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Three-nucleon system at next-to-next-to-leading order
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We calculate higher order corrections for the three-nucleon system up to next-to-next-to-leading within an
effective field theory with contact interactions alone. We employ a subtraction formalism previously developed
and for which it has been shown that no new three-body force counterterm is needed for complete renormalization
up to this order. We give results for the neutron-deuteron phaseshifts and the triton binding energy. Our results
are in very good agreement with experimental results and calculations using realistic nucleon-nucleon potentials.
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The effective field theory (EFT) with contact interactions
alone allows for a systematic calculation of low-energy two-
body observables in terms of the effective range parameters [1].
With the correct power counting it can be applied to systems
with large scattering length a and is an expansion in R/a, where
R denotes the range of the underlying interaction.

When applied to the three-body system with large scat-
tering length, a three-body force [2]—or equivalently one
subtraction—is needed to obtain cutoff independent results
at leading order (LO). Although this fact seems to limit the
predictive power of the EFT, it has been very successful in
describing various atomic and nuclear low-energy observables
and has been used as a tool to understand universal properties
of few-body systems with large scattering length [3–5].

To achieve high precision in three-body calculations higher
order correction have to be included. It is clear how to do
this for the two-body system, however, in the three-body
system it is not a priori obvious at which order an additional
three-body counterterm has to be included. While Hammer
and Mehen [6] showed that no additional three-body datum
is needed for renormalization at next-to-leading order (NLO)
and later works have come to the same conclusion, different
conclusion have been reached for different renormalization
methods at next-to-next-to-leading order (NNLO). While
Bedaque et al. [7] and Barford and Birse [8] found that an
additional energy-dependent three-body counterterm is needed
for renormalization if an explicit three-body force is used and
the cutoff � is kept at ∼1/R, we showed recently [9] that
within a subtraction formalism previously developed [10,11],
no additional three-body counterterm has to be introduced
at NLO and NNLO for a consistent renormalization of
observables if � � 1/R. In this work, we computed also
effective range corrections for the 4He trimer system up to
NNLO and achieved very good agreement with a previous
calculation using a realistic atom-atom potential. We showed
that observables are cutoff independent for sufficiently large
cutoffs and that effective range corrections to observables
scale as expected. In this paper we will extend this work
to the three-nucleon system and discuss the corresponding
results. As the power counting in the neutron-deuteron quartet
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channel is well understood [12], we will focus here on the
neutron-deuteron doublet channel.

In the following we will explain briefly the subtraction
scheme which is used in this work to renormalize three-body
observables, give results for the triton binding energy and
scattering phaseshifts and discuss corrections up to NNLO to a
universal correlation between the nucleon-deuteron scattering
length and the triton binding energy, known as the Phillips
line. We will end this paper with a short conclusion and an
outlook.

At sufficiently low energies few-body systems interacting
through short-range interactions can be described with an
EFT built up from contact interactions alone. Employing an
auxiliary field formalism [2] the neutron-deuteron system in
the singlet channel can be described by the Lagrangian [5]
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(1)

where N represents the nucleon field and ti(sj ) are the di-
nucleon fields for the 3S1(1S0) channels with the corresponding
quantum numbers, respectively. The dots indicate more terms
with more fields/derivatives.

The full two-body propagator τ is the result of dressing the
bare dinucleon propagator by nucleon loops to all orders

τα(E) = − 2

πm

1

−γα + √−mE + rα

2

(
γ 2

α + mE
) , (2)

where the index α = s, t indicates either the singlet or tiplet
two-nucleon scattering channel. In this form the the two-body
propagator has poles at energies outside the validity region
of the EFT. Therefore the propagator cannot be used within
the three-body integral equation for cutoffs � > 1/r without
employing additional techniques to subtract these unphysical
poles. Instead of using the propagator in the form above we
will expand it up to a given order in R/a

τ (n)(E) = S(n)(E)

E + Bd

, (3)
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with Bd = γ 2
t /m the deuteron binding energy and for n < 3

S(n) is defined as

S(n)(E) = 2

πm2

n∑
i=0

( r

2

)i

[γ + √−mE]i+1. (4)

The set of integral equations for nucleon-deuteron scattering
generated by this EFT (neglecting the three-body force for the
beginning) is given by [5,11]
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where m denotes the nucleon, n the order of the calculation
(for the following definitions it will always be assumed that
n < 3) and Zαβ the Born amplitude

Zαβ(q, q ′; E) = −λαβ

m

qq ′ log

(
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)
,

(6)

with the isospin matrix λ given by

λ = 1

4

(
1 −3

−3 1

)
. (7)

The set of integral equations in Eq. (5) is strongly cutoff
dependent and a three-body force has to be introduced or
equivalently a subtraction has to be performed to render
observables cutoff independent. At threshold the integral
equations are renormalized by noting that

K
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t t (0, 0; −Bd ) = 3ma3

8γ
∑n

i=0(γ r)n
, (8)

and subtracting this known quantity from Eq. (5)
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After rewriting the resulting set of integral equations the half-
off-shell threshold amplitude takes the following form [10,11]:
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The amplitudes K
(n)
t t (q, 0; −Bd ) and K

(n)
st (q, 0; −Bd ) are fully

renormalized after the subtraction is performed. An essential
point in obtaining the amplitudes at any energy and momentum
is demanding that

K
(n)
t t (q, 0; −Bd ) = K

(n)
t t (0, q; −Bd ),

(11)
K

(n)
ts (q, 0; −Bd ) = K

(n)
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Using resolvent identities, subtracted integral equations for
any energy can be derived. For further details, the reader is
advised to turn to Refs. [9,11].

The two-body parameters used throughout the rest of this
work are given by

γ −1
t = 4.317 fm, rt = 1.764 fm,

(12)
γ −1

s = −25.04 fm, rs = 2.73 fm.

We will use the result of a recent neutron-deuteron scattering
length measurement with a3 = 0.645 ± 0.005 fm as our three-
body input [13].

The three-nucleon system has been previously considered
within the EFT with contact interactions alone. Leading
order results for phaseshift and the correlation between triton
binding energy and neutron-deuteron scattering length were
obtained in Ref. [5]. Bedaque et al. [7] calculated higher
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TABLE I. EFT predictions for the triton binding energy up to
NNLO using the neutron-deuteron scattering length as three-body
input. The second column indicates which parameters were used at
what order of the calculation. Energies and lengths are given in MeV
and fm, respectively.

Parameters a3 [fm] B3 [Mev]

LO a3, γt , as 0.645 8.08
NLO a3, γt , as, rt , rt 0.645 8.19
NNLO a3, γt , as, rt , rt 0.645 8.54
EXP 0.645 8.48

order corrections up to NNLO introducing an additional
energy-dependent three-body force at this order. In this
section we will demonstrate by explicit calculation that no
additional three-body force is needed for renormalization and
considerable improvement in results is achieved at NNLO.
We have computed the triton binding energy at LO, NLO and
NNLO using the neutron-deuteron scattering length as the
three-body input parameter [13]. Our results are displayed in
Table I. When using the experimental value for the neutron-
deuteron singlet scattering length a3 = 0.645 fm as three-body
input we obtain a triton binding energy of B3 = 8.48 MeV at
NNLO which has to be compared to the experimental value
B

Exp
3 = 8.54 MeV. The results show a significant improvement

with each order and are sufficiently close at NNLO to the
experimental value to agree with a projected error at this
order of approximately (rtγt )3 ∼ 3%. At these orders the error
caused by the uncertainty in the effective range parameters is
smaller than the error caused by N3LO corrections.

Using the set of integral equations in Eq. (5) with the
expanded two-body propagator in Eq. (3) leads at LO, NLO,
and NNLO to the phaseshifts shown in Fig. 1. For comparison
we show in the same figure the results of a 40 year old
phaseshift analysis [14] and a theoretical calculation using
a realistic nucleon-nucleon potential [15]. At higher order
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FIG. 1. (Color online) Phase shifts for neutron-deuteron scatter-
ing below the deuteron breakup at LO (dashed-dotted line), NLO
(dashed line) and NNLO (solid line). The triangle is the result of the
scattering length measurement of Ref. [13]. The circles are the results
of the van Oers-Seagrave phaseshift analysis [14], and the squares
denote a phaseshift calculation using a realistic nucleon-nucleon
potential [15].
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FIG. 2. (Color online) The Phillips line for leading (dot-dashed
line), next-to-leading (dashed line) and next-to-next-to-leading (solid
line) order. The cross denotes the experimental value.

our results seem to describe the experimental data better but
considering the age of the analysis and the fact that no errors
are given for these data, the theoretical calculation by Kievsky
et al. should be considered as the true benchmark test for our
calculation. At NLO our results already lie significantly closer
to this calculation and nearly perfect agreement is achieved
at NNLO. It should be noted that our results at LO and NLO
order agree with previous EFT calculations results given in
Refs. [6,7,11]. We also achieve qualitative agreement at NNLO
with Ref. [7], however, without employing an additional
three-body counterterm.

A further way to illustrate the improvement in our results
is to consider the Phillips line. The Phillips line is a universal
feature of three-body systems with a large two-body scattering
length and arises as a nearly linear correlation between the
1+2 scattering length and the three-body binding energy. In
Fig. 2 we display our results for LO, NLO and NNLO and
display also the experimental value. It is interesting to note
that in contradistinction to the 4He trimer system the Phillips
line has not converged to a definite result yet [9]. The obvious
reason for this is the rather large expansion coefficient which
is roughly γt rt ∼ 1/3 while γ r ∼ 0.1 in the 4He system. The
power counting derived in Ref. [9] is valid for cutoffs much
larger than 1/r . Therefore, our results have been evaluated
at corresponding cutoffs and in fact our results are fully
converged with respect to �. The results given in this section
are also numerically converged up to the digits displayed.
Further, we also analyzed the convergence of three-body
observables when using a different parametrisation for higher
order two-body corrections called Z-matching [16,17] and
have found the same results up to the level of accuracy expected
in an NNLO calculation.

In this paper we have computed three-nucleon observables
with the EFT with contact interactions alone up to NNLO using
a subtraction scheme for renormalization. We have shown that
the results for observables improve significantly at NNLO
without performing an additional subtraction, i.e., without
the introduction of a further energy dependent three-body
counterterm. This improvement is in particular obvious if one
considers the results for the binding energies and scattering
phaseshifts simultaneously. Our value for the triton binding
energy agrees very well with the experimental value and the
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results for the neutron-deuteron phaseshifts seem to be in
nearly perfect agreement with a calculation using a realistic
nucleon-nucleon potential. The results for the scattering
phaseshifts agree qualitatively with previous calculations at
NLO [6,11] and NNLO [7], although a second three-body
counterterm was included in Ref. [7]. In particular, these
results seem to agree very well with an expected error of
(γ r)3 ∼ 3% for an NNLO calculation. We have therefore
presented further numerical evidence which supports the claim
in Ref. [9] that calculations can be performed with exactly on
three-body counterterm up to NNLO in the EFT with contact
interactions alone.

Our analysis presented in Ref. [9] indicates that at N3LO an
additional three-body input is needed for renormalization of

observables. Therefore, NNLO can be also considered as the
last order at which a prediction can be made for the Phillips line
as it is a correlation gouverned by one three-body parameter.

Further possible applications of the subtraction formalism
include the calculation of scattering observables above the
breakup threshold and the coupling of external currents to
the three-nucleon system, including the electromagnetic form
factor beyond leading order [18].
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