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Incoherent single pion electroproduction on the deuteron with polarization effects
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Incoherent pion electroproduction on the deuteron is studied from threshold up to the second resonance region
with special emphasis on the influence of the final-state interaction, in particular on polarization observables. The
elementary γN → πN amplitude is taken from the MAID-2003 model. The final-state interaction is included by
considering complete rescattering in the final NN and πN subsystems. Investigated in detail is their influence on
the structure functions governing the semi-exclusive differential cross section, where besides the scattered electron
only the produced pion is detected. For charged pion-production the effect of NN rescattering is moderate whereas
πN rescattering is almost negligible, except very close to threshold. NN rescattering appears much stronger in
neutral pion production for which the primary mechanism is the elimination of a significant spurious coherent
contribution in the impulse approximation. Sizeable effects are also found in some of the polarization structure
functions for beam and/or target polarizations.
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I. INTRODUCTION

The present paper is an extension of previous work on
electromagnetic single pion production on the deuteron [1,2]
in which we had considered the case of photoproduction.
In the first part [1], a thorough derivation of the formal
expressions for polarization observables in this reaction was
presented. Then in [2] we had systematically investigated
this process using as realistic elementary pion production
operator the MAID-2003 model [3] and included complete
rescattering in the two-body NN and πN subsystems of
the final state. Moderate influences of the latter on total
and semi-exclusive differential cross sections were found
in charged-pion production, primarily from NN rescattering
whereas πN rescattering remained small. Much larger effects
were found in incoherent neutral-pion production, which,
however, originated predominantly from the elimination of
a sizable spurious coherent contribution to the incoherent
process in the impulse approximation, where any final-state
interaction (FSI) is neglected.

In view of interest in this reaction with respect to (i)
extracting information on the elementary production on the
neutron in using the deuteron as an effective neutron target
and (ii) studying the influence of the spectator nucleon
(i.e., medium effects), it appears natural to investigate the
corresponding electroproduction reaction by taking advantage
of the possibility of varying energy and momentum transfer
independently in the spacelike region. For example, it would be
interesting to see whether some kinematic regions exist where
πN rescattering becomes more important. Indeed, several
studies of the role of FSI and medium effects have already
been undertaken in the past, both experimentally [4–6] as well
as theoretically [7–9].

An early experiment by Brown et al. [4] was designed to
study the isoscalar-isovector interference of the elementary
amplitude and the role of nuclear corrections by measuring
on the one hand the ratio of π− to π+ production on the
deuteron and on the other hand the ratio of π+ production

on the deuteron to the one on hydrogen. The forward-angle
production of charged pions on the deuteron was measured
by Gilman et al. [5] to investigate possible influences of the
spectator nucleon on the elementary production amplitude.
For the cross-section ratio of π+ production on the deuteron
to the one on the proton they found a significant deviation
from unity. Their conclusion was that there is evidence for a
modification of the elementary pion-production process in the
nuclear medium. In a subsequent theoretical paper, Loucks
et al. [7] obtained this ratio within a simple model for the
elementary pion-production operator and found it to be in
fair agreement with experiment without invoking medium
modifications. The deviation from unity was traced back to
the strong FSI in the 1S0 partial wave of the outgoing neutrons
in which the 1S0-antibound state is the dominant feature for
low energies. In addition, they found a strong dependence of
the differential cross section on the tensor polarization of an
oriented deuteron, which is a manifestation of the nonspherical
character of the deuteron via its D-state component.

A similar motivation with respect to possible medium
modifications was also behind a more recent experiment by
Gaskell et al. [6], which was triggered by the observation that
as long as the longitudinal current is dominated by the pion
pole term one could explore the nuclear pion field. Results
were presented for longitudinal charged-pion production on
1H, 2H, and 3He targets. The data, however, did not support any
significant modification of the elementary production process
by the presence of the spectator nucleons. At about the same
time, Hafidi and Lee [8] published a theoretical study using
a dynamical model for the electromagnetic pion-production
operator, including, in addition to final-state rescattering,
also intermediate baryon-baryon interactions (i.e., two-body
contributions to the electromagnetic interaction). However,
the latter turned out to be almost negligible in the near-
threshold region. The same near-threshold region was also
considered in another more recent theoretical paper by
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Levchuck et al. [9] who used a unitary transformation
method and restricted the electromagnetic current to the lowest
multipoles based on the Born contributions alone (i.e., leaving
out the contribution of the � resonance). The results of [8]
were confirmed with respect to the influence of FSI near the
quasi-free peak but not for low missing mass.

In the present work we would like to study more sys-
tematically incoherent electroproduction of single pions on
the deuteron using a realistic elementary pion-production
operator with respect to the importance of FSI in different
energy regions, from threshold through the � resonance up
to the second resonance region. In particular, the role of
polarization degrees of freedom will be explored. In the next
section, we will briefly review the formal aspects of this
reaction, especially the definition of polarization observables.
The results will be presented and discussed in Sec. III, and we
will close with a summary and an outlook.

II. FORMALISM

The basic formalism for electromagnetic single pion pro-
duction on the deuteron has been presented in detail for the
case of photoproduction in [1]. Therefore, here we review
only the most important ingredients with due extensions to
electroproduction according to the additional contributions
from charge and longitudinal current components.

A. Kinematics

The kinematics of pion electroproduction in the one-photon
exchange approximation is very similar to photoproduction if
we replace the real photon by a virtual one with longitudinal
and transverse polarizations:

γ ∗(q) + d(pd ) → π (pπ ) + N1(p1) + N2(p2), (1)

defining here the notation of the four-momenta of the
participating particles, that is, q = (q0, �q ) for the virtual
photon, pd = (Ed, �pd ) for the deuteron, pπ = (Eπ, �pπ ) for
the produced pion, and pi = (Ei, �pi) for the outgoing nucleons
(i = 1, 2). The momentum of the virtual photon is determined
by the four-momentum transfer in the scattering process,
that is, q = ke − ke′ , where ke = (Ee, �ke) and ke′ = (Ee′ , �ke′ )
denote the momenta of incoming and scattered electrons,
respectively. The electron kinematics will be considered in
the laboratory frame, whereas the evaluation of the reaction
matrix will be done in the center-of-momentum (c.m.) frame
of virtual photon and deuteron; that is, all variables, which
determine the reaction matrix, refer to the c.m. frame if not
indicated specifically otherwise.

As independent variables for the description of the final
state we choose in the c.m. frame the outgoing pion momentum
�pπ = (pπ, θπ , φπ ) and the spherical angles �p = (θp, φp) of
the relative momentum �p = ( �p1 − �p2)/2 = (p,�p) of the two
outgoing nucleons having momenta �p1 and �p2. In conjunction
with the momentum of the virtual photon, the energies Ei and

momenta of the outgoing nucleons are fixed; that is ,

E1/2 = 1

2
E12 ∓ �p · �pπ

E12
= 1

2
E12 ∓ ppπ

E12
cos θpπ , (2)

�p1/2 = − 1
2 �pπ ± �p , (3)

with θpπ as the angle between �p and �pπ and E12 = E1 + E2 =
W − Eπ as the total final NN energy, where

W = q0 +
√

M2
d + q2 =

√(
2q lab

0 + Md

)
Md − Q2 (4)

denotes the invariant total mass, Md denotes the deuteron
mass, and Q2 = q2

µ. Furthermore, the square of the relative
momentum is fixed by the independent variables and is given
by

p2 = E2
12

(
E2

12 − p2
π − 4M2

)
4
(
E2

12 − p2
π cos2 θpπ

) , (5)

where the nucleon mass is denoted by M . The pion momentum
is restricted to 0 � pπ � pπ,max, where the upper limit is given
by

pπ,max = 1

2W

√
[(W − mπ )2 − 4M2][(W + mπ )2 − 4M2].

(6)

Of special interest is the quasi-free kinematics, which is
defined by the condition that the spectator nucleon remains
at rest in the lab system; that is, its final momentum is given
by plab

s = (M, �0). In this case, the lab energy of the active final
pion-nucleon system is given by

E
qf,lab
πN =

√
m2

π + ( �plab
π

)2 +
√

M2 + (�q lab − �plab
π

)2

= Md − M + q lab
0 . (7)

For the semi-exclusive reaction, where besides the scattered
electron only the produced pion is measured, one can deter-
mine the quasi-free lab pion energy E

qf,lab
π from (7) and find

Eqf,lab
π (θ lab

π ) = 1

2
[(

E
qf,lab
πN

)2 − (q lab)2 cos2 θ lab
π

]
× {

C lab
qf E

qf,lab
πN ± q lab cos θ lab

π

×
√(

C lab
qf

)2 − 4m2
π

[(
E

qf,lab
πN

)2 − (q lab)2 cos2 θ lab
π

]}
, (8)

where we have introduced

C lab
qf = (

E
qf,lab
πN

)2 + m2
π − M2 − (q lab)2

= (
M

qf
πN

)2 + m2
π − M2, (9)

with M
qf
πN as the invariant mass of the active quasi-free πN

system. In (8) the plus sign should be taken for 0 � θπ � π ;
otherwise, the minus sign is used. The corresponding quasi-
free missing mass M

qf
x is given by

Mqf
x =

√
2M

(
Md + q lab

0 − E
qf,lab
π

)
. (10)

In the c.m. system the quasi-free condition for the final
spectator momentum reads ps = (

√
M2 + q2/4, �q/2). The
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corresponding expressions for the quasi-free pion energy and
missing mass are

Eqf
π (θπ ) = 1

2
[(

E
qf
πN

)2 − q2 cos2 θπ

] × {
CqfE

qf
πN ± q cos θπ

×
√

(Cqf)2 − 4m2
π

[(
E

qf
πN

)2 − q2 cos2 θπ

]}
, (11)

Mqf
x =

√
2W

(
W − 2E

qf
π

) + m2
π , (12)

with

E
qf
πN = W −

√
M2 + q2/4

and

Cqf = (
E

qf

πN

)2 + m2
π − M2 − q2. (13)

As coordinate system we choose a right-handed orientation
with z axis along the photon momentum �q and y axis perpen-
dicular to the scattering plane along �ke × �ke′ . We distinguish
general three planes: (i) the scattering plane, spanned by the
incoming and scattered electron momenta, (ii) the pion plane,
spanned by the photon and pion momenta, which intersects
the scattering plane along the z axis with an angle φπ , and
(iii) the nucleon plane, spanned by the momenta of the two
outgoing nucleons intersecting the pion plane along the total
momentum of the two nucleons. This is illustrated in Fig. 1.

B. The T matrix

As in photoproduction, all observables are determined by
the T -matrix elements of the electromagnetic pion-production
current Jγπ between the initial deuteron and the final πNN

states:

Tsms,µmd
= −(−)〈 �p1 �p2 sms, �pπ |Jγπ, µ(0)| �pd 1md〉, (14)

where s and ms denote the total spin and its projection on
the relative momentum �p of the outgoing two nucleons and
md correspondingly the deuteron spin projection on the z axis
as quantization axis. In the expression on the right-hand side
of (14) noncovariant normalization for the initial deuteron
and the final πNN states is adopted. As already mentioned,
all kinematic quantities related to the T matrix refer to the
γ ∗-dc.m. system. Furthermore, the electromagnetic current is
taken in the normalization of the MAID-2003 model. Because
of current conservation, one can eliminate either the charge

γ *, q
θe

θπnucle
on

 pl
an

e

z

φπ x
y

scattering plane

ke’

ke

pπ
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p2

2p

p1

FIG. 1. Kinematics of single pion electroproduction on the
deuteron.

or the longitudinal current component. In this work we have
eliminated the longitudinal current component.

Separating the c.m. motion and taking a multipole expan-
sion of the current gives its general form,

Tsmsµmd
(W,Q2, pπ ,�π,�p)

= −(−)〈 �psms, �pπ |Jγπ, µ(�q )|1md〉
=

√
2π

∑
L

iLL̂(−)〈 �p sms, �pπ |OµL
µ |1md〉, (15)

with µ ∈ {0,±1} enumerating the spherical current compo-
nents with the provision that Jγπ, 0 is identified with the charge
density. Furthermore, we use the notation L̂ = √

2L + 1,
and the symbol OµL

M comprises charge (CL
M ) and transverse

multipoles (EL
M and ML

M ):

OµL

M = δµ0C
L
M + δ|µ|1

(
EL

M + µML
M

)
. (16)

Introducing a partial wave decomposition of the final states,
one finds

Tsmsµmd
(W,Q2, pπ ,�π,�p) = ei(µ+md−ms )φπ tsmsµmd

× (W,Q2, pπ , θπ , θp, φpπ ),

(17)

where the small t matrix depends only on θπ and θp as well
as on W,Q2, and pπ , and the relative azimuthal angle φpπ =
φp − φπ . Explicitly one has

tsmsµmd
(W,Q2, pπ , θπ , θp, φpπ )

= 1

2
√

2π

∑
Llpjpmplπ mπ JMJ

iL L̂ Ĵ l̂π l̂p ĵp (−)J+lp+jp−s+ms−lπ

×
(

lp s jp

0 ms −ms

) (
jp lπ J

mp mπ −MJ

) (
J L 1

−MJ µ md

)
×〈p pπ [(lps)jplπ ]J ||OµL||1〉djp

ms,mp
(−θp) d

lπ
0,mπ

(−θπ )

×ei(mp−ms )φpπ . (18)

(for details we refer to [1]). We had shown in [1] that, if parity is
conserved, the following symmetry relation holds for µ = ±1:

ts−ms−µ−md
(W,Q2, pπ , θπ , θp, φpπ )

= (−)s+ms+µ+md tsmsµmd
(W,Q2, pπ , θπ , θp,−φpπ ). (19)

One should note the sign change of φpπ on the right-hand
side. It is easy to see that this relation holds also for µ = 0,
by noting that the parity selection rules for charge transitions
are the same as for electric ones. As pointed out in [1], all
observables can be expressed in terms of the small t-matrix
elements.

In the present work we include as electromagnetic current
the elementary one-body pion-production current of MAID-
2003 and consider as FSI the rescattering contributions in the
final NN and πN subsystems. Thus as in [2] we split the
T matrix into the impulse approximation (IA) T IA, where
FSI effects are neglected, and the rescattering contribution
T NN and T πN of the two-body NN and πN subsystems,
respectively:

Tsmsµmd
= T IA

smsµmd
+ T NN

smsµmd
+ T πN

smsµmd
. (20)
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For the IA contribution, where the final state is described by a
plane wave, antisymmetrized with respect to the two outgoing
nucleons, one has

T IA
smsµmd

= 〈 �psms, �pπ |[jγπ,µ(1) + jγπ,µ(2)]|1 md〉
=

√
2

∑
m′

s

[〈sms |〈 �p1|jγπ,µ(WγN1 ,Q
2)| �pd − �p2〉

×φm′
smd

(
1
2 �pd − �p2

)|1 m′
s〉 − (1 ↔ 2)

]
, (21)

where jγπ,µ denotes the elementary pion photoproduction
operator of the MAID-2003 model, WγN1 is the invariant
energy of the γN1 system, and �p1/2 = (�q + �pd − �pπ )/2 ± �p.
Furthermore, φmsmd

( �p ) is related to the internal deuteron wave
function in momentum space by

〈 �p, 1ms |1ms〉(d) = φmsmd
( �p ) =

∑
L=0,2

∑
mL

iL(LmL 1ms |1md )

× uL(p) YLmL
(p̂), (22)

normalized to unity. The two rescattering contributions have a
similar structure:

T NN
smsµmd

= 〈 �psms, �pπ |TNNGNN [jγπ,µ(WγN1 ,Q
2)

+ jγπ,µ(WγN2 ,Q
2)]|1 md〉, (23)

T πN
smsµmd

= 〈 �psms, �pπ |TπNGπN [jγπ,µ(WγN1 ,Q
2)

+ jγπ,µ(WγN2 ,Q
2)]| 1 md〉, (24)

where TNN and TπN denote, respectively, the NN and πN

scattering matrices and GNN and GπN the corresponding free
two-body propagators.

C. The differential cross section including polarization
observables

The standard expression of the differential cross section for
electroproduction of pions on the deuteron in the one-photon-
exchange approximation is

d8σ

dEe′d�e′dpπd�πd�p

= 2αqed

Q4

ke′

ke

c(W,Q2, pπ ,�π,�p) tr(T †Tρi), (25)

where αqed denotes the electromagnetic fine structure constant,
T is the reaction matrix, and ρi is the initial-state density matrix
for the spin degrees of virtual photon and deuteron. The trace
refers to all spin degrees of freedom of initial and final states.
Furthermore, a kinematic phase space factor is denoted by

c(W,Q2, pπ , θπ , θp, φpπ )

= M2p2p2
π

8(2π )4Eπ

(
E12p + 1

2pπ (E1 − E2) cos θpπ

) . (26)

The density matrix ρi in (25) is a direct product of the density
matrices ργ ∗

of the virtual photon and ρd of the deuteron:

ρi = ργ ∗ ⊗ ρd. (27)

One can now proceed in complete analogy to deuteron
electrodisintegration [10] with respect to the virtual photon
and deuteron density matrices and to pion photoproduction
with respect to the properties of the reaction matrix.

The virtual photon density matrix is determined by the
electron kinematics and separates into an unpolarized and a
polarized part:

ρ
γ ∗
λλ′ = ρ0

λλ′ + hρ ′
λλ′, (28)

where |h| denotes the degree of longitudinal electron polar-
ization, and ρ0 and ρ ′ are given in terms of independent
components ρα and ρ ′

α (α ∈ {L, T , LT , T T }) according
to the various combinations of longitudinal and transverse
polarizations. Its specific form depends on whether one
eliminates the charge or the longitudinal current. In the latter
case, as used in this work, one has [10]

ρ0
λλ′ =

∑
α∈{L,T ,LT ,T T }

δα
λλ′ρα, (29a)

ρ ′
λλ′ =

∑
α∈{L,T ,LT ,T T }

δ′ α
λλ′ρ

′
α, (29b)

with

δL
λλ′ = δλλ′δλ0, δLT

λλ′ = λ′δλ0 + λδλ′0,

δT
λλ′ = δλλ′ |λ|, δT T

λλ′ = δλ,−λ′ |λ|,
δ′L
λλ′ = 0, δ′LT

λλ′ = |λ′|δλ0 + |λ|δλ′0,

δ′ T
λλ′ = δλλ′λ, δ′ T T

λλ′ = 0.

(30)

The independent components ρα and ρ ′
α are given by the well-

known expressions [10] (note that Q2 = −q2
ν > 0)

ρL = ρ0
00 = β2Q2 ξ 2

2η
, ρT = ρ0

11 = 1
2Q2

(
1 + ξ

2η

)
,

ρLT = ρ0
01 = βQ2 ξ

η

√
η+ξ

8 , ρT T = ρ0
−11 = −Q2 ξ

4η
,

ρ ′
LT = ρ ′

01 = 1
2 β Q2√

2η
ξ, ρ ′

T = ρ ′
11 = 1

2Q2
√

η+ξ

η
,

(31)

with

β = q lab

q c
, ξ = Q2

(q lab) 2
, η = tan2

(
θ lab
e

2

)
, (32)

where β expresses the boost from the lab system to the frame
in which the hadronic current is evaluated and �q c denotes the
momentum transfer in this frame. Here it is the c.m. system,
and one has �q c = �q. As a side remark, we mention the simple
relation to another often used parametrization of the virtual
photon density matrix in terms of the quantities vα(′) of Ref. [11]
(for β = 1 for the lab frame, i.e., qc = q lab),

ρ(′)
α = Q2

2η
vα(′) , (33)

where α ∈ {L, T ,LT , T T }.
Assuming that the deuteron density matrix is diagonal with

respect to an orientation axis �d having spherical angles (θd, φd )
with respect to the coordinate system associated with the
scattering plane in the lab frame, one has with respect to �d
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as quantization axis

ρd
mdmd

′ = 1√
3

(−)1−md

∑
I M

Î

(
1 1 I

m′
d −md M

)
×P d

I e−iMφd dI
M0(θd ). (34)

This means that the deuteron target is characterized by
four parameters, namely, the vector and tensor polarization
parameters P d

1 and P d
2 , respectively, and by the orientation

angles θd and φd . The orientation parameters are related to the
probabilities {pm} for finding a deuteron spin projection m on
the orientation axis by

P d
I = δI0 +

√
3

2
(p1 − p−1) δI1 + 1√

2
(1 − 3 p0) δI2. (35)

If one chooses the c.m. frame as the reference frame as in the
present work, one should note that the deuteron density matrix
undergoes no change in the transformation from the lab to the
c.m. system, since the boost to the c.m. system is collinear
with the deuteron quantization axis [12].

Following the same steps as in [1], one finds for the
general eight-fold differential cross section for single pion
electroproduction with longitudinally polarized electrons:

d8σ

dEe′d�e′dpπd�πd�p

= 2αqed

Q4

ke′

ke

2∑
I=0

P d
I

[
ρL

∑
M � 0

dI
M0(θd )

× (
τ IM
L cos(Mφπd ) + σ IM

L sin(Mφπd )
)

+ ρT

∑
M � 0

dI
M0(θd )

(
τ IM
T cos(Mφπd ) + σ IM

T sin(Mφπd )
)

+ ρLT

M∑
M=−I

dI
M0(θd )

(
τ IM
LT cos φM + σ IM

LT sin φM

)
+ ρT T

M∑
M=−I

dI
M0(θd )

(
τ IM
T T cos ψM + σ IM

T T sin ψM

)
+hρ ′

T

∑
M � 0

dI
M0(θd )

(
τ ′IM
T cos(Mφπd ) + σ ′IM

T sin(Mφπd)
)

+hρ ′
LT

M∑
M=−I

dI
M0(θd )

(
τ ′IM
LT cos φM + σ ′IM

LT sin φM

)]
,

(36)

with

φπd = φπ − φd, φM = Mφπd − φπ,

and

ψM = Mφπd − 2φπ . (37)

Again we remind the reader that the electron kinematics refer to
the lab system whereas the final-state kinematic variables and
the structure functions refer in this work to the c.m. system,
which we have chosen for the evaluation of the T matrix.
However, we point out that the expression for the differential
cross section in (36) holds in general irrespective of which

frame of reference collinear with �q is chosen for the evaluation.
Obviously, then the final-state variables pπ, θπ , θp, and φpπ

refer to this frame.
The various exclusive structure functions τ (′)IM

α and σ (′)IM
α

constitute the polarization observables that determine beam,
target, and beam-target asymmetries. The structure functions
are defined by

(τ/σ )IM
L = ± 1

1 + δM0
�e/
m u00

IM, M � 0, (38)

(τ/σ )IM
T = ± 1

1 + δM0
�e/
m

(
u11

IM + u−1−1
IM

)
, M � 0,

(39)

(τ/σ )IM
LT = ±�e/
m

(
u10

IM − u0−1
IM

)
, (40)

(τ/σ )IM
T T = ±�e/
m u1−1

IM , (41)

(τ/σ )′IM
T = ± 1

1 + δM0
�e/
m

(
u11

IM − u−1−1
IM

)
, M � 0,

(42)

(τ/σ )′IM
LT = ±�e/
m

(
u10

IM + u0−1
IM

)
(43)

(where not all the kinematic variables W, Q2, pπ , θπ , θp, and
φpπ on which they depend are indicated) in terms of the
quantities introduced in [1]:

u
µ′µ
IM (W,Q2, pπ , θπ , θp, φpπ )

= c(W,Q2, pπ , θπ , θp, φpπ )
Î√
3

∑
mdmd ′

(−)1−md

×
(

1 1 I

m′
d −md M

) ∑
sms

t∗smsµ′m′
d
(W,Q2, pπ , θπ , θp, φpπ )

× tsmsµmd
(W,Q2, pπ , θπ , θp, φpπ ). (44)

In [1] we have shown that they behave under complex
conjugation as[

u
µ′µ
IM (W,Q2, pπ , θπ , θp, φpπ )

]∗

= (−)M u
µµ′
I−M (W,Q2, pπ , θπ , θp, φpπ ). (45)

From this property follows in particular that the u
µµ

I0 are real.

Furthermore, the u
µ′µ
IM possess the symmetry property

u
−µ′−µ

IM (W,Q2, pπ , θπ , θp, φpπ )

= (−)I+M+µ′+µ u
µ′µ
I−M (W,Q2, pπ , θπ , θp,−φpπ ), (46)

which yields in combination with (45)

u
−µ′−µ

IM (W,Q2, pπ , θπ , θp, φpπ )

= (−)I+µ′+µ
[
u

µµ′
IM (W,Q2, pπ , θπ , θp,−φpπ )

]∗
. (47)
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At the photon point, one finds the following equivalencies to
the corresponding quantities in pion photoproduction defined
in [1]:

(τ/σ )IM
T = q0W

2π2Ed

(τ/σ )0
IM,

(τ/σ )IM
T T = q0W

2π2Ed

(τ/σ )lIM, (48)

(τ/σ )′IM
T = q0W

2π2Ed

(τ/σ )cIM,

where obviously the kinematic variables on the right-hand
sides should refer to the same reference frame as on the left-
hand sides.

For the semi-exclusive reaction �d(�e, e′π )NN , where
besides the scattered electron only the produced pion
is detected, the basic quantities are obtained from the
u

µ′µ
IM (pπ, θπ , θp, φpπ ) in (44) by integration over d�p. Thus

we introduce

U
µ′µ
IM (W,Q2, pπ , θπ )

=
∫

d �pu
µ′µ
IM (W,Q2, pπ , θπ , θp, φpπ )

= Î√
3

∫
d �p c(W,Q2, pπ , θπ , θp, φpπ )

∑
mdm′

d

(−)1−md

(
1 1 I

m′
d −md M

)∑
sms

[tsmsµ′m′
d
(W,Q2, pπ , θπ , θp, φpπ )]∗

tsmsµmd
(W,Q2, pπ , θπ , θp, φpπ ). (49)

From the properties of (45) and (46) one obtains corresponding
properties (

U
µ′µ
IM

)∗ = (−)MU
µµ′
I−M and

U
−µ′−µ

IM = (−)I+M+µ+µ′(
U

µµ′
IM

)∗
. (50)

Combining them leads to

U
−µ′−µ

IM = (−)I+µ+µ′(
U

µµ′
IM

)∗
. (51)

An important consequence of this latter property is that,
according to (38) through (42), the following integrated
structure functions vanish for α ∈ {L, T ,LT , T T }:∫

d �p τ 1M
α = 0 and

∫
d �p σ ′1M

α = 0, (52)∫
d �p σ IM

α = 0 and
∫

d �p τ ′IM
α = 0 forI = 0, 2. (53)

The remaining semi-exclusive structure functions govern the
six-fold semi-exclusive differential cross section for which we
find as final form

d6σ

dEe′d�e′dpπd�π

= 2αqed

Q4

ke′

ke

2∑
I=0

P d
I

[
ρL

∑
M � 0

dI
M0(θd )f̃ IM

L

× cos
(
Mφπd − δI1

π

2

)
+ ρT

∑
M � 0

dI
M0(θd )f̃ IM

T

× cos
(
Mφπd − δI1

π

2

)
+ ρLT

M∑
M=−I

dI
M0(θd )f̃ IM

LT

× cos
(
φM − δI1

π

2

)
+ ρT T

M∑
M=−I

dI
M0(θd )f̃ IM

T T

× cos
(
ψM − δI1

π

2

)
+ hρ ′

T

∑
M � 0

dI
M0(θd )f̃ ′IM

T

× sin
(
Mφπd + δI1

π

2

)
+ hρ ′

LT

M∑
M=−I

dI
M0(θd )f̃ ′IM

LT

× sin
(
φM + δI1

π

2

) ]
, (54)

where the angles φπd, φM , and ψM are defined in (37). The
semi-exclusive structure functions f̃ (′)IM

α are given by

f̃ IM
L = iδI1

1 + δM0
U 00

IM, f̃ IM
T = 2

1 + δM0
�e

(
iδI1U 11

IM

)
,

f̃ IM
LT = 2 �e(iδI1U 10

IM ), f̃ IM
T T = �e

(
iδI1U 1−1

IM

)
,

f̃ ′ IM
LT = 2 
m

(
iδI1U 10

IM

)
, f̃ ′IM

T = 2

1 + δM0

m

(
iδI1U 11

IM

)
.

(55)

They depend on W,Q2, pπ , and θπ . Because U 11
I0 is real

according to (50), the structure functions f̃ 10
T and f̃ ′20

T vanish
identically. We point out that for forward and backward pion
emission (i.e., for θπ = 0 and π ), the following structure
functions have to vanish:

f̃ IM
L = 0 and f̃

(′)IM
T = 0 for M �= 0,

f̃
(′)IM
LT = 0 for M �= 1, and T IM

T T = 0 for M �= 2

(56)

because in that case the differential cross section cannot depend
on φπ , since at θπ = 0 or π the azimuthal angle φπ is undefined
or arbitrary. This feature can also be shown by straightforward
evaluation of U

µ′µ
IM using the explicit representation of the

t matrix in (18) as shown in [1].
When only the direction of the outgoing pion is mea-

sured and not its momentum, the corresponding differential
cross section d5σ/(dEe′d�e′d�π ) is given by an expression
formally analogous to (54), where only the aforementioned
structure functions are integrated over the pion momentum,
that is, by the replacement

f̃ (′)IM
α (W,Q2, pπ , θπ ) → f (′)IM

α (W,Q2, θπ )

=
∫ pπ,max

0
dpπ f̃ (′)IM

α (pπ, θπ ) (57)

for α ∈ {L, T ,LT , T T }. The upper integration limit is listed
in (6).

The general totally inclusive cross section with respect to
the hadronic final state d(e, e′)πNN is obtained from (54) by
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integration over both pπ and �π , resulting in

d3σ

dEe′d�e′
= αqed

Q4

ke′

ke

{
ρLF 00

L + ρT F 00
T + P d

1

[
hρ ′

T F ′10
T d1

00(θd )

+ (
ρLT F 11

LT + hρ ′
LT F ′11

LT

)
d1

10(θd )
]

cos φd

+P d
2

[(
ρLF 20

L + ρT F 20
T

)
d2

00(θd ) + ρLT F 21
LT d2

10

× (θd ) cos φd + ρT T F 22
T T d2

20(θd ) cos(2φd )
]}

(58)

in terms of various form factors

F (′)IM
α (W,Q2) =

∫
d�π

∫ pπ, max

0
dpπ f̃ (′)IM

α (W,Q2, pπ , θπ )

= 2π

∫
d(cos θπ )f (′)IM

α (W,Q2, θπ ). (59)

At the photon point one obtains from (48) the following
relations to the contributions to the total photoproduction cross
section as listed in Eq. (83) of [1]:

F 00
T = q0W

2π2Ed

σ0, F 20
T = q0W

2π2Ed

T
0
20,

(60)

F ′10
T = q0W

2π2Ed

T
c

10, F 22
T T = q0W

2π2Ed

T
l

22.

Finally, we point out that for coherent electroproduction of π0

on the deuteron formally the same expression as in (54) holds
with structure functions, which are defined in analogy to (55),
replacing

U
µ′µ
IM → c(W,Q2, θπ )

Î√
3

∑
mdm′

d

(−)1−md

(
1 1 I

m′
d −md M

)
×

∑
m′′

d

t∗m′′
dµ′m′

d
(W,Q2, θπ ) tm′′

dµmd
(W,Q2, θπ ),

(61)

where c(W,Q2, θπ ) denotes a kinematic factor.

III. RESULTS AND DISCUSSION

As elementary pion-production amplitude we use the
MAID-2003 model, which is parametrized in terms of invari-
ant amplitudes and allows for the evaluation in any frame of
reference. As in photoproduction, one encounters the principal
problem of off-shell continuation. In the present work this
problem is neglected by assuming on-shell kinematics for the
struck nucleon and the pion in the final state, because the
MAID amplitudes do not allow an off-shell extrapolation.
For the evaluation of the MAID amplitudes the invariant
πN energy WπN , the squared four-momentum transfer Q2,
and the pion angle θπN in the πN c.m. system have to be
specified. Although Q2 is given by the virtual photon, one has
to determine WπN and θπN from the kinematics of the active
nucleon in the γ ∗-d c.m. system. For this purpose we assume
as just mentioned that the four momenta pπ and pf of pion
and active nucleon, respectively, in the final state obey the
on-shell condition. Then the needed πN c.m. variables are
obtained by a Lorentz transformation with boost parameter

�β = ( �pπ + �pf )/(Eπ + Ef ). The energy and momentum of
the initial off-shell nucleon then are determined through the
energy-momentum conservation at the elementary vertex (i.e.,
pi = pπ + pf − q).

The explicit calculation of the NN-rescattering contribution
follows the same approach as in photoproduction [2] by using
the separable representation of the realistic Paris potential from
[13] and including all partial waves up to 3D3. From previous
results on photoproduction it is expected that any realistic
NN-potential model will give very similar results. Thus the
use of the Paris potential is not crucial. Also, with respect to
the question of whether the use of a nonrelativistic NN potential
can be justified in view of the high energies involved, we refer
to the remark in [2]. Similarly, we use for the evaluation of
πN rescattering a realistic separable representation of the πN

interaction from [14] and take into account all partial waves
up to l = 2.

A. Survey on semi-exclusive structure functions

We will start with a general survey of the properties of
the semi-exclusive structure functions, unpolarized as well
as polarized. With respect to the two possible charged pion
channels we will consider here π+ production only, because
the role of hadronic FSI in π− production is expected to be very
similar to the one in π+ production according to the results in
photoproduction [2].

1. Unpolarized semi-exclusive structure functions

All four unpolarized structure functions for π+ and π0

electroproduction are shown in Fig. 2 in the IA and with
inclusion of only NN rescattering for an excitation energy Ex =
180 MeV (Ex = W − 2M − mπ ), which is in the region of the
� resonance, and for a quite low squared four-momentum
transfer Q2 = 0.01 GeV2. The dependence on Q2 will be
discussed later. The reason that we show only the influence
of NN rescattering is that πN rescattering is very small. This
fact has been noticed already by many authors [2,16–18]
for the case of incoherent photoproduction of pions on the
deuteron. Close to the threshold it follows from the fact
that the characteristic scale for πN -FSI effects is given by
the small ratio of the pion-nucleon scattering length to the
deuteron radius (i.e., aπN/Rd � 1). At higher energies the
insignificance of pion rescattering is related to the smallness of
the parameter (pRd )−1, where p is a characteristic momentum
of the rescattered pion. As a consequence, the πN interaction
is much less effective in comparison to NN rescattering.

One readily notes in Fig. 2 that for charged pion production
the rescattering effects are in general quite small. It has
already been mentioned that they arise predominantly from NN
rescattering, whereas πN rescattering is almost negligible. The
only exception is the near-threshold region, as will be shown
in the following. For π+ production f 00

L exhibits a distinct
forward peak whereas f 00

T possesses a much broader angular
distribution with a maximum around 75◦. In f 00

L significant
FSI effects appear only at small angles below 30◦, where they
result in a small decrease. In contrast to this, one notes in f 00

T
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FIG. 2. Unpolarized structure functions for π+ electroproduction (left four panels) and π 0 electroproduction (right four panels) at excitation
energy Ex = 180 MeV and squared four-momentum transfer Q2 = 0.01 GeV2 with NN rescattering in the final state (NN-FSI) and without
(IA). For π 0 production, results for the modified IA are also given (IA-mod).

FSI effects over the whole angular range, with a slight decrease
in the forward direction and and a small increase above 50◦.
The interference structure functions are of the same magnitude
as the diagonal ones. Both exhibit a maximum, around 40◦ for
f 00

LT with a smaller width and near 70◦ for f 00
T T with a broader

distribution. FSI results in a slight reduction in f 00
LT and a small

enhancement in f 00
T T .

The unpolarized structure function for neutral pion produc-
tion in Fig. 2 exhibit quite a different behavior. The dramatic
influence of FSI, however, stems predominantly from the
well-known fact that in the IA a large fraction of coherent
production is included because the final NN plane wave is not
orthogonal to the deuteron bound-state wave function. As is
discussed in detail in [2] the effect of this nonorthogonality
can be eliminated by applying a modified IA in which the
deuteron wave-function component is projected out from the
final NN plane wave (see Appendix B of [2]). The additional
influence of FSI then is indeed quite small and comparable
to charged pion production. In contrast to π+ production,
f 00

L exhibits a pronounced peak in the backward direction.
However, in absolute size this structure function is much
smaller than f 00

T and thus it is not surprising that FSI is noteable
over the whole angular region, being particularly sizable near
the minimum around 50◦. However, f 00

T and the interference
structure functions f 00

LT and f 00
T T as well show very little

FSI effects. Of interest is the pronounced forward-backward
asymmetry of f 00

LT .
As already mentioned, the πN FSI plays a role only

near threshold. This is demonstrated in Fig. 3, where we
show for π0 production the unpolarized structure functions
in the near-threshold region (i.e., 10 MeV above threshold).
In particular, the diagonal structure functions f 00

L and f 00
T

show quite a significant enhancement from πN rescattering.

In contrast to this, the interference structure functions are
affected very little by the additional πN FSI. But as soon
as the excitation energy approaches the first resonance region,
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FIG. 3. Influence of NN (NN-FSI) and additional πN (NN+πN-
FSI) final-state rescattering compared to the impulse approximation
(IA) on unpolarized structure functions of π0 electropoduction
near threshold at excitation energy Ex = 10 MeV and squared
four-momentum transfer Q2 = 0.01 GeV2. For the curve labeled π

Nmod-FSI the charge-exchange contribution to the πN FSI has been
switched off.
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FIG. 4. Unpolarized structure functions for π+ electroproduction (left four panels) and π 0 electroproduction (right four panels) at excitation
energy Ex = 580 MeV and squared four-momentum transfer Q2 = 0.01 GeV2 with NN rescattering in the final state (NN-FSI) and without
(IA). For π 0 production, results for the modified IA are also given.

the influence of the πN FSI dies out rapidly. The sizable
influence of the πN FSI in π0 production shown in Fig. 2
is mostly due to the strong suppression of the IA cross
section in the π0 channel in the near-threshold region. As
is well known, at very low kinetic energies of the active πN

system the dipole amplitude E0+ in the neutral channel is
about an order of magnitude smaller than the one for π±
production. As a result, the dominant πN rescattering effect

in π0 production is the charge-exchange mechanism, in which
the production of a charged pion on one of the nucleons is
followed by a charge-exchange rescattering on the second
nucleon. This fact is demonstrated in Fig. 2 by the curve
labeled “NN-FSI+πNmod,” representing the calculation for
which this charge-exchange mechanism has been switched off.

The behavior of the unpolarized structure functions in
the second resonance region is displayed in Fig. 4. One
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FIG. 6. Same as Fig. 5 but at excitation energy Ex = 580 MeV.

readily notes a significant change in the angular distributions
compared to those in the � regions. For π+ production, a more
pronounced forward peaking is seen, particularly for f 00

T and
f 00

T T . FSI effects are almost negligible. This is not the case for
π0 production, where the FSI still has a significant influence,
although much less than in the � region. Also here a large
fraction of FSI effects is eliminated by the modified IA. The
angular distributions are still broad except for f 00

L , where one
notes a forward increase.

The dependence on Q2 is shown in Fig. 5 for Ex =
180 MeV on the � resonance and in Fig. 6 for Ex = 580 MeV
in the second resonance region. At both energies, the angular
behavior of the structure functions for different values of Q2

look quite similar. For π+ production the shape of the four
structure functions remains unchanged qualitatively except for
f 00

T T at the lowest Q2 value; only the size varies with Q2. In f 00
L

one first notes a slight increase going from Q2 = 0.01 GeV2

to Q2 = 0.05 GeV2 but at higher Q2 a steady rapid decrease
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without (IA). For π 0 production, results for the modified IA are also given.

is seen. The transverse structure function shows a general
decrease in size, whereas for f 00

LT the decrease starts only
after Q2 = 0.05 GeV2. The transverse-transverse interference
function first increases slightly, then remains almost constant
up to Q2 = 0.1 GeV2, and finally becomes rapidly smaller at
higher Q2.

In contrast to this, the structure functions for neutral pion
production in the right panels of Fig. 5 show quite a different
Q2 dependence. Here, f 00

L exhibits a strong increase at
forward angles with a corresponding decrease in the backward
direction. For f 00

T the maximum is slightly shifted toward
smaller angles whereas the amplitude remains constant up
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to Q2 = 0.07 GeV2 and then falls off rapidly at higher Q2.
The LT-interference function shows an increase of the forward
maximum and a decrease of the backward minimum. Only for
f 00

T T does the shape remains unchanged whereas the amplitude
falls off with increasing Q2. Qualitatively, one finds a similar
behavior at the higher excitation energy Ex = 580 MeV in the
second resonance region (Fig. 6).

2. Polarized semi-exclusive structure functions for beam
and target polarization

For a longitudinally polarized electron beam and a polarized
deuteron target the number of structure functions increases
significantly. For that reason we show the longitudinal,
transverse, and interference functions in separate figures The
polarized longitudinal structure functions in Fig. 7 for π+
production exhibit in general a pronounced forward peaking,
except for f 11

L , which exhibits an oscillatory behavior with a
maximum near 60◦. Since f 20

L and f 21
L are comparable in size

to the unpolarized f 00
L , one expects a sizable dependence on the

tesor polarization of an oriented deuteron target. This has been
pointed out already in [7]. The other two structure functions,
f 11

L and f 22
L , are smaller by about a factor of 5. For neutral

pion production the polarized structure functions are an order
of magnitude smaller. They exhibit a much broader angular
distribution. FSI effects are very strong as in the unpolarized
case, which, however, are again largely reduced by using the
modified IA. But the remaining FSI effects are still quite
significant, in particular for f 21

L and f 22
L .

Much broader angular distributions show many of the trans-
verse structure functions in Fig. 8. For π+ production, only f 20

T

and f 22
T exhibit a strong forward peaking. Comparable in size

to the unpolarized f 00
T is f 11

T , and also f 20
T is sizable at small

angles. Remarkable is the fact that f 11
T is almost independent

of FSI, whereas f 21
T is quite sensitive to FSI. Compared to π+

one finds a different, more oscillatory angular dependence.
The largest one is for f 11

T whereas the other three structure
functions are considerably smaller. Additional FSI effects
beyond the modified IA are small in f 11

T and f 20
T but are more

pronounced in the other structure functions of smaller absolute
size, in particular being very strong in the smallest f 22

T .
Of the eight polarized LT-interference structure functions

we show in Fig. 9 the four most dominant ones, which
are comparable in size to the unpolarized ones. They show
quite different characteristic angular behavior. In particular
for π+ production, f 11

LT and f 21
LT possess sizable peaks at 0◦.
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FIG. 10. Selected polarized structure functions of type TT and for polarized electrons of type T for π+ electroproduction (left five panels)
and π 0 electroproduction (right five panels) at excitation energy Ex = 180 MeV and squared four-momentum transfer Q2 = 0.01 GeV2 with
NN rescattering in the final state (NN-FSI) and without (IA). For π0 production, results for the modified IA are also given.
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FIG. 11. Q2 dependence of selected polarization structure functions of π+ electroproduction (left six panels) and π 0 (right six panels)
electroproduction at excitation energy Ex = 180 MeV and various squared four-momentum transfers Q2 = 0.01, 0.02, 0.05, 0.1, 0.2, and
0.5 GeV2.

All structure functions are almost independent of FSI for π+
production, and even for π0 production they exhibit little FSI
effects beyond the modified IA.

Of the remaining polarized structure functions of TT type
and for longitudinally polarized electrons only a few are
displayed in Fig. 10. Again we note very little influence of
NN rescattering for both π+ production and π0 production
beyond the modified IA. Of particular interest is f ′10

T , which
determines the contribution of single pion production on the
deuteron to the generalized Gerasimov-Drell-Hearn sum rule
[15]. To conclude this survey, we show in Fig. 11 the Q2

dependence of some selected examples of polarized structure
functions.

B. Comparison with other calculations and experiment

We will begin the comparison with an earlier calculation
by Loucks et al. [7], who have studied the influence of
FSI for the kinematics of the Saclay experiment [5] using
a simple pion-production model. In particular, they found
a strong dependence of the semi-exclusive cross section on
the deuteron orientation by considering the idealized case
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FIG. 12. Semi-exclusive differential cross
sections for π+ production on a deuteron with
definite spin projection md = 0 (left panel)
and |md | = 1 (right panel) at W = 2126 MeV
for the kinematics of the Saclay experiment
[5] (Ee = 645 MeV, Ee′ = 355 MeV, θe = 36◦).
Solid curves show present results; dotted curves
are those of Loucks et al. [7] divided by 4.
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M. TAMMAM, A. FIX, AND H. ARENHÖVEL PHYSICAL REVIEW C 74, 044001 (2006)

0

2

4

6

8

10

12

14

16

18

330 340 350 360 370 380

d6  σ
/d

E
e’d

Ω
e’d

Ω
π d

E
π[

µb
/G

eV
2 sr

2 ]

Eπ [MeV]

md=0

NN-FSI
Loucks et al.

0

2

4

6

8

10

12

14

16

18

330 340 350 360 370 380

d6  σ
/d

E
e’d

Ω
e’d

Ω
π d

E
π[

µb
/G

eV
2 sr

2 ]

Eπ [MeV]

|md|=1

NN-FSI
Loucks et al.

FIG. 13. Same as in Fig. 12 at W =
2205 MeV for the kinematics of the Saclay ex-
periment [5] (Ee = 645 MeV, Ee′ = 269 MeV,
θe = 36◦).

of an intial deuteron state being prepared in a state with
definite spin projection m0

d on the momentum transfer. In our
formalism, this means deuteron orientation angles θd = 0 and
φd = 0 and a deuteron density matrix ρd

mdmd
′ = δmdmd

′δmdm0
d
.

The corresponding vector and tensor orientation parameters,
P d

1 and P d
2 , respectively, as function of m0

d are obtained from
(35). Specifically, one finds

m0
d = 0: P d

1 (0) = 0, P d
2 (0) = −

√
2,

m0
d = ±1: P d

1 (±1) = ± 3√
2
, P d

2 (±1) = 1√
2
. (62)

In fact, these two values for P d
2 mark the maximal and minimal

possible values for the tensor polarization. For these two cases,
one finds from (54) for pion emission along �q
d6σ (�π = (0, 0),�d = (0, 0))

dE′
ed�′

edpπd�π

∣∣∣
md=0

= αqed

Q4

k′
e

ke

[
ρLf̃ 00

L + ρT f̃ 00
T −

√
2
(
ρLf̃ 20

L + ρT f̃ 20
T

)]
, (63)

d6σ (�π = (0, 0),�d = (0, 0))

dE′
ed�′

edpπd�π

∣∣∣
md=±1

= αqed

Q4

k′
e

ke

[
ρLf̃ 00

L + ρT f̃ 00
T + 1√

2

(
ρLf̃ 20

L + ρT f̃ 20
T

)]
. (64)

We compare in Figs. 12 and 13 the results of [7] with
the present calculation. In view of the fact that, as pointed
out in [9], the elementary production model of [7] gives a
cross section too large by about a factor of 4 compared to
experiment, we have renormalized the results of [7] by this
factor. Qualitatively, we find the same dependence on the

orientation of the deuteron; namely, for md = 0 a dominant
contribution from the antibound 1S0-NN state near the NN
threshold at W = 2126 MeV masks completely the quasi-free
peak, which is located at E

qf,lab
π = 271.8 MeV according to

(8) (left panel of Fig. 12), whereas for |md | = 1 one notes
a strong suppression of the 1S0 state at the same invarient
energy W so that the quasi-free peak becomes clear (right
panel of Fig. 12). At the higher energy W = 2205 MeV in
Fig. 13 the dependence on the orientation is much weaker.
For both orientations the 1S0 peak is the dominant feature,
and the quasi-free peak at E

qf,lab
π = 340.5 MeV is barely seen.

However, on a quantitative level, we find quite significant
differences to the results of [7], apart from the overall strength.
At W = 2126 MeV, we obtain a much stronger suppression of
the 1S0 state, which appears only as a shoulder. Furthermore,
at lower pion energies (i.e., with increasing NN energy), we
find significantly higher strength near the quasi-free peak by
almost a factor of 2. The origin of this difference is not clear.
Also at the higher energy W = 2205 MeV one notes again
much higher strengths at lower pion energies and moreover
also a slightly stronger dependence on the tensor polarization.

Now we turn to a comparison of our results with experi-
mental data and with the calculations of Hafidi and Lee [8]
and Levchuk et al. [9] in Fig. 14. The left panel shows the
semi-exclusive differential cross section for pion emission
in the forward direction for the kinematics of the Saclay data
[5]; the right panel shows the cross section for the kinematics
of the Jefferson Lab data [6].

For the Saclay data (left panel of Fig. 14) all three
calculations give very similar results for the maximum of
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FIG. 14. Semi-exclusive differential cross
sections for d(e, e′π+) in parallel kinemat-
ics, that is, pion emission along the mo-
mentum transfer as functions of the missing
mass Mx . Left panel: kinematics of Saclay
data [5] (Ee = 645 MeV, E′

e = 355 MeV, θ ′
e =

36◦); right panel: kinematics of Jefferson Lab
data [6] (Ee = 845 MeV, E′

e = 395 MeV, Q2 =
0.4 GeV2). The solid curve shows present cal-
culations with NN-FSI included; the dashed
curve is for IA alone; the dash-dot curve shows
calculations of Hafidi and Lee [8]; and the
dotted curve shows the calculations of Levchuk
et al. [9].
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the data, which coincides with the position of the quasi-free
kinematics (i.e., M

qf
x = 1885 MeV), and at higher missing

mass all of them slightly underestimate the data. However,
at lower missing mass both our calculation and the one of
Levchuk et al. exhibit the sharp and very pronounced 1S0

peak right at threshold, which is absent in the calculation of
Hafidi and Lee and also not seen in the data. It remains a
puzzle why this pronounced peak, which is seen in deuteron
electrodisintegration near threshold [19] as well as in pion
photoproduction [20], is absent in the data of [5].

In contrast to this, the three theoretical results for the kine-
matics of the Jefferson Lab data (right panel of Fig. 14) differ
substantially in the quasi-free maximum (Mqf

x = 1931 MeV).
Whereas the results of Levchuk et al. overshoot the maximum,
the one of Hafidi and Lee underestimate it by about the
same amount. In this case, our calculation gives a fairly good
account of the data, although one still notes a slight systematic
underestimation. Near threshold we and also Levchuk et al.
find again a sharp 1S0 peak but differing in height, whereas
in the results of Hafidi and Lee there appears no indication of
such a peak at all.

IV. CONCLUSION AND OUTLOOK

In the present paper we have investigated the influence
of final-state interactions in pion electroproduction on the
deuteron for energies from threshold up to the second
resonance region and squared momentum transfers between
0.01 and 0.5 GeV2. Special emphasis was laid on the study
of polarization observables for beam and target polarization.
Formal expressions for all structure functions as quadratic
Hermitean forms in the production amplitudes were derived.
These govern the unpolarized differential cross section as well
as the various polarization observables, thus extending the
formal developments for pion photoproduction in [1].

The semi-exclusive structure functions of d(e, e′π )NN

were then evaluated by taking the elementary operator for
eN → e′πN ′ from the MAID-2003 analysis. The interaction
in the final state was included on the basis of the two-
body t matrices for NN and πN scattering, respectively,
restricting their contribution to the first order in the multiple-
scattering series. With respect to the energy region above
the �(1232) resonance, the present work represents the first
realistic calculation that extends into the second resonance
region. The results show that primary importance of the NN
interaction and leads to sizable modifications of some of
the structure functions, especially in the energy region up to
the � resonance. However, the effect of pion rescattering is
significant and should be included only close to threshold,
much below the � resonance. At higher energies it can safely
be neglected.

Most visibly distorted by the interaction between the final
particles are the unpolarized and polarized structure functions
in the π0 channel, in contrast to what occurs in the π+ channel,
which is much less sensitive to FSI effects. As in the case of
photoproduction, this strong effect in the π0 channel is almost
completely due to a spurious contribution of the coherent
reaction because of the nonorthogonality of the deuteron wave

function to the plane wave of the final two nucleons in the IA.
After this contribution is removed, the remaining FSI effect is
similar in size to what has been found in the charged channel.

With respect to the few existing experimental data we find in
general a satisfactory agreement with the data for the missing
mass spectra of d(e, e′π+) in parallel kinematics measured at
Saclay [5] and Jefferson Lab [6] around the quasi-free peaks.
In comparison to the theoretical results of [7] we find a similar
strong dependence on the tensor polarization of an oriented
deuteron target in the near-threshold region. However, we
obtain a much stronger quasi-free peak relative to the 1S0

spike right at threshold. With respect to the work of [8] we see
a much stronger influence of the NN interaction at very low
excitation energies in the NN subsystem as manifest by the 1S0

pea,k which is not present in the results of [8]. However, we
do not find this peak as pronounced as predicted in [9]. The
origin of these differences is not clear.

In view of the fact that at present only few data are available
for the unpolarized semi-exclusive differential cross section of
π+ electroproduction at very forward angles, there is an urgent
need for more measurements of angular distributions at higher
energies and for various momentum transfers for all three
charge states of single pion electroproduction on the deuteron.
Furthermore, polarization data are totally missing, although
they would provide a more detailed analysis of this reaction,
in particular, a more detailed investigation of the elementary
reaction on the neutron in π− production on the deuteron. It
is therefore very desirable to have new precise experiments
to improve our knowledge of pion electroproduction on the
nucleon and deuteron.
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APPENDIX: RELATION TO OTHER
FORMAL EXPRESSIONS

In this appendix we give the relations of the structure
functions f̃ 00

α defined in (55) to other ones used in the
literature. We begin with the expression for the semi-exclusive
differential cross section of Loucks et al. [7]:

d6σ

dEe′d�e′dEπd�π

= σM

pπEπMp

12(2π )3

[
vLRL + vT RT

+ vLT RLT − vT T RT T

]
, (A1)

where we assume that all quantities refer to the lab system
although this is not stated explicitly in [7]. In fact, in this
appendix all variables refer to the lab system if not stated
otherwise and indicated specifically. Here, the Mott cross
section is denoted by σM = α2

qed cos2(θe/2)/4E2
e sin4(θe/2),

and the kinematic functions vα with α ∈ {L, T ,LT , T T } are
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related to the virtual photon density matrix in (29) by

vα = 2η

Q2
β−gα (

√
2)δα,LT (−)δα,T T ρα, (A2)

where we have introduced for convenience

gα = 2δα,L + δα,LT . (A3)

Comparing (A1) with (54), one finds the following relation:

Rα(Eπ,�π ) =
(

− 1√
2

cos φc.m.
π

)δα,LT (− cos 2φc.m.
π

)δα,T T
βgα

× 12(2π )3

αqedMp p2
π

J
(
pc.m.

π , �c.m.
π ; Eπ,�π

)
f̃ 00

α

×(
pc.m.

π , θ c.m.
π

)
, (A4)

where the Jacobian

J (pc.m.
π , �c.m.

π ; Eπ,�π ) =
∣∣∣∂(pc.m.

π , �c.m.
π )

∂(Eπ,�π )

∣∣∣
= pπEc.m.

π(
pc.m.

π

)2 (A5)

takes care of the transformation from the c.m. frame variables
to the lab frame ones, because we had defined the structure
functions f 00

α with respect to c.m. variables.
Next we consider the expression for the semi-exclusive

differential cross section of Levchuk et al. [9]:

dσ

dEe′d�e′dEπd�π

= σMpπEπ

[
ξ 2WC +

(
η + ξ

2

)
WT

− ξ
√

η + ξ cos φπ WI

+ ξ

2
cos 2φπ WS

]
, (A6)

where η and ξ are given in (32). Noting the relations to the
virtual photon density matrix in (29),

ξ 2 = 1

β2

2η

Q2
ρL, η + ξ

2
= 2η

Q2
ρT ,

(A7)

ξ
√

η + ξ =
√

2

β

2η

Q2
ρLT ,

ξ

2
= − 2η

Q2
ρT T ,

with β also given in (32), and changing slightly the notation
by setting WL = WC and WLT = WI , one finds the relation

Wα(Eπ, θπ ) = (−)δα,T T

(
− 1√

2

)δα,LT βgα

αqed p2
π

J
(
pc.m.

π , �c.m.
π ;

×Eπ,�π

)
f̃ 00

α

(
pc.m.

π , θ c.m.
π

)
. (A8)

Finally, we will consider the parametrization in terms of a
virtual photon flux times a virtual photon cross section as, for

example, used in [6,8], that is,

d6σ

dEe′d�e′dMxd�π

= �
d3σv

dMxd�π

, (A9)

where Mx = √
W 2 + m2

π − 2WEc.m.
π denotes the missing

mass. The virtual photon flux � is defined by

� = αqed

2π2

Ee′

Ee

K

Q2

1

1 − ε
, (A10)

where K = (W 2 − M2
d )/2Md in [8] and K = (W 2 − M2)/2M

in [6], and the virtual photon cross section by

d3σv

dMxd�π

= d3σT

dMxd�π

+ ε
d3σL

dMxd�π

+
√

2ε(1 + ε)

d3σLT

dMxd�π

cos φπ + ε
d3σT T

dMxd�π

cos 2φπ, (A11)

where ε = ξ/(ξ + 2η). In [8] only the first two terms were
included since only pion emission along �q was considered
where the two interference terms vanish. Using the relations

1

1 − ε
= 2

Q2
ρT , ε = −ρT T

ρT

= 1

2β2ξ

ρL

ρT

,

(A12)√
2ε(1 + ε) =

√
2

β2ξ

ρLT

ρT

,

one finds for the cross section a form analogous to our
expression in (54):

d6σ

dEe′d�e′dMxd�π

= αqed

π2

Ee′

Ee

K

Q4

[
1

2β2ξ
ρL

d3σL

dMxd�π

+ ρT

d3σT

dMxd�π

+
√

2

ξ

1

β
ρLT

d3σLT

dMxd�π

× cos φπ − ρT T

d3σT T

dMxd�π

cos 2φπ

]
.

(A13)

Comparison of this expression with (54) yields a final relation
of

d3σα

dMxd�π

= (β
√

2ξ )gα

2δα,LT

2π2

K
J
(
pc.m.

π , �c.m.
π ; Mx,�π

)
× f̃ 00

α

(
pc.m.

π , θ c.m.
π

)
, (A14)

with

J
(
pc.m.

π , �c.m.
π ; Mx,�π

)
=

(
pπ

pc.m.
π

)2
Ec.m.

π Mx

|(q0 + Md )pπ − Eπq cos θπ | . (A15)
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[15] H. Arenhövel, Phys. Lett. B595, 223 (2004).
[16] J.-M. Laget, Phys. Rep. 69, 1 (1981).
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