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No-recoil approximation to the knock-on exchange potential in
the double folding model for heavy-ion collisions
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We propose the no-recoil approximation, which is valid for heavy systems, for a double folding nucleus-nucleus
potential. With this approximation, the nonlocal knock-on exchange contribution becomes a local form. We
discuss the applicability of this approximation for elastic scattering of the 6Li + 40Ca system. We find that, for
this and heavier systems , the no-recoil approximation works as good as another widely used local approximation
that employs a local plane wave for the relative motion between the colliding nuclei. We also compare the results
of the no-recoil calculations with those of the zero-range approximation often used to handle the knock-on
exchange effect.
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The double folding model has been widely used to describe
the real part of the optical potential for heavy-ion collisions
[1–3]. The direct part of the double folding potential is con-
structed by convoluting an effective nucleon-nucleon interac-
tion with the ground-state density distributions of the projectile
and target nuclei. In the double folding model, the exchange
contribution originating from the antisymmetrization of the
total wave function of the system is customarily taken into
account simply through the single-nucleon knock-on exchange
term. The exchange term leads to a nonlocal potential. Since
it is cumbersome to handle the resultant integro-differential
equation, a local approximation has usually been employed.
In the past, many calculations have been performed along
this line by introducing a pseudo zero-range nucleon-nucleon
interaction to mock up the knock-on exchange effect [1,2,4].
The strength of the pseudo interaction has been tuned so as
to reproduce exact results of the integro-differential equation
for proton scattering from various target nuclei at several
incident energies [4]. This approach, in conjunction with
the (density-dependent) Michigan-three-range Yukawa (M3Y)
interaction [5,6], has successfully accounted for observed
elastic and inelastic scattering for many colliding systems
[1,2].

Recently, a more consistent treatment for the exchange term
has also been considered [3,7–10]. This approach obtains
a local potential by employing a local approximation to
the momentum operator (local momentum approximation)
[11,12]. Since the local momentum depends explicitly on
the potential itself, this leads to a self-consistency problem,
which however can be solved iteratively. Because the exchange
potential is directly constructed from a given nucleon-nucleon
interaction of finite range, this approach is more favorable
than the zero-range approximation. In fact, the finite-range
treatment for the exchange term has been successful in
reproducing the experimental angular distributions for light
heavy-ion scattering where the zero-range approximation fails
[7,8,13].

Despite its success, however, there is a potential difficulty
in this approach. That is, the iterative procedure for the self-
consistent problem may not work in the classically forbidden
region, where the local momentum is imaginary. Although

the frozen density approximation used in the double folding
model could be questionable at these low energies, one may
still attempt to construct a nucleus-nucleus potential with the
double folding procedure.

The aim of this Brief Report is to propose an alternative
local approximation to the knock-on exchange term in the
double folding model, which is applicable even in the clas-
sically forbidden region. To this end, we exploit the fact that
the nonlocality of the exchange potential arises from the recoil
effect and thus its range is not large for heavy systems [2,14].
We simply ignore the recoil effect (i.e., introduce the no-recoil
approximation) and obtain a local nucleus-nucleus potential.
As in the local momentum approximation, the only ingredients
needed in our approach are a nucleon-nucleon interaction
and the one-body density matrices of the colliding nuclei.
Our approach is thus complementary to the local momentum
approximation, which is valid even for light systems but may
not work at very low energies, especially at energies below the
Coulomb barrier. A similar no-recoil approximation has been
discussed in Refs. [14–16], as well as for heavy-ion transfer
reactions in Ref. [17]. Here, we systematically investigate the
applicability of the no-recoil approximation by comparing to
the exact result as well as to the result in the local momentum
approximation.

We begin with the Schrödinger equation based on the
double folding model for the relative motion between the
colliding nuclei,

[
− h̄2

2µ
∇2 + Vd (r) + VC(r) − iW (r) − E

]

×ψ(r) + [Vexψ](r) = 0, (1)

where µ and VC are the reduced mass and the Coulomb
potential, respectively, and −iW is the imaginary potential that
simulates the inelastic and fusion processes. Vd is the direct
contribution of the double folding potential given by [1,2]

Vd (r) =
∫

d rP d rT ρP (rP )ρT (rT )v(rT − rP − r), (2)
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and the exchange part is given by [18]

[Vexψ](r) =
∫

d rP d rT ρT (rT − s, rT )ρP (rP + s, rP )

× v(s) ψ(r + αs), (3)

where s = rT − rP − r and α = (AP + AT )/AP AT =
1/AP + 1/AT . Here, v(s) is an effective nucleon-nucleon
interaction, ρT and ρP are the one-body density matrix for
the target and projectile nuclei, respectively, and ρi(r) in
Eq. (2) is their diagonal component (i = P or T ). To evaluate
those density matrices, we use the local density approximation
[8,18,19],

ρ(r̄ + s/2, r̄ − s/2) ∼ ρ(r̄)ĵ1[kF (r̄)s], (4)

where ĵ1(x) = 3(sin x − x cos x)/x3, and evaluate the local
Fermi momentum kF (r) in the extended Thomas-Fermi
approximation.

One can obtain a local approximation to Eq. (3) by noticing

ψ(r + αs) = eiαs· p̂/h̄ψ(r) (5)

and evaluating the momentum operator p̂ in the local WKB
approximation k(r)h̄ (local momentum approximation) [3,7–
12]. This yields a local exchange potential

[Vexψ](r) = Vex(r)ψ(r) (6)

with

Vex(r) =
∫

d rP d rT ρT (rT − s, rT )ρP (rP + s, rP )

× v(s)eiαk(r)·s, (7)

where the magnitude of the local momentum is given by

k(r) =
√

2µ

h̄2 [E − Vd (r) − VC(r) − Vex(r)]. (8)

Notice that the local momentum k(r) has to be determined
consistently with the exchange potential Vex, as it appears
both on the right- and left-hand sides of Eq. (7). One can also
obtain the same expression for the exchange potential (7) by
constructing the trivially equivalent local potential for Eq. (3)
and approximating the relative wave functions with those in
the WKB approximation, that is, ψ(r) ∼ eik(r)·r/

√
k(r).

A further simplification for the exchange term can be
achieved for heavy systems. To this end, we remark that
α in Eq. (3) arises from the variation of center of mass
as a consequence of the exchange of nucleons between the
projectile and target nuclei. It is nothing more than the recoil
effect from the nucleon exchange [2,14] and may be neglected
for heavy systems. For instance, α takes values of 0.0673 and
0.192 for 16O + 208Pb and 6Li + 40Ca, respectively. If one
neglects α in Eqs. (3) and (7), the exchange potential Vex is
simply given by

Vex(r) =
∫

d rP d rT ρT (rT − s, rT )ρP (rP + s, rP )v(s). (9)

We call this approximation the no-recoil approximation.
Notice that the self-consistency problem is not involved
in this approximation, in contrast to the local momentum
approximation.

Let us now investigate numerically the applicability of the
no-recoil approximation. For this purpose, we choose the 6Li +
40Ca system. We use a version of the density-dependent M3Y
(DDM3Y) interaction, CDM3Y6 [9], as the nucleon-nucleon
interaction, v. It is given by

v(r) = Fd (ρ)

[
11061.625

e−4r

4r
− 2537.5

e−2.5r

2.5r

]
(MeV), (10)

for the direct part, (2), and

v(r) = Fex(ρ)

[
−1524.25

e−4r

4r
− 518.75

e−2.5r

2.5r

− 7.8474
e−0.7072r

0.7072r

]
(MeV), (11)

for the exchange part, (3). Here, the length is units of
femtometers, and the density-dependent strength is given by

F (ρ) = C[1 + αe−βρ − γρ], (12)

with ρ = ρP (rP ) + ρT (rT ) and ρ = ρP (rP + s/2) + ρT

(rT − s/2) for the direct and the exchange contributions, Fd

and Fex, respectively. The value for C, α, β, and γ can be
found in Ref. [9]. We assume that the imaginary potential W is
proportional to the double folding potential with the knock-on
exchange term estimated in the zero-range approximation. For
the projectile and target densities, we use the same densities as
in Refs. [1] and [20], respectively. The normalization factor
is set to be unity for all the calculations reported in the
following. The barrier height thus obtained is 8.44 MeV in
the no-recoil approximation, whereas it is 8.45, 8.46, and
8.50 MeV at Elab = 30, 50.6, and 156 MeV, respectively, in
the local momentum approximation.

Figure 1 shows the angular distribution of elastic 6Li +
40Ca scattering at Elab = 156.0, 50.6, and 30.0 MeV. The filled
circles are the exact results of the integro-differential equation,
which fully retains the nonlocality of the exchange potential.
The solid and dashed lines are obtained in the present no-recoil
approximation and in the local momentum approximation,
respectively. For comparison, the figure also shows the results
of the zero-range approximation (see the dotted line), which
is obtained by replacing the nucleon-nucleon potential for the
exchange term given by Eq. (11) with

v(r) = Fex(ρ) · J (E)δ(r) (13)

where J (E) = −590(1 − 0.002 Elab/AP ) (MeV fm3) [1,2,4].
The strength was tailored particularly for proton scattering, but
it has been used for heavy-ion scattering as well by introducing
the dependence on the incident energy per projectile nucleon.

The figure shows that the no-recoil approximation leads to
results similar to those for the local momentum approximation
for this system at the lowest two energies. Both approximations
well reproduce the exact results. We have confirmed that this
is the case also for heavier systems such as 16O + 208Pb,
as is expected. In contrast, we observe significant difference
between the exact results and the results of the zero-range
approximation.

At the highest energy, Elab = 156.0 MeV, the no-recoil
approximation does not work well. This is because the local
momentum k(r) is relatively large at this high energy, and
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FIG. 1. The angular distribution of elastic 6Li + 40Ca scattering
at Elab = 156.0, 50.6, and 30.0 MeV obtained with several methods.
The filled circles are the exact results of the integro-differential
equation with the full nonlocal potential. The solid, dashed, and dotted
lines are obtained in the no-recoil, local momentum, and zero-range
approximations, respectively.

the exponent in Eq. (7) cannot be neglected even if the
value of α itself is small. For a lighter system, α+90Zr,
where α = 0.261 and the barrier height is around 11.7 MeV,
we find that the no-recoil approximation does not work even
at Elab = 40.0 MeV. It is thus clear that, for the no-recoil
approximation to work well, the inverse reduced mass α needs
to be small and at the same time the bombarding energy has to
be relatively low. A similar overestimate of cross sections in

the no-recoil approximation has been found also in Ref. [16]
for a charge-exchange reaction at intermediate energies.

In summary, we proposed the no-recoil approximation for
the double folding model. It neglects the recoil effect from
the knock-on exchange of nucleons between the projectile
and target nuclei. The resultant exchange potential has a
simple local form. We examined its applicability for heavy-ion
reactions by studying the angular distribution of elastic 6Li +
40Ca scattering. We found that the no-recoil approximation
reproduces reasonably well the exact results with the full
nonlocal exchange potential, and it works as well as the
local momentum approximation for this system unless the
bombarding energy is much above the Coulomb barrier.
The performance of the no-recoil approximation improves for
heavier systems. The zero-range approximation, in contrast,
does not reproduce well the results of the original nonlocal
potential. Since the no-recoil approximation does not involve
the iterative procedure, it is much simpler than the local
momentum approximation. We thus advocate the use of the
no-recoil approximation in analyzing heavy-ion scattering.

In the double folding model, the exchange effect has been
conventionally taken into account only through the knock-on
exchange term. This is reasonable for peripheral collisions,
since the knock-on exchange has the longest range among
other exchange terms [21]. However, it is not obvious at all
whether other exchange terms are negligible when the potential
in the inner region plays a role, such as in rainbow scattering
or in fusion reactions. In this connection, we mention that an
idea similar to the no-recoil approximation proposed in this
paper enables us to follow the idea of the resonating group
method (RGM), which fully incorporates the exchange effect,
relatively easily even for heavy systems (see Ref. [22] for an
early attempt). We will report on such studies in a separate
paper [23].
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