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Nucleon-nucleon potential: Drift effects
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In the rest frame of a many-body system, used in the calculation of its static and scattering properties, the
center of mass of a two-body subsystem is allowed to drift. We show, in a model-independent way, that drift
corrections to the nucleon-nucleon potential are relatively large and arise from both one- and two-pion exchange
processes. As far as chiral symmetry is concerned, corrections to these processes begin, respectively, at O(q2)
and O(q4). The two-pion exchange interaction also yields a new spin structure, which promotes the presence of
P waves in trinuclei and is associated with profile functions that do not coincide with either central or spin-orbit
ones. In principle, the new spin terms should be smaller than the O(q3) spin-orbit components. However, in the
isospin-even channel, a large contribution defies this expectation and gives rise to the prediction of important
drift effects.
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I. INTRODUCTION

This work is motivated by a private question posed by
Alejandro Kievsky some years ago, concerning the possibility
of novel forms of spin dependence in the nucleon-nucleon
interaction, when one is not in the center-of-mass frame of
the two-body system. In the study of static and scattering
properties of many-body nuclei, calculations are performed in
the rest frame of the larger system and a two-body subsystem
is allowed to drift. This picture led him to introduce a
phenomenological three-body force [1], which improved the
description of the N -d vector analyzing power Ay .

Nowadays, the outer layers of the NN interaction, repre-
sented by one-pion and two-pion exchange potentials (OPEP
and TPEP, respectively), are set in solid foundations owing to
the use of chiral symmetry. Nuclear processes are dominated
by the light quarks u and d, and one is not far from the massless
limit, in which QCD becomes invariant under both isospin
and chiral SU(2) × SU(2) transformations. Chiral symmetry
is realized in the Nambu-Goldstone mode and the QCD
vacuum can bear collective excitations, identified as pions. A
suitably formulated chiral perturbation theory (ChPT) allows
deviations from the massless limit to be treated systematically
[2]. As low-energy QCD calculations are prevented by its
non-Abelian character, in practice one works with chiral
effective theories, in which elementary nucleons interact by
exchanging pions.

In chiral perturbation, one uses a typical scale q � 1 GeV,
set by either pion four-momenta or nucleon three-momenta.
The leading term [3] in the NN interaction is the OPEP,
at O(q0). The TPEP begins at O(q2) and two independent
expansions up to O(q4) are presently available. One of
them, based on heavy-baryon ChPT [4], uses nonrelativistic
Lagrangians from the very beginning and the inverse of the
nucleon mass as an expansion parameter. The other one,
produced recently by our group [5,6], is based on relativistic
expressions, written in terms of observable coefficients and
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covariant loop integrals. The use of a relativistic language
frees one from particular reference frames and allows a
straightforward treatment of two-body interactions in which
the center of mass is able to move. Here, we rely on our
previous work in order to derive the drift contributions to the
NN potential. For the sake of definiteness, we stay in the realm
of three-body nuclei, but results can be easily generalized to
larger systems.

Our presentation is organized as follows. In Sec. II, we
review the dynamical role of two-body interactions in trinuclei.
This sets the stage for the derivation of drift interactions,
which is performed in Sec. III. Results are summarized in
Sec. IV, whereas technical issues, concerning kinematics and
spin operators, are left to appendices.

II. DYNAMICS

The interactions of a three-nucleon system in momentum
space are represented by the operator W , defined by [7,8]

〈 p′
1, p′

2, p′
3|Ŵ | p1, p2, p3〉 = −(2π )3δ3( p′

1 + p′
2 + p′

3 − p1

− p2 − p3)

× t̄3( p′
1, p′

2, p′
3, p1, p2, p3),

(1)

where t̄3 is the proper part of the nonrelativistic three-body
transition matrix. In configuration space, the position of
nucleon i is described by r i and one uses the Jacobi variables

R = (r1 + r2 + r3)/3, r = r2 − r1,
(2)

ρ = (2r3 − r1 − r2)/
√

3,

which correspond to

p1 = P
3

− pr − pρ√
3
, p2 = P

3
+ pr − pρ√

3
,

(3)

p3 = P
3

+ 2 pρ√
3

.
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The Schrödinger equation for the internal degrees of
freedom is obtained by using P = P ′ = 0 and given by

[
− 1

m
∇2

r ′ − 1

m
∇2

ρ ′ − ε

]
ψ(r ′, ρ ′) = −

[√
3

2

]3 ∫
d r dρ

×W (r ′, ρ ′; r, ρ)ψ(r, ρ),

(4)

with

W (r ′, ρ ′; r, ρ) = − 1

(2π )12

[
2√
3

]6 ∫
d Qrd Qρdqrdqρ

× ei[ Qr ·(r ′−r)+ Qρ ·(ρ ′−ρ)+qr ·(r ′+r)/2+ Qρ ·(ρ ′+ρ)/2]

× t̄3( Qr , Qρ, qr , qρ), (5)

Qi = ( p′
i + pi)/2 and qi = ( p′

i − pi), for i = (r, ρ).
In this work we are interested in describing two-body

interactions between nucleons 1 and 2 and note that the
conservation of p3 implies qρ = 0. We write

t̄3( p′
1, p′

2, p′
3; p1, p2, p3) = (2π )3

[√
3

2

]3

δ3(qρ)

× t̄2( Qρ, Qr , qr ), (6)

where t̄2 is the two-body t matrix, and the corresponding
potential becomes

W2(r ′, ρ ′; r, ρ) = − 1

(2π )9

[
2√
3

]3 ∫
d Qr d Qρ dqr

× e−i[ Qr ·(r ′−r)+ Qρ ·(ρ ′−ρ)+qr ·(r ′+r)/2]

× t̄2( Qr , Qρ, qr ). (7)

In isospin space, the amplitude t̄2 reads

t̄2 = t+ + τ (1) · τ (2)t−. (8)

The usual spin decomposition is obtained by going to the
center-of-mass (c.m.) frame of the two-body system, where
one finds

t±2 �c.m. = t±C + �LS

m2
t±LS + �SS

m2
t±SS + �T

m2
t±T + �Q

m4
t±Q, (9)

with two-component operators defined by

�LS = i(σ (1) + σ (2)) · qr × Qr/2, (10)

�SS = q2
rσ

(1) · σ (2), (11)

�T = −q2
r (3σ (1) · q̂r σ (2) ·q̂r − σ (1) · σ (2)), (12)

�Q = 4σ (1) · qr × Qr σ (2) · qr × Qr . (13)

In this formulation, the two-body interaction does not
depend on Qρ and is completely decoupled from the larger
system it is immersed in. The Fourier transform of this result
produces the configuration space potential, given by

W2(r ′, ρ ′; r, ρ) = δ3(r ′ − r)δ3(ρ ′ − ρ)

[
2√
3

]3

V (r)±
]

c.m.
,

(14)
V (r)±

]
c.m.

= V ±
C + V ±

LS�LS + V ±
SS�SS + V ±

T �T ,

where we have kept only local and spin-orbit contributions and
the spin operators read

�LS = L · (σ (1) + σ (2))/2, (15)

�SS = σ (1) · σ (2), (16)

�T = 3σ (1) · r̂σ (2) · r̂ − σ (1) · σ (2). (17)

The radial functions are given by

V ±
C (r) = U±

C (x), (18)

V ±
LS(r) = µ2

m2

1

x

d

dx
U±

LS(x), (19)

V ±
SS(r) = − µ2

m2

[
d2

dx2
+ 2

x

d

dx

]
U±

SS(x), (20)

V ±
T (r) = µ2

m2

[
d2

dx2
− 1

x

d

dx

]
U±

T (x), (21)

with x = µr and

U±
I (x) = −

∫
d3q

(2π )3
eiq·r t±I (q), I = {C,LS, SS, T }.

(22)

As we discuss below, the fact that the two-body c.m. is
allowed to drift gives rise to extra interaction operators in the
potential.

III. DRIFT TERMS

Corrections to the NN potential owing to the motion of
the c.m. are derived by evaluating T , the covariant t-matrix
for the on-shell process N (p1)N (p2) → N (p′

1)N (p′
2), and

writing the result in terms of two-component spinors, using
the expressions of Appendix B. This gives rise to an amplitude
expanded in terms of Pauli spin operators. Dividing it by
the factor 4mE present in the relativistic normalization, one
obtains the amplitude t̄2, which is to be fed into Eq. (7). In this
work we concentrate on contributions from processes due to
the exchanges of one and two pions.

The transformation of a t-matrix into a potential to be
used in a dynamical equation is not trivial and depends on
a number of important conventions. These range from the very
nature of the equation adopted to tacit assumptions concerning
the off-shell behavior of the potential. The latter class of
effects appears as corrections to leading-order effects and was
discussed in a comprehensive paper by Friar [9]. Here we stick
to the conventions used long ago by Partovi and Lomon [10]
and da Rocha and Robilotta [11].

A. OPEP

The covariant amplitude for on-shell nucleons reads

T = τ (1) · τ (2) g
2
Am2

f 2
π

1

q2 − µ2
[ūγ5u](1)[ūγ5u](2), (23)

where gA, fπ , µ, and m are, respectively, the axial and pion de-
cay constants and the pion and nucleon masses. Using Eq. (A8)
for the momentum q and Eq. (B4) for the spinor matrix
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element, one finds the two-component amplitude

T = τ (1) · τ (2) g
2
Am2

f 2
π

1

(q2
r + µ2) − 4(qr · Qρ)2/3E2

×N 2{[m + E/2 + 2 Qr · Qρ/
√

3E]σ (1) · qr

− 2qr · Qρσ
(1)( Qr + Qρ/

√
3)/

√
3E}{[m + E/2

− 2 Qr · Qρ/
√

3E]σ (2) · qr

+ 2qr · Qρσ
(2) · ( Qr − Qρ/

√
3)/

√
3E}, (24)

where N 2 is a normalization factor,

N 2 = {[(m + E/2)2 + [4( Qr · Qρ)2 − (qr · Qρ)2]/3E2]2

− 16(m + E/2)2( Qr · Qρ)2/3E2}−1/2 (25)

and E is the total energy of the two-nucleon system, determined
by the condition

E4 − 4
(
m2 + q2

r + 4 Q2
r + Q2

ρ

/
3
)
E2 + (4/3)[(qr · Qρ)2

+ 4( Qr · Qρ)2] = 0. (26)

This t-matrix is fully relativistic and contains no approx-
imations. All its terms involving the variable Qρ vanish in
the rest frame of the two-body system and therefore can be
interpreted as drift effects. With the provisos discussed in Ref.
[9], it could already be used as input into a momentum-space
dynamical equation. Alternatively, in the framework of ChPT,
one might wish to rewrite it as a power series, truncated at a
given order.

In configuration space, the variables Qr and Qρ correspond
to nonlocal operators and are usually associated with gradients
acting on the wave function. To restrict the corresponding
complications to a minimum, we remain in the limited scope
of Eq. (4) and keep only terms linear in these momenta. This
procedure is referred to as the linear gradient approximation.

Within this approximation, the OPEP retains its usual local
form, given by

t−SS = −t−�lga

T

g2
Am2

12f 2
π

1

q2
r + µ2

+ local corrections. (27)

B. TPEP

Quite generally, for each isospin channel, the spin content
of the TPEP is given by [5]

T ± = [ūu](1)[ūu](2)(I±
DD) − i

2m
[ūu](1)[ūσµλ(p′ − p)µu](2)

× (I±
DB)λ − i

2m
[ūσµλ(p′ − p)µu](1)[ūu](2)(I±

BD)λ

− 1

4m2
[ūσµλ(p′ − p)µu](1)[ūσνρ(p′ − p)νu](2)(I±

BB)λρ,

(28)

where the functionsI involve loop integrals and have a Lorentz
structure realized in terms of the kinematical variables W, z,
and q, defined in Appendix A. Terms proportional to q do not

contribute for on-shell nucleons and we have

(I±
DB)λ = Wλ

2m
I (w)±

DB + zλ

2m
I (z)±

DB , (29)

(I±
BD)λ = Wλ

2m
I (w)±

DB − zλ

2m
I (z)±

DB , (30)

(I±
BB)λρ = gλρI (g)±

BB + WλWρ

4m2
I (w)±

BB + zλzρ

4m2
I (z)±

BB . (31)

The amplitudes I were explicitly calculated in Ref. [5], as
functions of the invariants W 2, z2, and q2, and the two-pion
exchange interaction is described by

T ± = [ūu](1)[ūu](2)

[
I±

DD + q2

2m2
I (w)±

DB + q4

16m4
I (w)±

BB

]

− i

2m
{[ūu](1)[ūσµλ(p′ − p)µu](2)

− [ūσµλ(p′ − p)µu](1)[ūu](2)} zλ

2m

[
I (w)±

DB + I (z)±
DB

+ q2

4m2
I (w)±

BB

]
− 1

4m2
[ūσµλ(p′ − p)µu](1)

× [ūσνρ(p′ − p)νu](2)

×
[
gλρI (g)±

BB + zλzρ

4m2

( − I (w)±
BB + I (z)±

BB

)]
. (32)

This result can be recast in a form similar to Eq. (24), by
using the spinor matrix elements given in Appendix B. One
finds

T ± = N 2
{
I±

DD

[
2m(m + E/2) − 2(qr · Qρ)2/3E2 + q2

r

/
2

− iσ (1) · qr × (
Qr + Qρ/

√
3
)]

× [
2m(m + E/2) − 2(qr · Qρ)2/3E2 + q2

r

/
2

− iσ (2) · qr

(
Qr − Qρ/

√
3
)] + · · · }, (33)

and its full drift content becomes explicit. However, for the
sake of simplicity, we remain in the framework of the linear
gradient approximation. Using Eqs. (A6)–(A8), one learns
that, in this case, the variables W 2, z2, and q2 do not depart
from their c.m. values and the only sources of drift corrections
are the spin functions. The results of Appendix B yield the
following nonrelativistic amplitude:

t±2 = t±2
]

c.m.
+ �D

m2
t±D, (34)

where the drift operator �D is given by

�D = i(σ (1) − σ (2)) · qr × Qρ/2
√

3 (35)

and the profile functions read

t±D = −m

e

{
4m2

λ2

(
1 + q2

r

λ2

) [
I±

DD − q2
r

2m2
I (w)±

DB

+ q4
r

16m4
I (w)±

BB

]
+ eq2

r

mλ2
I (g)±

BB

}
, (36)

with λ2 = 4m(e + m) and e =
√

m2 + q2
r + 4 Q2

r . This result
is fully model independent, since it springs directly from
Lorentz covariance and is constrained just by the linear
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gradient approximation. The profile functions t±D do not
coincide with any other components of the TPEP, which, in
the same approximation, are given by [5]

t±C = m

e

{ (
1 + q2

r

λ2

)2 [
I±

DD − q2
r

2m2
I (w)±

DB + q4
r

16m4
I (w)±

BB

]

+ q4
r

16m4
I (g)±

BB

}
, (37)

t±LS = m

e

{(
1 + q2

r

λ2

) [
−4m2

λ2
I±

DD +
(

1 + 2q2
r

λ2

)
I (w)±

DB

+ I (z)±
DB − q2

r

4m2

(
1 + q2

r

λ2

)
I (w)±

BB − q2
r

4m2

(
1 + 4m2

λ2

)]

× I (g)±
BB

}
, (38)

t±T = t±SS/2 = m

e

{
− 1

12
I (g)±

BB

}
. (39)

We consider here the expansion of the TPEP to O(q4),
using Eqs. (9) and (34), which requires t±C →O(q4) and
{t±LS, t

±
T , t±SS, t

±
D }→O(q2). The expansion of the various profile

functions is performed using the results {I (g)+
BB , I (w)+

BB , I (z)+
BB }→

O(q0), {I (w)+
DB , I (z)+

DB , I (w)−
DB , I (z)−

DB , I (g)−
BB }→O(q1), {I−

DD}→
O(q2), {I+

DD}→O(q3), and {I (w)−
BB , I (z)−

BB } ∼ 0, and one finds

t+D = −m

e

{
q2

r

8m2
I (g)+

BB + 1

2

[
I+

DD − q2
r

2m2
I (w)+

DB

]}
× → {O(q2) + [O(q3)]}, (40)

t−D = −m

e

{
1

2
I−

DD

}
→ {

O(q2)
}
. (41)

In the expression for t+D , the term within square brackets
is O(q3). Nevertheless, we have kept it, for it is anomalously
large. Considering comparable terms in Eq. (38), one writes

t+C = m

e

{
I+

DD − q2
r

2m2
I (w)+

DB

}
→ {

O(q3)
}
, (42)

t+LS = m

e

{
I (w)+

DB + I (z)+
DB −

[
q2

r

4m2

(
I (w)+

BB + 3

2
I (g)+

BB

)]}
→ {

O(q) + [
O(q2)

]}
, (43)

t−C = m

e

{
I−

DD

} → {
O(q2)

}
, (44)

t−LS = m

e

{
I (w)−

DB + I (z)−
DB −

[
1

2
I−

DD

]}
→ {

O(q) + [
O(q2)

]}
.

(45)

These results show that the drift potential has little affinity
with the spin-orbit term and, at the chiral order considered,
can be written as

t+D = 3q2
r

4m2
t+SS − 1

2
t+C , (46)

t−D = −1

2
t−C . (47)

The Fourier transform of Eq. (34) yields the configuration-
space structure

V (r)± = V (r)±
]

c.m.
+ V ±

D �D, (48)

with

�D = 1

4
√

3
(σ (1) − σ (2)) · r × (−i∇↔ ρ), (49)

V ±
D (r) = µ2

m2

1

x

d

dx
U±

D (x), (50)

U±
D (x) = −

∫
dqr

(2π )3
eiqr ·r t±D (qr ). (51)

The presence of the operator

∇↔ ρ = ∇→ ρ − ∇← ρ (52)

in Eq. (49) ensures that results are symmetric under the
exchange of initial and final states. Using results (46) and
(47), one has

U+
D = 3

4V +
SS − 1

2V +
C , (53)

U−
D = − 1

2V −
C . (54)

In Figs. 1 and 2 we display the profile functions for the drift
and spin-orbit potentials, derived from our O(q4) expansion
of the TPEP [5,6]. These results do not include short-range
effects and cannot be trusted for r < 1 fm. We recall that both
components of the force are multiplied byO(q2) spin operators
and hence we need to keep just O(q2) terms in VD . As shown
in Eqs. (40)–(45), in principle one should have V ±

LS ∼ O(q) >

V ±
D ∼ O(q2). These expectations are confirmed in the figures,

provided one uses the O(q2) dotted curve for V +
D . However,

when the O(q3) term associated with the central potential
is kept, one has a complete subversion of the expected chiral
hierarchy, associated with the prediction of a rather large effect
in the isospin-even channel.

To produce a feeling for the role of drift interactions in
trinuclei, we note that their ground states contain S, P , and
D waves, but they are heavily dominated by the principal
S component, which is fully symmetric under the exchange
of nucleon coordinates. Using the notation of Ref. [12], we
write

|S〉 = S(r, ρ)�1/2µ

1/2i , (55)

where

�
1/2µ

1/2i = 1√
2

[|m−µ〉S |m+i〉I − |m+µ〉S |m−i〉I
]

(56)

is the totally antisymmetric spin-isospin = (1/2, 1/2) wave
function with third components µ and i, whereas |m+〉 and
|m−〉 represent, respectively, even and odd mixed-symmetry
states under permutation of particles 1 and 2. The leading
term of the function S(r, ρ) is known [13] to depend just on
the hyper-radius ξ ≡

√
r2 + ρ2 and hence the most important

coupling introduced by the drift potential is associated with
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r(fm)

FIG. 1. (Color online) Isospin-even drift
(full and dotted lines) and spin-orbit (dashed line)
potentials; the dotted line is O(q2); the full one
is O(q2) + O(q3).

the structure

�D|S〉 ∼ �DS(ξ )�1/2µ

1/2i = 2πrρ

3
√

3ξ

∂S(ξ )

∂ξ
{{−[[Y1(r̂) ⊗

×Y1(ρ̂)]1 ⊗ |m+〉S]µ1/2

+
√

2[[Y1(r̂) ⊗ Y1(ρ̂)]1 ⊗ |s〉S]µ1/2}
× |m+i〉I + [[Y1(r̂) ⊗ Y1(ρ̂)]1 ⊗
× |m−〉S]µ1/2|m−i〉I }, (57)

|s〉S being the spin 3/2 state. This result indicates that the drift
potential enhances the role of P waves in trinuclei, as one
might have guessed directly from Eq. (49).

IV. SUMMARY

In nuclei containing three or more nucleons, the center
of mass of a two-body subsystem is allowed to drift. This
kind of movement does affect the forms of both one- and

two-pion exchange contributions and gives rise to important
nonlocal corrections to the potential. As interactions of this
type are difficult to deal with in configuration space, we have
restricted ourselves to the simplest possible nonlocal operators,
proportional to single gradients acting on the wave function,
that arise in two-pion processes. Using a relativistic chiral
expansion of the two-pion exchange NN potential to O(q4)
derived previously, we have shown, in a model-independent
way, that the profile functions of the drift corrections do not
coincide with any of its components. The spin dependence of
the drift term is implemented by the operator

�D = 1

4
√

3
(σ (1) − σ (2)) · r × (−i∇↔ ρ),

where r and ρ are Jacobi coordinates associated with two and
three bodies. This structure promotes couplings between S and
P waves, enhancing the role of the latter in trinuclei.

As far as chiral symmetry is concerned, drift corrections
begin at O(q4) and, in principle, should be smaller than spin-
orbit terms, which begin at O(q3). However, in the isospin-

0 1 3 0
-10

-5

0

VLS

V
-  (

M
eV

)

2
-0.02

-0.01

0.00

VD

r(fm)

FIG. 2. (Color online) Isospin-odd drift (full
line) and spin-orbit (dashed line) potentials.
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even channel, the same dynamical contribution that makes its
O(q3) central component larger than theO(q2) odd counterpart
subverts the expected chiral hierarchy and gives rise to the
prediction of important drift effects.

Note added in proof. I thank Prof. A. Gal for drawing my
attention, in August 2006, to a paper by Close and Dalitz [14],
in which a drift operator identical with that derived here was
used in the framework of the quark model. Please also see the
work by Kim [15] quoted in their paper.
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APPENDIX A: KINEMATICS

The conventions used here are the same as in Ref. [5]. The
initial and final nucleon momenta are denoted by p and p′ and
we define the variables

W = p1 + p2 = p′
1 + p′

2, (A1)

z = [(p1 + p′
1) − (p2 + p′

2)]/2, (A2)

q = p′
1 − p1 = p2 − p′

2. (A3)

The interacting nucleons are assumed to be on shell and the
following constraints hold:

m2 = (W 2 + z2 + q2)/4, (A4)

W · z = W · q = z · q = 0. (A5)

Using the Jacobi variables defined in Eq. (3), one has

W = (E,−2 Qρ/
√

3), (A6)

z = (4 Qr · Qρ/E
√

3,−2 Qr ), (A7)

q = (2qr · Qρ/E
√

3,−qr ), (A8)

where E is the total energy of the two-body system. If there
were no drift, this energy would be written in terms of the
single-particle c.m. energy e as

Ec.m. = 2e = 2
√

m2 + q2
r + 4 Q2

r . (A9)

Explicit calculation yields

E2 + (4/3)
[
(qr · Qρ)2/E2 + 4( Qr · Qρ)2/E2 − Q2

ρ

] = 4e2

(A10)

and hence, in the linear gradient approximation,

E �lga
2e. (A11)

APPENDIX B: SPIN OPERATORS

We present here the changes induced in the spin operators
owing the drift of the two-body c.m. With our conventions, we
write

[ū�u](i) =
{
Nχ † [

E′ + m,−σ · p′] [ · ·
· ·

] [
E + m

σ · p

]
χ

}(i)

,

(B1)

N = 1/
√

(E′ + m)(E + m), (B2)

for a generic Dirac matrix �. We display results for nucleon 1
and those corresponding to nucleon 2 are obtained by making
qr → −qr and Qr → Qr . For the normalization, one has

N = [
(m + E/2)2 + 4(m + E/2) Qr · Qρ/

√
3E

+ [4( Qr · Qρ)2 − (qr · Qρ)2]/3E2]−1/2 �lga
1/(m + e),

(B3)

where the last equality corresponds to the linear gradient
approximation.

The OPEP, Eq. (23), is based on the function

[ūγ5u](1) = Nχ †{[m + E/2 + 2 Qr · Qρ/
√

3E
]
σ (1) · qr

− 2qr · Qρσ
(1) · (

Qr + Qρ/
√

3
)
/
√

3E
}
χ

× �lga
[ūγ5u](1)

c.m.

= χ †[σ (1) · qr ]χ. (B4)

The expression for the TPEP is given by Eq. (31) and
employs the operators

[ū( p′)u( p)](1) = {
Nχ †[2m(m + E/2) − 2(qr · Qρ)2/3E2

+ q2
r

/
2 − iσ · qr × (

Qr + Qρ/
√

3
)]

χ
}(1)

�lga
[ū( p′)u( p)](1)

c.m. −
{
χ †

[
i

(e + m)
σ · qr

× Qρ/
√

3

]
χ

}(1)

, (B5)

[
i

2m
ū( p′)σµ0(p′ − p)µu( p)

](1)

= {
(N /2m)χ †[(m + E/2)

[
q2

r − 2iσ · qr ( Qr + Qρ/
√

3)
]

− 2(qr · Qρ)qr · (
Qr + Qρ/

√
3
)
/
√

3E]χ}(1)

�lga

[
i

2m
ū( p′)σµ0(p′ − p)µu( p)

](1)

c.m.

−
{
χ †

[
i

m
σ · qr Qρ/

√
3

]
χ

}(1)

, (B6)
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[
i

2m
ū( p′)σµj (p′ − p)µu( p)

](1)

= {Nχ †[(m + E/2)iσ × qr + [ − q2
r + 2iσ · qr

(
Qr

+ Qρ/
√

3
)
4(qr · Qρ)2/3E2]( Qr + Qρ/

√
3
)
/2m

− (qr · Qρ)
[
qr + 2iσ

(
Qr + Qρ/

√
3
)]

/
√

3E]χ}(1)

�lga

[
i

2m
ū( p′)σµj (p′ − p)µu( p)

](1)

c.m.

−
{
χ † 1

2(e + m)

× [
q2

r Qρ/
√

3m + (qr · Qρ)qr/
√

3e
]
j
χ

}(1)

. (B7)

These results allow one to write{
[ūu](1)[ūu](2)

} �lga {· · ·}c.m.

−
[

4m

(e + m)
+ q2

r

(e + m)2

]
�D, (B8)

{
− i

2m
[ūu](1)[ūσµλ(p′ − p)µu](2) − (1 ↔ 2)

}
zλ

2m

�lga {· · ·}c.m.

zλ

2m
, (B9)

{
− 1

4m2
[ūσµλ(p′ − p)µu](1)[ūσνρ(p′ − p)νu](2)

}
gλρ

�lga {· · ·}c.m. g
λρ − eq2

r

m2(e + m)
�D, (B10){

− 1

4m2
[ūσµλ(p′ − p)µu](1)[ūσνρ(p′ − p)νu](2)

}
zλzρ

4m2

�lga {· · ·}c.m.

zλzρ

4m2
, (B11)

where the functions {· · ·}c.m. are given by Eqs. (A32)–(A35) of
Ref. [5] and the two-component spin operators � are defined
as

�D = i(σ (1) − σ (2)) · qr × Qρ/2
√

3. (B12)
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