one hand and by using two types of two-body forbidden states
on the other hand. The forbidden states are either consistent
with the potential or taken as oscillator functions with some
oscillator parameter b as in the RGM.

In Fig 1(a), we consider the 9Be ground-state energy as
a function of � (for Kmax = 17, see Sec. V A). Let us first
discuss the pseudopotential method with P pot., i.e., with the

exact two-body forbidden states of the corresponding potential
(upper curve). The dotted line represents the energy after
subtraction of �〈P 〉. A plateau is reached for � � 106 MeV
but at a positive energy: the ground state is unbound with
this pseudopotential. At smaller � values, the energies remain
negative. This result contradicts the conclusion of Voronchev
et al. [7], who find E = −2.86 MeV (we have checked that the
difference of the αn potentials has virtually no effect). Most
likely Voronchev et al. used a � value close to 1000 MeV.

In a second step, we use the harmonic oscillator functions
as two-body forbidden states (with b = 1.36 and 1.40 fm). In
that case the plateau corresponds to a bound ground state, with
some sensitivity with respect to b: about 0.1 MeV for a very
weak variation of b. The oscillator length b is a free parameter:
it can be derived from the charge radius or from the variational
principle for some potential. As there is no unique criterion
to define the b value that should be used for the projection
operator, this type of forbidden state may provide energies
with an additional uncertainty.

In the elimination method, we first diagonalize the projec-
tion operator and use a limited basis (up to µJπ

λ = µmax) to
determine the 9Be energy. The resulting ground-state energies
are plotted in Fig. 1(b). As expected the converged values (i.e.,
µmax < 10−4) are identical to the converged values of Fig. 1(a).
For the projector on the potential eigenstates, two regimes are
clearly identified: at E = +1.25 MeV and at E = −3.1 MeV.
The difference is due to a single eigenvalue 5.0 × 10−4 of the
projection operator corresponding to an almost forbidden state
[12]. According to whether this eigenvalue is included or not,
two significantly different 9Be energies can be obtained. The
projection on harmonic-oscillator eigenstates also provides the
same energies as the pseudopotential method.

The same techniques are applied in Fig. 2 to the J = 5/2−
first excited state. The experimental energy is 0.86 MeV. With
the potential eigenstates, the theoretical 5/2− state is slightly
bound, i.e., it is unrealistically below the 3/2− state. The use
of harmonic-oscillator functions in the projection operator
also leads to a significant overbinding but yields reasonable
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-2

0

2

Λ (MeV)

E
 (

M
eV

)

b=1.40

b=1.36

pot.

102 108106104

-4

-2

0

2

µmax

b=1.36

b=1.40

pot.

(b)

10-8 10-210-410-6

J=3/2-

(a)

FIG. 1. Energy of the 3/2− ground state in the local model calculated with the pseudopotential (a) and elimination (b) techniques. In each
case, three operators are used: P pot involving exact bound states of the two-body potentials, P b=1.36 and P b=1.40 involving harmonic-oscillator
eigenstates with parameter b/

√
µij (in fm). In (a), the full lines correspond to 〈H + �P 〉 and the dotted lines to 〈H 〉.
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FIG. 2. See caption of Fig. 1 for the 5/2− excited state.

9Be(5/2−) excitation energies: 2.58 MeV for b = 1.36 fm and
2.61 MeV for b = 1.40 fm.

This type of result can be related to the apparent instability
observed by Tursunov [10] for the 12C ground state with
P pot. Fitting the exact αα forbidden states by a combination
of Gaussian functions, Tursunov finds 12C energies that are
very sensitive to the size of the basis (see also Ref. [11]).
As explained in Refs. [12,13], this instability is related to
the presence or absence of two almost forbidden states with
small nonvanishing eigenvalues µJπ

λ . The same effect is thus
observed for the 9Be case in Fig. 1.

E. Tests of semi-microscopic model calculations

Three-body calculations performed with the Faddeev
method and using αα RGM interactions are available for the
9
�Be hypernucleus and the 12C nucleus in Ref. [20]. We carry
out calculations under exactly the same conditions to test our
results and in particular the validity of the forbidden-state
removal.

The hypernucleus 9
�Be is modeled as an αα� system

with a nonlocal α� interaction whose expression in space
coordinates can be found in Ref. [21]. The mass numbers
are Aα = 4 and A� = 1.18826 in units of the nucleon
mass mN with h̄2/2mN = 20.7355 MeV fm2. The exchange
parameter in the Minnesota force [30] is u = 0.94687 in the
αα interaction (see Sec. V A) and the α clusters correspond
to 1/2b2 = 0.257 fm−2. For Kmax = 26, the obtained ground-
state energy E = −6.838 MeV and self-consistent value of
parameter εαα = 1.180 MeV (see below) agree within 1 keV
with Ref. [20]. We also perform a calculation of the 2+
excited state for Kmax = 20 and obtain E = −3.92 MeV and
εαα = 4.02 MeV also in excellent agreement with Ref. [20].

The 12C nucleus is described as a system of three
α clusters interacting with RGM nonlocal forces also under
the same conditions as in Ref. [20] except that we treat
the Coulomb interaction without any cutoff approximation.
For Kmax = 24, we obtain the values E = −9.599 MeV and

εαα = 13.480 MeV. The agreement with Ref. [20] is of about
5 keV on the 12C energy.

V. COMPARISON OF MODELS FOR 9Be AND 6He

A. αα and αn RGM potentials

The αα and αn RGM potentials can be found in
Appendix A, where they are adapted from Refs. [31,32]. The
presentation differs because the exchange kernel depends here
on the relative energy ε rather than on the total energy EA.

The Minnesota nucleon-nucleon interaction [30] is
employed both in the three-cluster microscopic model and
in the derivation of the αn and αα RGM potentials. Integer
masses in units of the nucleon mass mN are used in all cases.
The value of mN is fixed by h̄2/2mN = 20.736 MeV fm2. The
internal wave functions (4) of the α clusters are chosen with a
parameter b = 1.36 fm.

We take the value u = 0.9474 for the exchange parameter
to get a good description of the α + α phase shifts [33] (see
Fig. 4 below). The RGM phase shifts are calculated with
the Lagrange-mesh technique [34]. The αn RGM potential,
including a spin-orbit term, is given in Appendix A as adapted
from Ref. [32]. For the spin-orbit contribution, we define
ν = 1/

√
λ and S0 = Vλν

5 [35]. In this way, we can choose
ν = 0 which has the nice property that the spin-orbit term
becomes purely local in the RGM potential. With the u value
selected for α + α, the choice S0 = 37 MeV fm5 reproduces
the α + n phase shifts of Ref. [36] (see Fig. 3 below).

The αα RGM potential generates two forbidden states for
l = 0 and one forbidden state for l = 2. In the case of the
αn RGM potential, there is one forbidden state, for l = 0.

Although an RGM potential is an effective interaction
deduced from a microscopic model describing correctly the
two-cluster system, it depends on the two-body energy ε

that is not a constant of the motion in three-body systems.
The values of ε must be fixed for each pair of clusters and
become parameters. As suggested by Fujiwara et al. [19,20],
a plausible prescription is to set these parameters equal to the
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FIG. 3. α + n elastic phase shifts: RGM results (full lines) and
nonlocal results with εαn fixed to its self-consistent value 6.28 MeV
for 9Be (dash-dotted lines) and the value 1.5 MeV reproducing the
p3/2 and p1/2 resonances (dotted lines). Dots represent the phase
shift analysis of Ref. [36].

mean energies of the two-body subsystems,

εij = 〈�JMπ |Tk + Vij |�JMπ 〉, (27)

where εij is the parameter corresponding to Vij and Tk is the
kinetic energy of the relative motion between i and j (ijk being
a circular permutation of the cluster indices 123). This leads
to a self-consistent resolution of Eqs. (16) and (27). However,
we show below that this choice of εij is questionable and that
another prescription is more appropriate in the present cases.

In addition, let us specify some technical parameters of the
three-body model [8]. The sums over K in expansions (17) and
(21) are truncated at some value Kmax. The hyperradial mesh
is described with N = 30 mesh points and a scale parameter
h = 0.3 fm for the ρ coordinate in Eq. (18). The nonlocal
terms are calculated with N2 = 30 mesh points and a scale
parameter h2 = 0.08 fm for the x Jacobi coordinate. Integrals
over the y Jacobi coordinate are calculated with 800 points
separated by a constant step 0.06 fm [see Eq. (B2)].

B. 9Be nucleus as an ααn system

The 9Be nucleus is considered as a system of two
α particles and a neutron. We study its 3/2− ground state and
5/2− excited state. We compare calculations within the local,
semi-microscopic, and microscopic three-cluster models. The
experimental values are −1.57 MeV for the ground-state
energy with respect to the ααn threshold and 2.43 MeV for
the 5/2− excitation energy [37].

We restrict the local model to its variant with oscillator
forbidden states because the other variant leads to an unbound
system for the experimental ground state and a bound system
for the 5/2− excited state. We focus on the oscillator parameter
b = 1.36 fm, which reproduces the charge radius of the
α particle. With the potentials of Refs. [25,29], the 3/2−
ground state of the 9Be nucleus is overbound by about
1.5 MeV (see Fig. 1). The excitation energy of the 5/2− state is
close to experiment. In spite of the good quality of the effective
forces for elastic scattering, this model fails to provide a good
description of 9Be.

TABLE I. Convergence of the 3/2− and 5/2− energies and of
their difference 	E (in MeV) of the ααn system with respect to
Kmax within the semi-microscopic and microscopic models. The
semi-microscopic 3/2− energies are obtained with the self-consistent
values εαα = 3.61 and εαn = 6.28 MeV and the 5/2− energies
are obtained with the self-consistent values εαα = 5.57 and εαn =
6.39 MeV [Eq. (27), see text].

Kmax Semi-Microscopic Microscopic

3/2− 5/2− 	E 3/2− 5/2− 	E

5 −1.64 0.87 2.50 −1.27 1.51 2.28
7 −2.39 0.17 2.55 −1.89 0.57 2.46
9 −3.41 −0.84 2.57 −2.23 0.22 2.46

11 −3.68 −1.11 2.57 −2.49 0.02 2.51
13 −3.79 −1.23 2.56 −2.55 −0.04 2.52
15 −3.83 −1.29 2.55 −2.60 −0.08 2.52
17 −3.85 −1.30 2.55 −2.61 −0.09 2.52
19 −3.86

In fact the local model version that is the closest approxima-
tion to the semi-microscopic and microscopic models involves
RGM direct potentials only, as defined in Eqs. (A3), (A4),
and (A14). In this case the consistent forbidden states are
obviously the harmonic-oscillator states. However, this model
does not lead to a bound 9Be system. The direct potentials,
which are equivalent to double-folding potentials calculated
with densities corresponding to Eq. (4), are less deep than the
phenomenological potentials discussed above. The nonlocality
of the interaction plays thus an essential role in binding the
system within the RGM.

In the semi-microscopic model, also with b = 1.36 fm,
the forbidden states are the same as in the local-model
case just discussed. We start with prescription (27) for the
parameters εαα and εαn of the αα and αn RGM interactions.
The convergence of the energies as a function of Kmax is
presented in Table I. The values of the parameters εαα and
εαn are kept fixed in columns 2 and 3. They are consistent
with the most accurate calculation (highest Kmax). A good
convergence is obtained for Kmax = 17. The expectation value
of the sum of nonlocal terms is as large as −7.80 MeV. This
confirms that binding is not reached if nonlocality is neglected.
Here also the ground state is overbound, by more than 2 MeV.
However, the order of the 3/2− and 5/2− states is correct
and the excitation energy is close to the experimental value
2.43 MeV.

To determine the reason of this overbinding, let us make
a comparison with the microscopic model. The calculation is
also performed with b = 1.36 fm and the same parameters
for the Minnesota interaction. In the microscopic calculation,
however, the αα orbital angular momentum is limited to values
lαα � 4 [18]. If we apply the same restriction to the orbital
angular momentum within the semi-microscopic model, the
energy of the ground state becomes −3.83 MeV instead of
−3.86 MeV for Kmax = 19. The restriction on lαα plays thus
most probably a marginal role in the microscopic model.

The microscopic model also overestimates the binding of
the α clusters and neutron but the overestimation is reduced
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to about 1 MeV (E = −2.61 MeV, see Table I). Despite these
differences, both models give the same excitation energy.

The larger overbinding in the semi-microscopic model
leads us to reconsider the role of prescription (27). The
αn interaction can be analyzed by looking at Fig. 3 which
shows α + n elastic phase shifts. The curves εαn = ε cor-
respond to the exact phase shifts within the RGM. They
reproduce fairly well the phase-shift analysis of Ref. [36]. The
other curves are obtained from the RGM potential with the
energy ε replaced by a constant parameter εαn = 6.28 MeV in
the nonlocal kernel. They display the properties of the effective
αn interaction that is actually used in the three-body system.
Such an approximation is exact at the relative energy ε = εαn

and thus most accurate around that energy. Within this fixed
εαn approximation, the s-wave phase shift is good. However,
the p-wave phase shifts and especially the p3/2 resonance are
not well described with the self-consistent value of εαn: the
energy of the resonance is shifted down by about 0.8 MeV. The
stronger overbinding of 9Be in the semi-microscopic model is
most probably related to this shift of the αn resonance. Rather
than using prescription (27), it may be more efficient to use
an εαn value reproducing the p-wave phase shifts as well as
possible, such as εαn = 1.5 MeV.

The situation is more satisfactory for the αα RGM inter-
action. Figure 4 presents the l = 0 to 4 phase shifts for the
α + α elastic scattering. The effective αα interaction in the
three-body 9Be system corresponds to εαα = 3.61 MeV. This
value gives results rather close to the phase-shift analysis [33],
except above an energy of 9 MeV for the l = 4 wave. It also
affects the l = 0 resonance that is shifted to 0.5 MeV. The
agreement is quite good around the l = 2 resonance. Other
values of εαα such as 2 or 6 MeV do not provide better results.

The self-consistent prescription (27), i.e., taking εαα and
εαn equal to the expectation value of the two-body energies,
appears to be not well suited for the case of the 9Be nucleus.
Let us thus analyze the dependence of the ααn ground-state
energy on εαα and εαn. As shown in Fig. 5, this dependence is
essentially linear with respect to both parameters εαα and εαn.

FIG. 4. α + α elastic phase shifts: RGM results (full lines) and
nonlocal results with εαα fixed to its self-consistent value 3.61 MeV
for 9Be (dash-dotted lines) and two other values (dashed and dotted
lines). Dots represent the phase shift analysis of Ref. [33].

FIG. 5. Dependence on εαα and εαn of the ground-state energy of
9Be in the semi-microscopic model.

The curves in Fig. 5 can be fitted by

E ≈ −2.64 + 0.16 εαα − 0.28 εαn (28)

in MeV. Some α + α and α + n phase shifts within the
range of variation of the parameters are presented in Figs. 3
and 4. If one adopts the values of εαα and εαn that give
closer descriptions of the scattering experiments especially
near the α + n p3/2 resonance, one obtains results similar to
the energy −2.57 MeV of the microscopic three-cluster model.
For example, with εαα = 3.61 MeV and εαn = 1.5 MeV,
the semi-microscopic model gives the energy E =
−2.48 MeV. This means that three-body exchange effects
have little importance in the microscopic calculation and
that the semi-microscopic model reproduces its main physical
properties.

Figure 5 suggests sets of εαα and εαn reproducing the
experimental energy of 9Be but this procedure would not have
much meaning. It leads to unrealistic choices of εαα and εαn

for the phase shifts.
The dependence of the 5/2− energy on the parameters εαα

and εαn can be parametrized as

E ≈ −0.42 + 0.16 εαα − 0.28 εαn (29)

in MeV for Kmax = 17. Comparing with Eq. (28), one sees
that the dependence is the same as for the ground state. Thus,
the gap betwen the 3/2− and 5/2− levels for a given pair
(εαα, εαn) does not depend much on the values of this pair.
This constant gap is about 2.22 MeV, i.e., somewhat smaller
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than in the microscopic model. Notice that the gap is better in
Table I because the parameters εαn and εαα are different for
each state.

The semi-microscopic and microscopic models essentially
agree. They reproduce rather well the experimental excitation
energy but overbind 9Be. A common physical effect is missing.

C. 6He nucleus as an αnn system

The 6He nucleus has only one 0+ bound state at
−0.975 MeV with respect to the αnn threshold. It is described
here as an α core and two halo neutrons. The local model for
6He is discussed in Ref. [8] with the αn interaction of Ref. [29]
and the nn Minnesota interaction (see Ref. [38] for other
choices). The result obtained by projecting out the exact eigen-
states of the αn potential [24] overestimates the 6He energy
(−0.42 MeV). The projection operator based on harmonic
oscillator forbidden states does not lead here to significantly
different results: −0.39 MeV for b = 1.36 fm and −0.40 MeV
for b = 1.40 fm. Here also a local model based on the direct
potential (A3) and (A4) does not bind 6He.

The microscopic model is studied in Ref. [18] with the
Minnesota interaction. Before discussing the results in that
reference, we perform a calculation under the conditions
of Sec. V A. For computing time reasons, we limit the
hyperspherical-harmonics basis to Kmax = 18 and lnn � 4 like
in Ref. [18]. The effect of the lnn limitation is marginal.
The importance of the Kmax truncation is estimated below.
The microscopic model provides a very weak negative energy
of −0.07 MeV.

Within the semi-microscopic model with the αn RGM
potential explained in Sec. V A, the energy is −0.08 MeV
for Kmax = 28 and the self-consistent value εαn = 1.65 MeV.
With a truncation at Kmax = 18 (but no lnn restriction), the
6He energy becomes −0.03 MeV in close agreement with the
microscopic model. Because the difference is not large we
keep Kmax = 18 in the following. The evolution of the energy
with εαn is presented as the upper full curve in Fig. 6. If
εαn < 1.5 MeV, the three clusters are not bound.

FIG. 6. Dependence on εαn of the energy of 6He in the semi-
microscopic model (Kmax = 18) for different combinations of the
exchange parameter u of the Minnesota interaction and of the spin-
orbit strength S0 (in MeV fm5).

In the microscopic model of Ref. [18], for a spin-
orbit strength S0 = 30 MeV fm5, the exchange parameter is
increased to the value u = 1.049 to reproduce the experimental
value −0.975 MeV. It can also be reproduced for the present
spin-orbit strength S0 = 37 MeV fm5 with u = 1.0045.

The roles of these changes can be analyzed within the semi-
microscopic model for the truncation Kmax = 18. First let us
consider the sensitivity on εαn. The energy of 6He as a function
of this parameter is displayed in Fig. 6 for different cases
considered for the microscopic calculation. As expected, the
binding is stronger with S0 = 37 MeV fm5 than with S0 =
30 MeV fm5 for fixed u. Figure 6 shows that the experimental
energy can be reproduced by setting εαn = 1.3 MeV in the
RGM potential for S0 = 30 MeV fm5 and u = 1.049. For S0 =
37 MeV fm5 and u = 1.0045, one needs εαn = 1.45 MeV. Here
also the nonlocality is essential for binding the system: the
expectation value of both nonlocal αn potentials is for example
−5.74 MeV in the latter case.

Now let us compare the microscopic and semi-microscopic
models. We have learned from the 9Be case the importance
of the reproduction of phase shifts and, in particular, of the
location of resonances. As shown in Fig. 7, the nucleon-
nucleon interaction with the parameters u = 1.049 and S0 =
30 MeV fm5 does not provide a good description of the α + n

scattering. This choice corresponds to the full curves εαn = ε

in Fig. 7. It does not reproduce the experimental p-wave phase
shifts. Let us fit εαn to the energy location obtained in the
microscopic model for the p3/2 resonance. Figure 7 shows
the effect of setting εαn = 0.5 MeV in the αn RGM potential
(dash-dotted curves). With this choice, the 6He energy is
−0.74 MeV. The same situation occurs for u = 1.0045 and
S0 = 37 MeV fm5. The exact RGM (dashed curves) does
not agree with experiment. If one reproduces the resonance
location with εαn = 0.5 MeV, one obtains −0.69 MeV.
Because the p1/2 resonance is raised in better agreement with
the data, the 6He energy is here slightly higher.

In both cases, the semi-microscopic model is in fair
agreement with the microscopic model when εαn is chosen

FIG. 7. α + n elastic phase shifts: RGM results (full lines for
u = 1.049 and S0 = 30 and dashed lines for u = 1.0045 and S0 = 37)
and semi-microscopic results with εαn fixed at 0.5 MeV so as to
reproduce the RGM p3/2 resonance (dash-dotted lines for u = 1.049
and S0 = 30 and dotted lines for u = 1.0045 and S0 = 37). Dots
represent the phase-shift analysis of Ref. [36].
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in such a way that the p3/2 resonance is at the same energy.
This means that three-body exchange effects are also weak
here (0.25 or 0.3 MeV). The common feature of all these
results is that the microscopic and semi-microscopic models
can reproduce the experimental binding energy at the cost of an
unrealistic energy location of the resonances that appear in the
dominant p waves. The underestimation of the p3/2 resonance
is about half the missing binding energy as intuitively expected.
The fact that slightly better results are obtained here with the
local model is thus probably somewhat fortuitous.

It is likely that the effective force with the increased u

and/or S0 values simulates the effect of three-nucleon forces.
This interpretation is confirmed by Monte Carlo calculations
with realistic forces that show that the contribution of the
three-nucleon force is essential for a correct binding of 6He
[39]. Effective three-cluster forces would thus probably also be
necessary to improve the semi-microscopic model. However,
relating them to three-nucleon forces is probably not an easy
task.

VI. CONCLUSION

The present work is devoted to a comparison of three
different models, all based on the three-cluster physical picture
and on the hyperspherical-coordinate formalism but otherwise
rather different.

The local three-body model suffers from several drawbacks,
i.e., the problem of choosing the cluster-cluster interactions
and an ambiguity in the best definition of the forbidden states.
It gives fair results for 6He but poor results for 9Be and 12C.
Because the local model is poorer than the other models for 9Be
and 12C, its better success for 6He is probably fortuitous. The
local model as defined here remains useful when simplicity
is the most important aspect. It is then better not to use
deep cluster-cluster potentials involving forbidden states to
avoid the complication and ambiguity introduced by their
elimination.

The microscopic three-cluster model is well founded phys-
ically but requires high computing times to reach convergence.
It provides a good qualitative description of 6He, 9Be, and 12C,
but binding energies are not very accurate or require tuning
parameters. However, the tuned parameters are not consistent
with scattering properties determined within the two-cluster
RGM.

Between those models, the semi-microscopic model is
better founded and more consistent than the local model and
simpler than the microscopic model. Forbidden states must
be eliminated but they are defined without ambiguity. This
model contains a parameter in each cluster-cluster force whose
choice appears to be delicate. The study of 9Be indicates that
the self-consistent prescription for the choice of parameter
ε proposed by Fujiwara and coworkers [19] is not always
satisfactory. A more physical prescription can be based on a fair
reproduction of the phase shifts of the dominant partial waves,
and in particular of their low-energy resonances. Anyway,
this model can simulate the microscopic model as shown by
both 6He and 9Be examples. Neglecting nucleon exchanges
involving all three clusters does not lead to important errors.

The semi-microscopic model allows an interesting analysis
of the microscopic model. The experimental binding energy
is not reproduced with effective two-body forces that provide
cluster-cluster RGM phase shifts in agreement with experi-
ment. The binding energy is overestimated by about 1 MeV
for 9Be and underestimated by about 1 MeV in 6He. The 6He
energy can be reproduced only if the energy of the p3/2 α + n

resonance is underestimated by about half this amount. We
think that the remaining discrepancy with experiment is due
to a lack of three-nucleon forces.
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APPENDIX A: αN AND αα RGM POTENTIALS

1. Nucleon-nucleon interaction

We assume a Gaussian nucleon-nucleon interaction of the
form

V = V0(W + BPσ − HPτ − MPσPτ ) exp(−r2/a2). (A1)

The spin-orbit NN interaction reads

VLS = −2S0h̄
−2ν−5 exp(−r2/ν2)L · S. (A2)

With this notation, a limit exists for ν tending to zero.

2. α + N system

For the sake of generality, we give here the α + p

expression. For an oscillator parameter b, the central part of
the direct potential reads

VD(r) = 1

2
V0Xd

(
4a2

4a2 + 3b2

)3/2

× exp

(
− 4r2

4a2 + 3b2

)
+ 2e2

r
erf

(√
4

3b2
r

)
, (A3)

where the traditional notation Xd = 8W + 4B − 4H − 2M

and Xe = 8M + 4H − 4B − 2W is introduced.
The spin-orbit part is given by

V LS
D (r) = −ηJ

l

5

2
S0

(
4

4ν2 + 3b2

)5/2

exp

(
− 4r2

4ν2 + 3b2

)
(A4)

with

ηJ
l = J (J + 1) − l(l + 1) − S(S + 1). (A5)
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Its zero-range limit is

V
LS(0)
D = −ηJ

l

5

2
S0

(
4

3b2

)5/2

exp

(
−4r2

3b2

)
. (A6)

The nonlocal potential is separated in several terms,

K = KT + KV + KLS + KC + εKN. (A7)

The overlap kernel is given by

KN (r, r ′) =
(

4

5

)3 ( 4

3πb2

)3/2

× exp

[
− 2

75b2
(17r2 + 17r ′2 + 16r · r ′)

]
. (A8)

The kinetic-energy kernel is given by

KT (r, r ′) = −1

4
h̄ω

[
49

5
− 64

1125b2

× (38r2 + 38r ′2 + 49r · r ′)
]

KN. (A9)

The central nuclear potential kernel is given by

KV (r, r ′) = 1

2
V0

(
(Xd + Xe)

(
a2

a2 + 2b2

)3/2

+Xe exp

[
−16(r − r ′)2

25a2

]

− (Xd + Xe)

(
3a2

3a2 + 2b2

)3/2

×
{

exp

[
− 16(4r + r ′)2

75(3a2 + 2b2)

]

+ exp

[
− 16(r + 4r ′)2

75(3a2 + 2b2)

]})
KN. (A10)

The spin-orbit kernel reads

KLS(r, r ′) = −ηljS0ν
−3 5

3b2 − ν2
exp

[
−16(r − r ′)2

25ν2

]
KN.

(A11)

Its zero-range limit is local,

K
(0)
LS(r, r ′) = 1

2V
LS(0)
D (r)δ(r − r ′). (A12)

The Coulomb kernel is given by

KC(r, r ′) = e2


 21/2

π1/2b
− 5

4|r − r ′|

− 15

4


erf

(
4
5

√
1

6b2 |4r + r ′|)
|4r + r ′|

+
erf
(

4
5

√
1

6b2 |r + 4r ′|)
|r + 4r ′|




KN. (A13)

3. α + α system

The central part of the direct potential reads

VD(r) = 2V0Xd

(
2a2

2a2 + 3b2

)3/2

× exp

(
− 2r2

2a2 + 3b2

)
+ 4e2

r
erf

(√
2

3

r

b

)
. (A14)

Spin-orbit terms vanish.
The α + α kernels are symmetric with respect to r ′ → −r ′.

They are given below in unsymmetrized form, i.e.,

K(r, r ′) = 1
2 [K (u)(r, r ′) + K (u)(r,−r ′)] (A15)

for each type of kernel. The unsymmetrized expressions
K (u)(r, r ′) directly lead to the correct projected kernels
provided only even l values are kept. Odd l values are
forbidden.

The norm kernel reads

K
(u)
N (r, r ′) = 4

(
8

3πb2

)3/2

exp

(
−5r2 + 5r ′2 − 8r · r ′

3b2

)

− 3

(
2

πb2

)3/2

exp

(
− r2 + r ′2

b2

)
. (A16)

The kinetic-energy kernel is given by

K
(u)
T (r, r ′) = −h̄ω

{(
8

3πb2

)3/2

×
[

13 − 112(r2 + r ′2) − 208r · r ′

9b2

]

× exp

(
−5r2 + 5r ′2 − 8r · r ′

3b2

)
−
(

2

πb2

)3/2

×
(

27

4
− 3

r2 + r ′2

b2

)
exp

(
− r2 + r ′2

b2

)}
.

(A17)

The central nuclear potential kernel is given by

K
(u)
V (r, r ′) = V0

(
8

3πb2

)3/2

exp

(
−5r2 + 5r ′2 − 8r · r ′

3b2

)

×
{

4(Xd + Xe)

(
a2

a2 + 2b2

)3/2

+ 2Xe exp

[
−4(r − r ′)2

a2

]
− 2(2Xd − Xe)

×
(

3a2

3a2 + 4b2

)3/2

exp

[
− 4(r + r ′)2

3(3a2 + 4b2)

]

− 4(Xd + Xe)

(
3a2

3a2 + 4b2

)3/2

×
{

exp

[
− 4(2r − r ′)2

3(3a2 + 4b2)

]

+ exp

[
− 4(r − 2r ′)2

3(3a2 + 4b2)

]}
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+V0

(
2

πb2

)3/2

exp

(
− r2 + r ′2

b2

)

×
{

2(Xd − 2Xe)

(
a2

a2 + b2

)3/2

× exp

[
− (r − r ′)2

a2 + b2

]
− 4(Xd + Xe)

×
(

a2

a2 + 2b2

)3/2

+ 4(Xd+Xe)

(
2a2

2a2 + 3b2

)3/2

×
[
exp

(
− 2r2

2a2 + 3b2

)
+ exp

(
− 2r ′2

2a2 + 3b2

)]}}
.

(A18)

The Coulomb kernel reads

K
(u)
C (r, r ′) = e2

(
8

3πb2

)3/2

exp

(
− r2 + r ′2

3b2

)

× exp

(
−4(r − r ′)2

3b2

)[
4

(
2

πb2

)1/2

− 1

|r − r ′| − 15
erf
(

1√
3b

|r + r ′|)
|r + r ′|

− 6
erf
(

1√
3b

|2r − r ′|)
|2r − r ′| − 6

erf
(

1√
3b

|r − 2r ′|)
|r − 2r ′|

]

+ 4e2

(
2

πb2

)3/2

exp

(
− r2 + r ′2

b2

)

×
[

2
erf
(

1
b
|r − r ′|)

|r − r ′| −
(

2

πb2

)1/2

+
erf
(√

2r√
3b

)
r

+
erf
(√

2r ′√
3b

)
r ′


 . (A19)

4. Projection on orbital momentum

Projected kernels are given by

kl(r, r
′) = 2πrr ′

∫ +1

−1
K(r, r ′)Pl(u) du (A20)

with u = cos θ , where θ is the angle between r and r ′.
Some terms can be expanded analytically in a simple way.

Exponential terms can be calculated with

exp(αr · r ′) =
∞∑
l=0

(2l + 1)Pl(cos θ )il(αrr ′), (A21)

where il is a modified spherical Bessel function or spherical
Hankel function, i.e.,

∫ +1

−1
exp(±|α|r · r ′)Pl(u)du = 2(±1)l il(|α|rr ′). (A22)

Coulomb terms can be calculated with∫ +1

−1

1

|r ± r ′|Pl(u) du = (∓1)l
2

2l + 1

rl
<

rl+1
>

(A23)

where r> = max(r1, r2) and r< = min(r1, r2). Screened
Coulomb terms∫ +1

−1

f (|r ± r ′|)
|r ± r ′| Pl(u) du

= (±1)l

r>

∫ +1

−1
f (r> + vr<)Pl

[
v − (1 − v2)

r<

2r>

]
dv

(A24)

require a numerical integration that can be performed accu-
rately with a Gauss-Legendre quadrature.

APPENDIX B: CALCULATION OF THE TWO-BODY
ENERGIES

Each RGM potential depends on the energy of the system
made up by the two interacting clusters. In this Appendix,
the numerical evaluation of the mean energy (27) is presented
in the hyperspherical-coordinate system. We adopt the same
notation as in Refs. [8,21] where definitions can be found.

The expectation value of the potential energy Vij can be
directly calculated with

〈�JMπ |Vij |�JMπ 〉
=

∑
γKi γ ′K ′i ′

[
V

Jπ(k)
γK,γ ′K ′(hui)δii ′ + W

Jπ(k)
γKi,γ ′K ′i ′

]
CJπ

γKiC
Jπ
γ ′K ′i ′

(B1)

from the matrix elements V Jπ
γK,γ ′K ′ and WJπ

γKi,γ ′K ′i ′ of Refs.
[8,21]. The calculation of the kinetic energy is performed from

〈�JMπ |Tk|�JMπ 〉

= h̄2

2mN

∑
γKK ′

[∫ ∞

0
y2dy

∫ ∞

0

∂

∂x

(
xφ

lx ly
K χJπ

γK

ρ5/2

)

× ∂

∂x

(
xφ

lx ly
K ′ χJπ

γK ′

ρ5/2

)
dx + lx(lx + 1)

×
∫ π

2

0
sin2 αφ

lx ly
K φ

lx ly
K ′ dα

∫ ∞

0

χJπ
γKχJπ

γK ′

ρ2
dρ

]
, (B2)

where φ
lx ly
K is defined by Eq. (9) of Ref. [8] and x and y are

scaled Jacobi coordinates. Using expansion (18) of functions
χJπ

γK in the Lagrange basis, one obtains

〈�JMπ |Tk|�JMπ 〉 = h̄2

2mNh2

∑
γKK ′ii ′

[
1

u2
i

(
15

2
δKK ′ − 45

4
BγKK ′

+EγKK ′ + lx(lx + 1)AγKK ′

)
δii ′

+ T̂ii ′BγKK ′ − 2Uii ′ DγKK ′

]
CJπ

γKiC
Jπ
γK ′i ′ ,

(B3)
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where

AγKK ′ =
∫ π

2

0
sin2 αφ

lx ly
K φ

lx ly
K ′ dα, (B4)

BγKK ′ =
∫ π

2

0
sin2 α cos4 αφ

lx ly
K φ

lx ly
K ′ dα, (B5)

DγKK ′ =
∫ π

2

0
sin3 α cos3 α

dφ
lx ly
K

dα
φ

lx ly
K ′ dα, (B6)

EγKK ′ =
∫ π

2

0
sin4 α cos2 α

dφ
lx ly
K

dα

dφ
lx ly
K ′

dα
dα, (B7)

and

T̂ii ′ = −
∫ ∞

0
f̂i(u)

d2f̂i ′ (u)

du2
du, (B8)

Uii ′ =
∫ ∞

0
f̂i(u)

1

u

df̂i ′ (u)

du
du. (B9)

The matrix elements T̂ii ′ and Uii ′ are evaluated with the Gauss-
Laguerre quadrature. The expressions for Tii ′ are given in Eqs.
(32) and (33) of Ref. [8] the phase in Eq. (33) is misprinted
and should be (−1)i+i ′+1]. The other matrix elements read

Uii ′ ≈ λ
1/2
i f̂ ′

i ′(ui)

ui

=



1
2u2

i

if i = i ′,
(−1)i+i′

2ui′ (ui−u′
i )

if i �= i.
(B10)

The integrals BγKK ′ and DγKK ′ are evaluated with the help
of properties of the Jacobi polynomials [40] as

BγKK ′ =




1
2(K+2)

√
n(n+lx+ly+1)(2n+2lx+1)(2n+2ly+1)

K(K+2)

if n′ = n − 1

1
2

(
1 + (lx+ly+1)(lx−ly )

(K+1)(K+3)

)
if n′ = n

1
2(K+3)

√
(n+1)(n+lx+ly+2)(2n+2lx+3)(2n+2ly+3)

(K+2)(K+4)

if n′ = n + 1
0 otherwise

(B11)

DγKK ′ =




− K+4
2(K+1)

√
n(n+lx+ly+1)(2n+2lx+1)(2n+2ly+1)

K(K+2)

if n′ = n − 1

3(lx+ly+1)(ly−lx )
2(K+1)(K+3)
if n′ = n

K
2(K+3)

√
(n+1)(n+lx+ly+2)(2n+2lx+3)(2n+2ly+3)

(K+2)(K+4)

if n′ = n + 1

0 otherwise.

(B12)

where n = (K − lx − ly)/2 and n′ = (K ′ − lx − ly)/2. The in-
tegration over α in AγKK ′ and EγKK ′ is performed numerically.
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