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We analyze thermonuclear and pycnonuclear fusion reactions in dense matter containing atomic nuclei of
different types. We extend a phenomenological expression for the reaction rate, proposed recently by Gasques
et al. [Phys. Rev. C 72, 025806 (2005)] for the one-component plasma of nuclei, to the multicomponent plasma.
The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations
available in the literature. Furthermore, we show that pycnonuclear burning is drastically affected by an (unknown)
structure of the multicomponent matter (a regular lattice, a uniform mix, etc.). We apply the results to study
nuclear burning in a 12C-16O mixture. In this context, we present new calculations of the astrophysical S factors
for carbon-oxygen and oxygen-oxygen fusion reactions. We show that the presence of a C-O lattice can strongly
suppress carbon ignition in white dwarf cores and neutron star crusts at densities ρ >∼ 3 × 109 g cm−3 and
temperatures T <∼ 108 K.
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I. INTRODUCTION

Nuclear reactions are very important in the physics of stars.
They determine hydrogen burning in main-sequence stars,
helium burning in red giants, and carbon, neon, and oxygen
burning at later stages. They determine also nucleosynthesis
in shock-driven stellar explosions, such as type II supernovae,
as well as ignition and burning in accreting stars.

Steady-state and explosive thermonuclear carbon burning
during late stellar evolution [1] and in shock fronts of type II
supernovae [2] is governed by the 12C+12C and possibly by the
12C+16O fusion processes. Similarly, thermonuclear oxygen
burning is mainly determined by the 16O+16O and possibly by
the 16O+20Ne reactions [3]. The ignition and nucleosynthesis
that occur during these burning phases critically depend on the
initial fuel abundance and thermonuclear reaction rates.

In high-density cores of white dwarfs and crusts of neutron
stars, thermonuclear reactions are strongly affected by plasma
effects (which are especially important for carbon ignition in
cores of accreting massive white dwarfs for triggering type Ia
supernova explosions). The ignition conditions are sensitive to
the 12C and 16O abundance and to the fusion reaction rates [4].

Carbon ignition has also been suggested as a trigger of
superbursts in surface layers of accreting neutron stars [5].
However, the required ignition conditions seem to disagree
with the observed superburst light curves [6]. Alternative
explanations are presently being discussed, such as carbon
ignition in the crust of an accreting strange (quark) star,
to accommodate the observed light-curve characteristics [7].

While in most of the scenarios pure carbon burning dominates
energy production, the presence of other elements affects
ignition conditions and associated nucleosynthesis.

Pycnonuclear burning occurs in dense and cold cores of
white dwarfs [8] and in crusts of accreting neutron stars
[9,10]. Theoretical formalism has been developed mostly
for pycnonuclear reactions between equal nuclei, but one
often needs to consider multicomponent matter, for instance,
carbon-oxygen cores of white dwarfs.

In a previous publication [11], we focused on fusion
reactions between equal nuclei in a one-component plasma
(OCP) of atomic nuclei (ions). In the present work, we
expand the study toward a multicomponent plasma (MCP).
The problem has two aspects; the first one is associated
with the underlying nuclear physics, while the second one
is concerned with the plasma physics. The nuclear part deals
with the reliable determination of astrophysical S factors at
stellar energies. These energies are low (typically lower than a
few MeV), in particular if compared to the presently accessible
range of low-energy fusion experiments. This prevents direct
measurements of S factors at laboratory conditions. Thus, one
needs to calculate the S factors theoretically and use these
results to extrapolate measured S factors toward a lower stellar
energy range. In Sec. II, we present calculations of the S factors
for the two reactions of astrophysical importance, 12C+16O
and 16O+16O.

The plasma physics problem consists of calculating the
Coulomb barrier penetration in nuclear reactions taking into
account the Coulomb fields of surrounding plasma particles.
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These fields modify the reaction rates and lead to five
nuclear burning regimes [8] (two thermonuclear regimes, with
weak and strong plasma screening; two pycnonuclear regimes
for zero-temperature and thermally enhanced burning; and
the intermediate regime). These regimes are described in
Sec. III; their validity conditions are specified in Sec. III A. In
ordinary stars, nuclear burning proceeds in the weak screening
thermonuclear regime [12,13]. The foundation of the theory of
thermonuclear burning with strong plasma screening was laid
by Salpeter [14]. The strict theory of pycnonuclear burning
was developed by Salpeter and Van Horn [8]. References to
other works can be found in Sec. III and in [11].

In Sec. III, we analyze calculations of Coulomb barrier
penetration in MCP and propose a phenomenological ex-
pression for a reaction rate valid in all five regimes for
any nonresonant fusion reaction. This expression accurately
reproduces well-known results in thermonuclear regimes and
gives a reasonable description of the Coulomb tunneling
problem in other regimes. It is important to incorporate
plasma physics effects into computer codes which simulate
nucleosynthesis, especially at high densities in compact stars
such as white dwarfs and neutron stars (see above). In Sec. IV,
we illustrate the results of Secs. II and III by analyzing nuclear
burning in 12C-16O mixtures, with the emphasis on the carbon
ignition curve.

II. ASTROPHYSICAL S FACTORS FOR
CARBON-OXYGEN MIXTURES

To study nuclear burning in dense stellar carbon-oxygen
matter (Sec. IV), we need fusion cross sections (or associated
astrophysical factors) for three reactions: 12C+12C, 12C+16O,
and 16O+16O. For calculating the cross sections, we employ
the one-dimensional barrier penetration (BP) formalism [15]

and adopt the São Paulo potential [16–19] to describe the real
part of the nuclear interaction VN (r, E):

VN (r, E) = VSP(r, E) = VF (r) exp (−4v2/c2). (1)

Here, VF (r) is the density-dependent double-folding potential,
c is the speed of light, E is the particle collision energy (in the
center-of-mass reference frame), v is the local relative velocity
of two nuclei 1 and 2,

v2(r, E) = (2/µ)[E − VC(r) − VN (r, E)], (2)

VC(r) is the Coulomb potential, and µ is the reduced mass.
In this paper, we adopt the two-parameter Fermi (2pF)

distribution to describe the nuclear densities. The radii of
these distributions are well approximated by the formula R0 =
1.31A1/3 − 0.84 fm [19]. The 12C and 16O diffuseness was
taken to be 0.56 and 0.58 fm, respectively. These values were
extracted from heavy-ion elastic scattering data at subbarrier
and intermediate energies, by applying an unfolding method
involving the São Paulo potential (see Refs. [20–22] for
details).

Usually, fusion cross sections σ (E) at low energies, typical
for astrophysical conditions, are expressed in terms of the
astrophysical S factor

S(E) = σ (E)E exp (2πη), (3)

where η = (Z1Z2e
2/h̄)

√
µ/(2E) is the familiar Gamow pa-

rameter; Z1 and Z2 are charge numbers of the nuclei. This
parametrization removes from the fusion cross section the
strong nonnuclear energy dependence [13,23] associated with
Coulomb barrier penetration. If S(E) is a slowly varying
function of E, it can be extrapolated to the lower energies
relevant to stellar burning.

The S factors for all three reactions versus E are shown
in the upper panels of Fig. 1. Solid lines are theoretical

FIG. 1. (Color online) Top: Astrophysical S factors as a function of the center-of-mass energy E for the 12C+12C, 12C+16O, and 16O+16O
reactions. Solid lines correspond to the BP model calculations; various symbols are experimental data. Bottom: Gamow-peak energy ranges
for these reactions in the thermonuclear regime vs temperature T of stellar matter. See text for details.
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calculations using the BP model, while symbols are experi-
mental data. The results for the C+C reaction have already
been discussed in Ref. [11] and are presented here for
completeness of consideration. The data for this reaction are
taken from Patterson et al. [24], Mazarakis and Stephens [25],
High and Cujec [26], Rosales et al. [27], Kettner et al. [28],
and Becker et al. [29]. The data for the C+O reaction are taken
from Christensen et al. [30] and Cujec and Barnes [31]. Finally,
the data for the O+O reaction are from Hulke et al. [32],
Kuronen et al. [33], Wu and Barnes [34], Kovar et al. [35],
and Thomas et al. [36]. Lower panels in Fig. 1 show the
Gamow-peak energy ranges versus the temperature of stellar
matter in the thermonuclear burning regime; they will be
discussed in Sec. III A.

The sub-Coulomb-barrier resonances exhibited in the C+C
data at E <∼ 6 MeV and in the C+O data at E <∼ 7.7 MeV cannot
be reproduced in the framework of the BP model. However,
the model provides an average description of the light- and
heavy-ion fusion at energies below and above the barrier.
Depending on the nuclear potential, it also gives a satisfactory
parameter-free description of the energy dependence of the
S factor, which seems reasonably accurate for extrapolating
the experimental data into the stellar energy range.

The data sets presented by the different groups are not in
perfect agreement. For instance, the two C+O data sets agree
in average, but disagree within a factor of ∼2 for lowest E.
The overall agreement between the theory and the data is
∼50%. However, in the low-energy region, the slope of the
measured cross section reported in Ref. [30] does not follow
the calculated S factors. It is difficult to predict where the data
will lie in the energy range E <∼ 4 MeV. Regarding the O+O
reaction, the discrepancies between the different experimental
results at sub-barrier energies are around a factor of 3. The
overall agreement between the data and the theory is ∼30%. At
the lowest measured energy, the data and the theory differ by at
most a factor of 3. Further experiments at lower energies would
help verify the validity of the predicted fusion cross sections.
Nevertheless, it is important to highlight that the BP model
does not contain any free parameter. In this sense, the S factor
calculations do not represent a fit to the experimental data and
can be considered as a useful tool for predicting the average
nonresonant low-energy cross sections for a wide range of
fusion reactions. For many astrophysical reactions, such a
description gives a reasonable estimate because the formalism
of stellar reaction rates relies on the S factor averaged over an
entire Gamow-peak range.

The values of S(E) calculated up to E � 20 MeV can be
fitted by the analytic expression

S(E) = exp

(
A1 + A2 �E

+ A3 + A4 �E + A5 �E2

1 + exp[−�E]

)
MeV b, (4)

where �E = E − E0; the center-of-mass energy E and the
fit parameter E0 are expressed in MeV. Table I gives the fit
parameters A1, . . . , A5 and E0 for the C+C, C+O, and O+O
reactions. The maximum formal fit errors are 7.2% at E =
19.8 MeV for C+C; 6.3% at E = 7.5 MeV for C+O; and

TABLE I. Coefficients A1, . . . , A5 and E0 in the fits expression
(4) for the S factors of the C+C, C+O, and O+O reactions.

Reaction E0 A1 A2 A3 A4 A5

12C+12C 6.946 34.75 −0.552 −2.131 −0.625 0.0315
12C+16O 8.290 44.32 −0.561 −1.480 −0.910 0.0387
16O+16O 10.52 56.16 −0.571 −1.160 −1.044 0.0366

3.9% at E = 8.2 MeV for the O+O reaction. The S factor
for the C+C reaction was fitted in a previous paper [11] by
a slightly different expression with approximately the same
accuracy. We have fitted the same data by the new expression
(4) for completeness of consideration. The two fits are nearly
equivalent.

III. NUCLEAR FUSION RATE

A. Physical conditions and reaction regimes

Let us consider a stellar matter which consists of ions and
electrons. We assume that the ions are fully ionized and the
electrons form a uniform electron background. We study a
multicomponent mixture of ion species j = 1, 2, . . . , with
atomic numbers Aj and charge numbers Zj . Let nj be the
number density of ions j . The total number density of ions
is n = ∑

j nj ; the electron number density is ne = ∑
j Zjnj .

For an OCP of ions, the index j will be omitted. The number
density nj can be expressed through the mass density ρ of the
matter as nj = Xjρ/(Ajmu), where Xj is the mass fraction of
ions j , and mu = 1.66055 × 10−24 g is the atomic mass unit.
In a not too dense matter, the total mass fraction contained
in the nuclei is XN = ∑

j Xj ≈ 1. At densities higher than
the neutron drip density (∼4 × 1011 g cm−3), the matter also
contains free neutrons; the total mass fraction contained in
the nuclei is then XN < 1. It is also useful to introduce the
fractional number xj = nj/n of nuclei j among other nuclei,
with

∑
j xj = 1. Generally,

ne = n〈Z〉, ρ = mun〈A〉
XN

, xj = Xj/Aj∑
i Xi/Ai

,

〈Z〉 =
∑

j

xjZj , 〈A〉 =
∑

j

xjAj , (5)

where 〈Z〉 and 〈A〉 are the mean charge and mass number of
ions, respectively.

Let us also introduce the Coulomb coupling parameter �j

for ions j ,

�j = Z2
j e

2

ajkBT
= Z

5/3
j e2

aekBT
,

(6)

ae =
(

3

4πne

)1/3

, aj = Z
1/3
j ae,

where T is the temperature, kB is the Boltzmann constant, ae

is the electron-sphere radius, and aj is the ion-sphere radius
(a radius of a sphere around a given ion, where the electron
charge compensates the ion charge). Therefore, �j is the ratio
of a typical electrostatic energy of the ion to the thermal energy.
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If �j � 1, then the ions constitute an almost ideal Boltzmann
gas; while for �j >∼ 1, they are strongly coupled by Coulomb
forces (constituting either a Coulomb liquid or solid). The
transformation from the gas to the liquid at �j ∼ 1 is smooth,
without any phase transition. The solidification is realized as a
weak first-order phase transition. According to highly accurate
Monte Carlo calculations, a classical OCP of ions solidifies at
� ≈ 175 (see, e.g., Ref. [37]).

It is useful to introduce the mean ion coupling parameter
〈�〉 = ∑

j xj�j . The plasma can be treated as strongly coupled
if 〈�〉 >∼ 1. This happens at T <∼ Tl , where

kB Tl =
∑

j

(
Z2

j e
2
/
aj

)
xj = kBT 〈�〉. (7)

For low temperatures T � Tp � Tl , ion motion can no
longer be considered as classical but should be quantized.
Here, Tp is the Debye (plasma) temperature associated with the
ion plasma frequency ωp (a typical frequency of ion vibrations
in Coulomb crystals—see, e.g., Ref. [8]),

Tp = h̄ωp

kB

, ω2
p =

∑
j

4πZ2
j e

2nj

Ajmu

. (8)

The most difficult problem posed by a strongly coupled
MCP at low temperatures is understanding its actual state.
Extensive Monte Carlo simulations [38] of the freezing of
a classical OCP indicate that it can freeze into imperfect
body-centered cubic (bcc) or faced-centered cubic (fcc) mi-
crocrystal (or microcrystals). Unfortunately, publications on
reliable simulations of freezing of an MCP are almost absent.
Evidently, the cold MCP is much more rich in physics than the
OCP. It can be an MCP regular lattice or microcrystals (with
defects); an amorphous, uniformly mixed structure; or a lattice
of one phase with random admixture of other ions. One cannot
exclude an ensemble of phase-separated domains. For the
sake of completeness, we will consider different possibilities.
An MCP obeys the linear mixing rule with high accuracy.
Accordingly, the difference in energies of the indicated
states is very small and is a subject of vigorous debates
(e.g., Ref. [39] and references therein). It is possible that a
low-temperature MCP can be in different states depending
on the history of its formation in a star with decreasing
temperature.

To make our consideration less abstract, we will apply it
to a 12C-16O mixture. The appropriate temperature-density
diagram is shown in Fig. 2. We present the temperatures Tl, Tm,
and Tp for a pure carbon matter (xC = 1, solid lines), for a
mixture of equal amounts of C and O nuclei (xC = 1

2 , long
dashes) and for a pure oxygen matter (xC = 0, short dashes).
The melting temperature of the C-O mixture is taken to be
Tm = Tl/175. The plasma temperature Tp is the same for all
three cases. Notice that the electrons are strongly degenerate
at all ρ and T displayed in Fig. 2. At ρ > 4 × 1010 g cm−3,
carbon nuclei cannot survive in dense matter because of β

captures; at ρ > 2 × 1010 g cm−3, oxygen nuclei will also
be destroyed by β captures. Therefore, it is unreasonable to
extend the C-O diagram to higher densities.

FIG. 2. (Color online) Temperature-density diagram for 12C-16O
matter. Straight lines show temperature Tl of the appearance of
ion liquid, melting temperature Tm of ion crystal, and ion plasma
temperature Tp . Solid lines refer to pure carbon matter, long dashes
to C-O matter with equal particle fractions of C and O, and short
dashes to pure oxygen matter. Three shaded strips show the regions
important for C+C burning (in pure carbon matter), C+O burning (in
C-O mixture), and O+O burning (in pure oxygen matter). Each strip
is restricted by upper and lower lines along which the burning time
equals 1 year and 106 years, respectively (see the text for details).

We will be interested in nuclear fusion reactions

(Ai, Zi) + (Aj ,Zj ) → (Ac,Zc), (9)

where Ac = Ai + Aj and Zc = Zi + Zj refer to a compound
nucleus c. For our example in Fig. 2, we have three reactions,
C+C, C+O, and O+O (Sec. II). The experimental cross
sections for these reactions show no pronounced resonance
structures and can be described in the framework of nonres-
onant reaction formalism [11,23] as discussed above. Notice
that the data for the C+C and C+O reactions exhibit some
resonant structures demonstrated in Fig. 1. In the lower
panel of this figure, we show the Gamow-peak energy range
as a function of temperature for these reactions in the
thermonuclear burning regime (Sec. III B). We see that at high
enough T , the Gamow-peak range covers the energy range
where the oscillations are experimentally measured. However,
at these values of T , the Gamow-peak range is sufficiently
wide, and the energy integration in the reaction rate should
smear out the oscillatory behavior. For lower T , the Gamow
peak is narrower, but it shifts to low energies inaccessible
to laboratory experiments. In the absence of experimental
and theoretical data on the presence of oscillations at these
low energies, we will adopt the standard assumption that
the reactions in question can be treated as nonresonant in
applications to stellar burning.

The shaded strips in Fig. 2 show the T -ρ domains most
important for these reactions. We will describe them in more
detail in Sec. IV.
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To study a reaction (9) we introduce the so called ion-sphere
quantities

aij = ai + aj

2
, �ij = ZiZje

2

aij kBT
, T

(l)
ij = ZiZje

2

aij kB

,

(10)

T
(p)
ij = h̄

kB

(
4πZiZje

2nij

2µij

)1/2

,

where µij = muAiAj/Ac is the reduced mass of the reacting
nuclei, and nij = 3/(4πa3

ij ). Basing on the ion-sphere model
of a strongly coupled Coulomb plasma, one expects (e.g.,
Ref. [40]) that aij characterizes an equilibrium distance
between neighboring nuclei i and j, �ij describes their
Coulomb coupling, T

(l)
ij is the temperature for the onset of

strong coupling, and T
(p)
ij is a local Debye temperature (for

oscillations of ions i and j ). In an OCP, we have aij = a, �ij =
�, T

(p)
ij = Tp. We will also need

rBij = h̄2/(2µijZiZje
2), (11)

which reduces to the ion Bohr radius in the case of equal ions
j = i. In addition, we will need the parameter

λij = rBij

(nij

2

)1/3
= 2rBij(

Z
1/3
i + Z

1/3
j

) (
ρXN 〈Z〉
2〈A〉mu

)1/3

= Ai + Aj

AiAjZiZj

(
Z

1/3
i + Z

1/3
j

)
×

(
ρXN 〈Z〉

〈A〉 1.3574 × 1011 gcm−3

)1/3

, (12)

which corresponds to the parameter λ introduced by Salpeter
and Van Horn [8] in the OCP case.

In the following sections, we will discuss nuclear burning
in MCP for the five burning regimes introduced in Ref. [8]
and analyzed in detail for OCP in our previous work [11]. We
will demonstrate that the formalism developed for OCP can
be adapted to more complex MCP scenarios.

B. Classical thermonuclear reaction rate

In the classical thermonuclear (weak screening) regime
(T � T

(l)
ij ) the reacting ions constitute an almost ideal gas [12].

The rate for nonresonant fusion processes (such as considered
here) is well known as

Rth
ij = 4ninj

1 + δij

√√√√2E
pk
ij

3µij

S
(
E

pk
ij

)
kBT

exp(−τij ), (13)

where S(E) is the astrophysical factor; δij is the Kronecker
delta, which excludes double counting of the same collisions
in reactions with identical nuclei (i = j ); E

pk
ij = T kBτij /3 is

the Gamow-peak energy (the relative energy of colliding nuclei
which gives the major contribution into the reaction rate) and

τij =
(

27π2µijZ
2
i Z

2
j e

4

2kBT h̄2

)1/3

(14)

is the parameter which characterizes the Coulomb barrier
penetrability. This parameter can be written as

τij = 3(π/2)2/3
(
Ea

ij /kBT
)1/3

, Ea
ij ≡ 2µijZ

2
i Z

2
j e

4/h̄2.

(15)
Then

Rth
ij = ninj

1 + δij

S
(
E

pk
ij

) rBij

h̄
PthFth, (16)

where rBij is a convenient dimensional factor defined by
Eq. (11), Fth is the exponential function, and Pth is the
pre-exponent, that is,

Fth = exp(−τij ), Pth = 8π1/3

√
321/3

(
Ea

ij

kBT

)2/3

. (17)

Typically, the main contribution into the reaction rate
comes from suprathermal particles (Epk

ij � kBT ), and the
Coulomb barrier is very thick (τij � 1). The reaction rate
decreases exponentially with decreasing T . Typical Gamow-
peak energy ranges for the C+C, C+O, and O+O reactions
in the thermonuclear regimes are shown in Fig. 1. These
energies are defined as E

pk
ij − �E <∼ E <∼ E

pk
ij + �E, with

�E ∼ 2
√

E
pk
ij kBT .

C. Thermonuclear regime with strong screening

The thermonuclear regime with strong plasma screening
operates in the temperature range T

(p)
ij

<∼ T <∼ T
(l)
ij , where the

plasma ions constitute a strongly coupled Coulomb system
(liquid or solid). The majority of ions are confined in deep
Coulomb potential wells, but the main contribution into the
reaction rate comes from a very small amount of highly
energetic suprathermal ions which are nearly free (see, e.g.,
Refs. [8,14]). However, neighboring plasma ions strongly
screen the Coulomb interaction between the reacting ions.
The screening simplifies close approaches of the reacting
ions, required for a Coulomb tunneling, and thus enhances
the reaction rate (with respect to the classical thermonuclear
reaction rate).

In analogy with the OCP case (e.g., Ref. [11]), the
enhancement can be included in the exponential function

Fth = Fsc exp(−τij ), Fsc = exp(hij ), (18)

where Fsc is the enhancement factor and hij is a function of
plasma parameters.

We will analyze hij in the same manner as was done in
Ref. [11] for the OCP. For this purpose, we notice that the react-
ing nuclei move in the potential W (r) = ZiZje

2/r − Hij (r),
where Hij (r) is the plasma potential created by neighboring
plasma ions. In the thermonuclear regime, Hij (r) is almost
constant along a Coulomb tunneling path. Accordingly, hij

can be split into two terms, hij = h
(0)
ij + h

(1)
ij . The main term

h
(0)
ij is obtained assuming that Hij (r) ≈ Hij (0) is constant

along a tunneling path; a small correction h
(1)
ij is produced

by a weak variation of the plasma potential along this path.
We will discuss h

(0)
ij explicitly in this section and introduce
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h
(1)
ij phenomenologically in Sec. III G, when we propose an

analytic approximation for the reaction rate in all regimes.
It is well known (e.g., Refs. [14,41]) that h

(0)
ij =

Hij (0)/kBT , where Hij (0) is the properly averaged (mean-
field) plasma potential at r = 0. Thus defined, Hij (0) becomes
a thermodynamic quantity which can be expressed through
the difference of the classical Coulomb free energies for a
given system and for a system with the two reacting nuclei
merging into a compound nucleus (e.g., Ref. [41]). However,
a strongly coupled classical multicomponent Coulomb liquid
obeys very accurately the linear mixing rule (see Ref. [39] for
recent results). Using this rule, one obtains

h
(0)
ij = f0(�i) + f0(�j ) − f0(�c), (19)

where f0(�) is the Coulomb free energy per ion in an OCP
(in units of kBT ). This formula was derived by Jancovici
[42] for an OCP and generalized by Mochkovitch for an
MCP (see Ref. [43]). The function f0(�) is very accurately
determined by Monte Carlo simulations. For instance, ac-
cording to DeWitt and Slattery [44], the function f0(�) for
a classical one-component Coulomb liquid at 1 � � � 170 can
be approximated as

f0(�) = −0.899172� + (1/s)0.602249 �s

− 0.274823 ln � − 1.401915, (20)

where s = 0.3230064. It gives a highly accurate expression
for h

(0)
ij , but it is inconvenient for an analytic interpolation of

the reaction rate (Sec. III G). Instead, we will use a simpler
linear expression f0(�) = −0.9 � provided by the ion-sphere
model [14],

h
(0)
ij = Csc

ij �ij ,
(21)

Csc
ij = 0.9

[
Z5/3

c − Z
5/3
i − Z

5/3
j

]Z
1/3
i + Z

1/3
j

2ZiZj

.

This expression seems crude, but it is actually accurate. For a
nuclear reaction in an OCP (Zi = Zj = Zc/2), this equation
gives Csc = 1.0573, very close to the value 1.0754 inferred
[11] from Eq. (20). In the range of 1 � �ij � 170, the ion-sphere
model (21) gives the enhancement factor exp(h(0)

ij ) which is
systematically lower than the more accurate enhancement
factor, given by Eqs. (19) and (20). The maximum difference in
these enhancement factors for charge ratios 1/5 � Zi/Zj � 5
reaches ≈15 at the highest value of �ij = 170. This difference
can be regarded as insignificant because at such �ij the
enhancement factor itself is as huge as exp(h(0)

ij ) ∼ 1074.
For lower �ij , the expression (21) is more accurate. For
instance, for �ij = 50 and Zi/Zj = 5, it underestimates the
enhancement factor by only a factor of 3. In the range of
1 � �ij � 10 for 1/5 � Zi/Zj � 5, the underestimation does
not exceed a factor of 1.5. Notice that in the MCP, the factor
Csc

ij depends on Zi and Zj .
Although the above approach is more accurate, one usually

calculates h
(0)
ij by extrapolating the mean-field plasma potential

Hij (r), obtained from classical Monte Carlo sampling, to
r → 0. In particular, Ogata et al. [45,46] used this method to
study the enhancement of thermonuclear burning in the liquid

phases of OCP and binary ion mixtures (BIMs). The leading
term in Eqs. (19) and (20) of Ref. [46], equivalent to the leading
terms (19) and (21), is h

(0)
ij = �ij (1.148 − 0.00944 ln �ij −

0.000168 (ln �ij )2). This expression was employed also by
Kitamura [47] for constructing the analytic approximation for
the reaction rates in OCP and BIMs in all reaction regimes
(although by that time a more accurate expression was obtained
by Ogata [48] for the OCP using path integral Monte Carlo
simulations). Comparing the expression of Ref. [46] with (19)
and (21) we see that the expression of Ref. [46] systematically
overestimates the plasma enhancement. In the OCP, the
overestimation reaches [11] a factor of ∼40 for � = 170,
which is not very significant. However, the coefficients in this
expression are independent of Zi and Zj , in disagreement
with Eq. (21). As a result, the overestimation increases with
the growth of the charge ratio Zi/Zj , reaching ∼150 and
∼ 2 × 104 at Zi/Zj = 2 and Zi/Zj = 5, respectively, for
�ij = 170. Therefore, when the difference of charges Zi

and Zj increases, the results of Refs. [46] and [47] become
less accurate. The inaccuracy comes from the problem of
extrapolating Hij (r) to r → 0. This inaccuracy was analyzed
by Rosenfeld for the OCP [49] and the MCP [50].

Equations (20) and (21) become invalid in the regime
of weak screening (�ij � 1; Sec. III B), where the well-
known Debye-Hückel theory should be used. In particular, the
screening function in the weakly coupled MCP becomes [14]

h
(0)
ij = ZiZje

2

kBT rD

=
(

3�3
e 〈Z2〉Z2

i Z
2
j

〈Z〉

)1/2

, (22)

where rD is the ion Debye screening length and 〈Z2〉 ≡∑
j Z2

j xj . Introducing �ij , we obtain

h
(0)
ij = ζij�

3/2
ij , ζij =

(
3〈Z2〉(Z1/3

i + Z
1/3
j

)3

8〈Z〉ZiZj

)1/2

. (23)

For reactions in an OCP, we have ζ = √
3. In an MCP, ζij

depends on ion charge numbers.
A simple phenomenological interpolation which repro-

duces the strong and weak screening limits [Eqs. (21) and
(23)] and combines them in the �ij range from ∼0.1 to ∼1 is

h
(0)
ij = Csc

ij �
3/2
ij

/[(
Csc

ij /ζij

)4 + �2
ij

]1/4
. (24)

Because accurate calculations of the MCP free energy of ions
in this range are absent, we cannot test the accuracy of our
interpolation. However, the plasma screening enhancement
of reaction rates at these values of �ij is weak, and the
interpolation uncertainty does not strongly affect the reaction
rates.

D. Zero-temperature pycnonuclear regime

This regime operates at low temperatures, T <∼ 0.5T
(p)
ij /

ln(T (l)
ij /T

(p)
ij ), at which thermal effects are negligible and all

the ions occupy ground states in their potential wells. The
Coulomb barrier is penetrated owing to zero-point vibrations
of ions around their equilibrium positions. Because the
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vibration amplitudes are generally small, neighboring pairs
of ions (closest neighbors) make the major contribution to the
reaction rate.

Generalizing Eq. (35) of Salpeter and Van Horn [8] to the
MCP case, we can present the pycnonuclear reaction rate as
[see, e.g., Eq. (7) in Ref. [45]]

R
pyc
ij = ni

1 + δij

〈νijpij 〉av, (25)

where νij is the number of nearest nuclei j around a nucleus
i, pij is the reaction rate for a fixed pair ij, and the brackets
〈. . .〉av denote statistical averaging over an ensemble of such
pairs. For instance, it is currently thought that the OCP of
ions at zero temperature forms a bcc crystal. In this case,
any ion is surrounded by its eight closest neighbors, with the
equilibrium distance between them d = (3π2)1/6a, where a is
the ion-sphere radius.

According to Eqs. (35), (37), and (39) of Ref. [8], the
reaction rate for a pair of neighboring ions in an OCP can
be written as

p = Dpyc
λ3−Cpl S(Epk)

h̄r2
B

exp

(
−Cexp√

λ

)
, (26)

where λ and rB are given by Eqs. (12) and (11), respectively
(for the OCP); while Dpk, Cpl, and Cexp are constants which
depend on a Coulomb barrier penetration model and on the
lattice type. Finally, the characteristic reaction energy is Epk ∼
h̄ωp = kBTp, where ωp is the ion plasma frequency defined
by Eq. (8) (a typical frequency of zero-point ion vibrations).

Salpeter and Van Horn [8] used the WKB approximation
and considered two models of Coulomb barrier penetration
in the bcc lattice—the static and relaxed lattice models—to
account for the lattice response to a motion of tunneling nuclei.
Later Schramm and Koonin [9] extended this consideration
taking into account the dynamic effect of motion of surround-
ing ions in response to the motion of the tunneling nuclei in the
relaxed lattice. In addition, they considered the fcc Coulomb
lattice. The results of Refs. [8,9] are analyzed in Ref. [11].
Note that the pycnonuclear burning rates for fcc or bcc OCP
crystals are very similar. We expect that for an amorphous
OCP they are of the same order of magnitude.

Pycnonuclear reactions in the MCP require complicated
calculations (which, hopefully, will be done in the future).
We will restrict ourselves to a simpler consideration based
on similarity criteria and some general assumptions. Even
the state of the MCP at low temperatures is not clear. For
example, it can be a regular lattice (with defects), a uniformly
mixed state, an ensemble of phase-separated domains, etc.
(Sec. III A). It can also be a combination of these states.

1. Uniformly mixed MCP

Let us start with a uniformly mixed MCP. An obvious
generalization of Eq. (26) to the MCP would be to replace
rB → rBij and λ → λij in accordance with Eqs. (11) and
(12). This replacement should correctly reflect the rescaling
of inter-ion distances and oscillator frequencies in an MCP
within the ion-sphere model (see, e.g., Ref. [51]).

However, the rescaling may be not exact. We will take this
into account by adopting a simplified assumption that any pair
of close neighbors behaves as an elementary oscillator with
an equilibrium separation dij and an oscillator frequency ωij .
For an OCP, we have λ ∼ h̄2/(Amud

2ω)2 and ω ∼ ωp. In the
MCP, we expect to have λ → λ̃ij ∼ h̄2/(2µijd

2
ijωij )2, where

dij and ωij are the actual equilibrium distance and the effective
oscillator frequency, respectively. With this replacement from
Eq. (26), we obtain

pij = Dpyk

λ̃
3−Cpl

ij S
(
E

pk
ij

)
h̄r2

Bij

exp

(
− Cexp

(̃λij )1/2

)
. (27)

Now we assume that the actual values dij and ωij can
deviate from the ion-sphere values d

(0)
ij and ω

(0)
ij and introduce

the quantities

αdij = dij

/
d

(0)
ij , αωij = ωij

/
ω

(0)
ij , (28)

which measure the deviations. They will be treated as
parameters to be varied within reasonable limits. Then

λ̃ij = λijαλij , αλij ≡ 1
/(

α4
dijα

2
ωij

)
, (29)

where λij is given by Eq. (12).
Another way to improve the ion-sphere rescaling for a

pycnonuclear reaction in a BIM was proposed by Ichimaru
et al. [51], who used the formal relation λij ∼ rBij /dij and
suggested that λ̃ij = λij /αdij , which corresponds to αλij =
1/αdij . Therefore, they allowed dij to be different from
d

(0)
ij but assumed that the oscillator frequency ωij adjusts

to this new separation following the ion-sphere rescaling,
so that α2

ωij = 1/α3
dij . In contrast, we allow the separations

and oscillator frequencies to deviate independently, and our
consideration is more general.

Following Ogata at al. [45] [see their Eq. (7)], we assume
that the number of closest neighbors j around the ion i

in Eq. (25) is 〈νij 〉av = 8nj/n (which is appropriate for a
uniform mix). The factor 8 may be approximate, but it affects
only the pre-exponent of the reaction rate, which is much
less significant than the exponentially small probability of
Coulomb tunneling. Substituting (27) and (28) into (25), we
obtain

R
pyc
ij = Dpyc

4ninj

1 + δij

8〈Z〉(
Z

1/3
i + Z

1/3
j

)3

S
(
E

pk
ij

)
h̄

× rBij

λ̃
Cpl

ij

exp

(
− Cexp

(̃λij )1/2

)
. (30)

This equation has the same structure as Eq. (16) and can be
written as

R
pyc
ij = ninj

1 + δij

S
(
E

pk
ij

) rBij

h̄
PpycFpyc, (31)

with

Ppyc = 8〈Z〉(
Z

1/3
i + Z

1/3
j

)3

4Dpyc

λ̃
Cpl

ij

, Fpyc =
(

− Cexp

(̃λij )1/2

)
.

(32)
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TABLE II. Coefficients in the interpolation expressions for a
reaction rate for the optimal model of nuclear burning and for the
models which maximize and minimize the rate. The parameters
CT , αλij , αωij are different for MCP and OCP (the values for OCP
[11] are given in parentheses). For an MCP, the models assume a
uniformly mixed state (see the text for details).

Model Cexp Cpyc Cpl CT αλij αωij �

Optimal 2.638 3.90 1.25 0.724 1 1 0.5
(0.724) (1) (1)

Maximum rate 2.450 50 1.25 0.840
(0.904)

1.05
(1)

0.95
(1)

0.35

Minimum rate 2.650 0.5 1.25 0.768
(0.711)

0.95
(1)

1.05
(1)

0.65

For numerical evaluations, we have

R
pyc
ij = 1046Cpyc

8ρXNxixjAiAj 〈A〉Z2
i Z

2
j

(1 + δij )A2
c

S
(
E

pk
ij

)
× λ̃

3−Cpl

ij exp

(
− Cexp

(̃λij )1/2

)
cm−3s−1, (33)

where Cpyc = Dpyc/(8 × 11.515); the density ρ is expressed in
g cm−3 and the astrophysical factor S(Epk

ij ) is in MeV barn. The

reaction energy is E
pk
ij ∼ h̄ωij = αωij kBT

(p)
ij . The main para-

meter regulating the reaction rate is λ̃ij in the exponent
argument. For sufficiently low densities, λ̃ij is very large,
strongly suppressing the Coulomb tunneling. With growing
ρ, the barrier becomes more transparent and the reaction rate
increases.

For the OCP with αλ = 1, Eqs. (30)–(33) reduce to the well-
known equations for zero-temperature pycnonuclear burning
in a crystalline lattice. The constants Cpyc, Cpl, and Cexp,
obtained using various techniques, have been analyzed in
Ref. [11]. In Table II, we present these parameters for three
models. The first model is optimal (seems to be the most
reliable). It is the static-lattice model of Salpeter and Van
Horn [8] for the bcc crystal. The second and third models
are phenomenological; they have been proposed in Ref. [11],
basing on the results of Refs. [8,9,45,47]. The second model
gives the upper limit of the reaction rate, and the third gives
the lower limit (for both bcc and fcc crystals). We expect that
the reaction rate in an amorphous OCP would lie within the
same limits.

Returning to an MCP, we must additionally specify the
scaling factor αλij in Eq. (29). Some attempts have been made
[45,51] to determine proper inter-ion separations dij (i.e., the
values of αdij ) at T = 0 in BIM solids from positions of first
correlation peaks in radial pair distribution functions of ions,
gij (r). These functions have been calculated by Monte Carlo
sampling. Such studies require powerful computer resources
and may be inconclusive at present. This is clearly seen from
similar (and simpler) attempts of the same group [45,46,51,52]
to determine deviations of inter-ion separations from the ion-
sphere scaling in BIM liquids [using first-peak positions of
gij (r)]. The authors applied their results to study an effect
of these deviations on thermonuclear burning in the strong

screening regime. Our analysis of those results shows that no
statistically significant deviations from the ion-sphere scaling
have been found (and no associated effects on nuclear burning
can actually be predicted). This conclusion is strengthened
by the critical analysis of these works by Rosenfeld [49,50].
Therefore, no reliable information has been obtained on the
violation of the ion-sphere scaling of inter-ion separations in
the BIM liquids and solids [on the level of a few percent, which
is most likely the real uncertainty in the determination of gij (r)
peak positions in the cited publications].

Equally, proper oscillator frequencies ωij (and parameters
αωij ) in BIMs could be determined from molecular dynamics
simulations, but such simulations have not yet been performed.

In the absence of precise microscopic calculations of dij

and ωij , we naturally assume that the optimal values are
αdij = αωij = αλij = 1. In order to maximize the reaction
rate, we propose to increase αλij (somewhat arbitrarily) by
5%, and in order to minimize the rate, we propose to reduce
it by 5%. These proposed values are also listed in Table II.
Notice that it is difficult to expect that the variations of αdij

and αωij in Eq. (28) are fully independent. An increase in
the inter-ion separation dij should cause a decrease in the
oscillator frequency ωij ; these variations should be partially
compensated in the factor αλij = 1/(α4

dijα
2
ωij ).

2. Regular MCP lattice

Now we turn to the case of a regular MCP lattice, which can
be drastically different from a uniform mix. The central point
is the availability of closest neighbors ij. If they are absent, the
reaction (9) occurs via Coulomb tunneling of more distant ij
pairs and becomes strongly suppressed.

The closest-neighbor condition depends on the crystal type.
For instance, consider a binary bcc crystal composed of ions
i and j . There are eight pairs of closest neighbors in a basic
cubic cell (formed by one ion in the center of the cell and any
other ion in a vertex). If all ions are of the same type (e.g.,
xi = 1), then all eight pairs participate in the same reaction ii
(the OCP case). In the BIM case (xi = xj = 1

2 ), we have an
ion i in the center of the cell and ions j in vertices, and all
eight pairs of closest neighbors participate only in the reaction
ij. The reactions ii and jj will be strongly blocked because any
pairs ii and jj are not closest neighbors. Then the ion i in the
center of the basic cell will be able to react with six ions i

in centers of adjacent cells. The equilibrium distance between
these pairs is a factor of 2/

√
3 ≈ 1.155 larger than between

the closest neighbors, which will exponentially suppress the ii
reaction rate.

One can construct more complicated MCP lattice structures
and formulate appropriate blocking conditions. The strongest
blocking of pycnonuclear reactions is expected in a regular
crystal with many components. In that case, the probability to
find specified closed neighbors ij could be very selective.

3. Other MCP structures

If the matter consists of domains of separated phases,
pycnonuclear burning occurs mainly within these domains.
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The rate of the reaction ii in domains containing ions i can
be calculated from Eq. (33), assuming OCP (xi = 1), and then
diluted by a volume fraction occupied by the phase i. The
burning of different ions i and j occurs on interfaces between
corresponding domains. Roughly, in a BIM with spherical
bubbles containing N less abundant ions (i or j ), the OCP
reaction rate ii can be diluted with respect to the rate in a
uniformly mixed state by a factor of 1/N2/3 (because the
reactions occur on interfaces).

Pycnonuclear burning in a lattice can be drastically affected
by lattice impurities and imperfections (see, e.g., Ref. [8]). We
expect that the effect of impurities or imperfections can be
included in Eq. (33) if we treat them as members of the MCP.
Because the burning is mainly regulated by the parameter
λ̃ij , the rate should be extremely sensitive to variations
of equilibrium distances and oscillation frequencies for the
reacting nuclei [see Eq. (29)]. Small variations can induce
exponentially huge jumps or drops of the Coulomb tunneling
probability (for instance, in response to the decrease or increase
of inter-ion separations). The impurities and imperfections
may be rare, but they may give the leading contribution into
the reaction rate.

Moreover, different pairs ij in an MCP may be exposed to
different local conditions and have different separations and
oscillator frequencies. One can incorporate these effects by
introducing the averaging 〈. . .〉av over an ensemble of such
pairs in Eq. (25).

For illustration, we show in Fig. 3 the density dependence
of C+C, C+O, and O+O pycnonuclear reactions in carbon-
oxygen BIMs. The astrophysical factors are taken from
Sec. II. In the main part of the figure, we use the optimal
reaction model from Table II. The dot-and-dashed lines show
the C+C burning in a pure carbon matter (xC = 1) and

FIG. 3. (Color online) Rates of pycnonuclear C+C, C+O, and
O+O reactions vs density for the optimal burning model. Dot-and-
dashed lines show C+C burning in a pure carbon crystal and O+O
burning in a pure oxygen crystal. Other lines are for the C-O mixture
(xC = 0.5); solid lines refer to a uniform BIM; long-dashed lines are
for a regular C-O bcc crystal; dots are for phase-separated matter.
Inset shows the same curves for the C+C reaction on a larger scale;
thicker short-dashed lines give the maximum and minimum reaction
rates for the uniform C-O mixture in the ion-sphere model (αλ = 1);
thin short-dashed lines are the same but allow for the variation of αλ

(see text for details).

O+O burning in a pure oxygen matter (xC = 0), while other
lines are for the C-O mixture with xC = 1

2 . The solid lines
present the reaction rates in the uniform C-O mixture. For
the C+C and O+O reactions, these lines go slightly lower
than the dash-and-dot lines because of the reduced amount
of carbon and oxygen in a BIM (as compared to pure carbon
or oxygen matter). The long-dashed lines give the reaction
rates in the bcc C-O regular crystal. The C+O burning in
this crystal has the same rate as in the C-O uniform mix
(the solid line) in our model. To illustrate the blocking effect
(produced by the absence of closest CC or OO neighbors in the
crystal), we calculated the C+C and O+O reaction rates using
Eq. (33) but we increased the distances between the reacting
nuclei in Eq. (28) by a factor of αdii = 2/

√
3, where i =

C or O (see above). Because the local oscillator frequencies
for these CC and OO pairs are unknown, we assumed the
ion-sphere rescaling (α2

ωii = 1/α3
dii). The blocking effect is

strong, reducing the reaction rates by 5–7 orders of magnitude.
Nevertheless, even with this blocking, the C+C reaction is
much faster than the C+O and O+O ones because of a much
lower Coulomb barrier. Finally, we also calculated the BIM
reaction rates assuming phase separation of C and O. We did
not plot the respective C+C and O+O reaction rates because
they are almost indistinguishable from the corresponding
dot-and-dashed lines (the rates are only twice lower than those
in the respective OCPs). However, the C+O burning in this
case can be strongly suppressed because it occurs only at
interfaces between separated phases. For example, the dotted
line shows such a C+O burning rate assuming separation into
domains which contain 106 ions.

The inset in Fig. 3 displays the C+C reaction rate on a
larger scale. The solid and dot-and-dashed lines are the same
as in the main part of the figure. Short dashed lines present
the maximum and minimum reaction rates for the uniform
C-O mixture; they reflect uncertainties of existing theoretical
models for pycnonuclear burning. These lines are calculated
using the parameters from Table II. Thicker short-dashed lines
give the maximum and minimum reaction rates using the
ion-sphere model (neglecting deviations from the ion-sphere
rescaling; i.e., assuming αλCC = 1). Thinner short-dashed lines
are the estimated maximum and minimum reaction rates taking
into account possible deviations from the ion-sphere model.
The current theoretical uncertainties of the reaction rate are
really large.

E. Thermally enhanced pycnonuclear regime

This regime operates in the temperature range
0.5 T

(p)
ij / ln(T (l)

ij /T
(p)
ij ) <∼ T <∼ 0.5 T

(p)
ij (see Ref. [8]). At these

temperatures, the majority of nuclei occupy ground states in
their potential wells, but the main contribution to the reaction
rate comes from a small amount of nuclei which occupy excited
bound states. This regime is difficult for theoretical studies. We
will follow the approach of Ref. [11], which is based on an
analytical approximation of the WKB calculations performed
by Salpeter and Van Horn [8]. We generalize this approach to
an MCP in the same manner as in Sec. III D, by rescaling λ
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and Tp in accordance with Eqs. (12) and (10). In this case,

R
pyc
ij (T )

R
pyc
ij (0)

− 1 = �

λ̃
1/2
ij

exp

[
−�

T̃
(p)
ij

T

+ �1

(̃λij )1/2
exp

(
−�T̃

(p)
ij

T

)]
, (34)

where T̃
(p)
ij ≡ h̄ωij /kB = αωijT

(p)
ij , while �,�1, and � are

model-dependent dimensionless constants. We adopt αωij =
0.95 to maximize the reaction rate and αωij = 1.05 to minimize
it (Table II). In analogy with Ref. [11], the characteristic energy
of the reacting nuclei can be taken in the form

E
pk
ij ≈ h̄ωij + ZiZje

2

aij

exp

(
−�

T̃
(p)
ij

T

)
. (35)

The first term is the reaction energy in the zero-temperature
pycnonuclear regime, while the second term describes an
increase of E

pk
ij with growing temperature in the thermally

enhanced pycnonuclear regime. Equation (35) is approximate
(based on the results of Ref. [8] as explained in [11]), but
we expect that it correctly reflects the main features of the
accurate expression (to be derived in future, more elaborate
calculations). The analogous expression (26) for OCP in
Ref. [11] contains two new free factors, C1 and C2, in the first
and second terms, respectively. They were set C1 = C2 = 1
in numerical calculations [11] because the theory [8] is
insufficiently precise to determine them. We do not introduce
these factors here to avoid additional unknowns, but they could
be introduced in the future. An uncertainty in E

pk
ij should not

greatly affect the reaction rates.
After Salpeter and Van Horn [8], the thermally enhanced

pycnonuclear burning in an OCP was studied by Kitamura and
Ichimaru [53] assuming that the reacting nuclei move in an
angle-averaged, radial static mean-field potential determined
from Monte Carlo sampling of classical Coulomb systems.
Although this approach is less justified than the WKB approx-
imation of Ref. [8], the results are in a reasonable agreement
(see Ref. [11] for details). Kitamura [47] generalized the results
of Ref. [53] to the case of BIMs using the ion-sphere rescaling
rule (αλij = αωij = 1).

The thermally enhanced pycnonuclear burning is as sensi-
tive to the microphysical structure of the MCP as is the zero-
temperature pycnonuclear burning (Sec. III D). The above
comments refer to a uniformly mixed MCP. In the case of
a regular MCP lattice, the reaction will be suppressed by the
same blocking effects as discussed in Sec. III D. The case of
phase separation has the same features as at T = 0. Illustrative
examples will be given in Sec. IV.

F. The intermediate thermo-pycnonuclear regime

The thermo-pycnonuclear regime is realized at tempera-
tures T

(p)
ij /2 <∼ T <∼ T

(p)
ij which separate the domains of classi-

cal and quantum motion of the reacting nuclei. The calculation
of the reaction rate in this regime is very complicated. We will

describe this rate by a phenomenological expression presented
below.

The reaction is mainly determined by the nuclei that become
slightly unbound and can move freely through the dense matter,
fusing not only with the closest neighbors (pycnonuclear
regime), but also with other nuclei (thermonuclear regime).
We expect that the transition from the pycnonuclear to
the thermonuclear regime with the growth of temperature
in a uniformly mixed MCP is sufficiently smooth. When
the number of freely reacting nuclei becomes large, the
dependence of the reaction rate on the details of the MCP
microstructure should disappear.

G. Single analytical approximation in all regimes

Our phenomenological expression for the temperature-
and density-dependent reaction rate, which combines all five
burning regimes and assumes a uniformly mixed MCP at
low temperatures, is a straightforward generalization of the
expression for the OCP considered in Ref. [11],

Rij (ρ, T ) = R
pyc
ij (ρ) + �Rij (ρ, T ),

�Rij (ρ, T ) = ninj

1 + δij

S
(
E

pk
ij

)
h̄

rBijPF,

F = exp

(
−τ̃ij + Csc�̃ijϕ (36)

× exp
(−�T̃

(p)
ij /T

) − �
T̃

(p)
ij

T

)
,

P = 8π1/3

√
3 21/3

(
Ea

ij

kBT̃

)γ

.

In this case, ϕ = √
�ij /[(Csc

ij /ζij )4 + �2
ij ]1/4; R

pyc
ij (ρ) is the

density-dependent pycnonuclear reaction rate at zero temper-
ature discussed in Sec. III D; �Rij (ρ, T ) is the density- and
temperature-dependent part including an exponential function
F and a pre-exponent P . The quantities τ̃ij and �̃ij are
similar to the familiar quantities τij and �ij , but they contain
a “renormalized” temperature T̃ ,

τ̃ij = 3
(π

2

)2/3
(

Ea
ij

kBT̃

)1/3

,

(37)

�̃ij = ZiZje
2

aij kBT̃
, T̃ =

√
T 2 + C2

T

(
T

(p)
ij

)2
,

where CT is a dimensionless renormalization parameter
specified below. Equations (36) and (37) are analogous to
Eqs. (27) and (28) of Ref. [11]. The term �Rij (ρ, T ) and
the renormalized temperature T̃ are introduced to match the
equations in thermonuclear and pycnonuclear regimes. The
renormalized temperature reflects the fact that the thermal
energy kBT of plasma ions in the thermonuclear case is
replaced by a temperature-independent zero-point energy in
the pycnonuclear case.

For high temperatures T � T
(p)
ij , we have τ̃ij → τij , �̃ij →

�ij , and T̃ → T . In this case, �Rij (ρ, T ) → Rth
ij (ρ, T ) �
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R
pyc
ij (ρ), and Eq. (36) reproduces the thermonuclear reaction

rate (Secs. III B and III C). At low temperatures T <∼ T
(p)
ij , the

quantities τ̃ij , �̃ij , and T̃ contain the “quantum” temperature
T

(p)
ij , determined by zero-point ion vibrations, rather than the

real temperature T . In the limit of T → 0, we obtain �̃ij =
1/[(λij )1/2 (72π )1/6CT ] and τ̃ij = 3(π/λij )1/2/(27/6 C

1/3
T ).

Following Ref. [11], we require that at T � T
(p)
ij the factor

exp(−τ̃ij ) in the exponential function F , Eq. (36), reduces to
exp[−Cexp/(̃λij )1/2]. This would allow us to obey Eq. (34) by
satisfying the equality

3
√

π/
(
27/6C

1/3
T

) = Cexp(αλij )−1/2. (38)

The double-exponent factor in F , Eq. (36), will correspond to
the double-exponent factor in Eq. (34). Taking Cexp and αλij

from Table II, we can determine CT . These parameters are also
listed in Table II. In the MCP they are different from those
in the OCP because in the MCP we introduce an additional
parameter αλij (Sec. III D). The values of CT for the OCP [11]
are given in Table II in parentheses.

Finally, the quantity γ in Eq. (36) and the reaction energy
E

pk
ij in the astrophysical factor S(Epk

ij ) can be chosen in the
same way as in Ref. [11],

γ = [
T 2γ1 + (

T̃
(p)
ij

)2
γ2

]/[
T 2 + (

T̃
(p)
ij

)2]
, (39)

E
pk
ij = h̄ω̃

(p)
ij +

(
ZiZje

2

aij

+ kBT τij

3

)
exp

(
−�T̃

(p)
ij

T

)
,

(40)
where γ1 = 2/3 and γ2 = (2/3) (Cpl + 0.5).

Thus, we propose to use the analytic expression (36) for the
reaction rate in a uniformly mixed MCP with the following
parameters:

(i) The parameter Csc of strongly screened thermonuclear
burning is given by Eq. (21).

(ii) The parameters Cexp, Cpyc, Cpl, αλij of zero-temperature
pycnonuclear burning, and the parameters αωij ,�, and
CT of thermally enhanced pycnonuclear burning are
given in Table II.

In this way, we obtain (Table II) three models for any given
nonresonant nuclear fusion reaction (9) in a uniformly mixed
MCP. One is the optimal model, the second gives the maximum
reaction rate, and the third gives the minimum reaction rate. For
the OCP, it is sufficient to set αλij = αωij = 1, which reduces
the present results to those of Ref. [11].

The uncertainties of the reaction rate become larger if a cold
MCP forms a regular lattice or undergoes a phase separation
or contains impurities and defects. All these cases can be
approximately taken into account in the same way as discussed
in Sec. III D. For instance, a reaction in a regular lattice can
be strongly blocked by the absence of the closest reacting
neighbors (Secs. III D and III E; also see Sec. IV).

Our formula for a uniformly mixed MCP gives a smooth
behavior of the reaction rate as a function of temperature and
density, without jumps at the solidification point (in analogy
with an OCP, see Ref. [11]). In the cases of other MCP
microstructures, such jumps may appear.

Our formula is flexible. Its parameters could be tuned when
new microscopic calculations of reaction rates appear in the
future. Moreover, the formula can be improved even if new
information on MCP properties (not on reaction rates directly)
appear in the literature (for instance, on the deviations from
the ion-sphere scaling at T = 0).

More complicated expressions for the reaction rates in the
OCP and uniform BIMs were proposed by Kitamura [47].
His expressions are mainly based on the results of Refs. [45,
46,48,51,53] (in the different regimes) which are not free of
approximations (see Ref. [11] for details). His expressions
for BIMs are obtained assuming the ion-sphere rescaling rule
(αλij = αωij = 1) and are, therefore, more restricted than our
expression. Their derivation implies that they are valid for
uniformly mixed BIMs. In particular, they do not take into
account blocking effects in regular binary lattices.

In contrast to our formula, Kitamura took into account
the effects of electron screening (finite polarizability of the
electron gas). However, these effects are relatively weak; their
strict inclusion in the pycnonuclear regime is complicated. We
do not include them but, instead, take into account theoretical
uncertainties of the reaction rates without electron screening.
The results of Kitamura [47] for an OCP lie well within
these uncertainties. His results for BIMs in the thermonu-
clear regime with strong screening and essentially different
charges of reacting nuclei are less accurate than our results
(Sec. III C).

IV. NUCLEAR BURNING IN A CARBON-OXYGEN
MIXTURE

To illustrate our results, we analyze nuclear reactions in
a dense 12C-16O mixture. Figure 4 shows the temperature

FIG. 4. (Color online) C+C reaction rate vs temperature at ρ =
5 × 109 g cm−3. Dot-and-dashed line is the optimal model for pure
carbon matter; other lines are for a C-O mixture with xC = 0.5. Solid
line is the optimal model for a uniform mixture; long-dashed line is for
the regular bcc C-O crystal at low temperatures (vertical part indicates
the melting point). Thicker short-dashed lines give the maximum and
minimum reaction rates for the uniform C-O mixture in the ion-sphere
model (αλ = 1); thinner short dashed-lines are the same but allow for
deviations from the ion-sphere model (see text for details).
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dependence of the C+C reaction rate at ρ = 5 × 109 g cm−3

(for the same reaction models as in Fig. 3). The dot-and-dashed
line is the optimal model (Table II) for a pure carbon matter
(from Ref. [11]). Other lines are for C-O mixtures with
equal numbers of C and O nuclei (xC = 1

2 ). The solid line
is the optimal model for the uniform mixture; the thicker
short-dashed lines show the maximum and minimum reaction
rates in such a mixture in the ion-sphere approximation
(αλCC = αωCC = 1); the thinner short-dashed lines are the
same but beyond the ion-sphere approximation (note that
variations of αωCC appear to be much less important than
variations of αλCC). The long-dashed line is for a C-O regular
lattice (in the same approximation as used in Fig. 3). A sharp
jump in this curve is associated with the melting of the crystal
(Fig. 2), which destroys the blocking of the C+C burning and
amplifies the reaction rate.

Figure 4 shows the reaction rates in all burning regimes
(except for the classical thermonuclear burning which would
require higher temperatures; see Fig. 2). The horizontal parts
of the curves for log T [K] <∼ 7.7 refer to the zero-temperature
pycnonuclear burning; the respective reaction rates are inde-
pendent of T as discussed in Sec. III D and displayed in Fig. 3.
The temperature range 7.7 <∼ log T [K] <∼ 8.3 corresponds to
the thermally enhanced pycnonuclear regime. The reaction
rate starts to grow with increasing T (Sec. III E). The rate
remains highly uncertain for the same reasons as in the zero-
temperature pycnonuclear regime. The next temperature range
8.3 <∼ log T [K] <∼ 8.6 corresponds to the intermediate thermo-
pycnonuclear burning (Sec. III F). Theoretical uncertainties
of the reaction rate become smaller. Finally, the temperature
range log T [K] >∼ 8.6 refers to the thermonuclear burning with
strong plasma screening. The theoretical uncertainties become
much smaller although the enhancement of the reaction rate
by the plasma screening effects is huge; with increasing T

this enhancement weakens and the reaction rate matches
the classical thermonuclear rate (see Fig. 6 of Ref. [11]).
The presence of oxygen slightly reduces the C+C reaction
rate (by reducing the amount of carbon nuclei at a given
density).

Based on our expression for the reaction rates, we plot
in Fig. 2 the T -ρ domains (shaded strips), where the C+C,
C+O, and O+O reactions are most important. The domains
for the C+C and O+O reactions are presented for pure carbon
or pure oxygen matter (xC = 1 and xC = 0, respectively).
For the C+O reaction, we have taken the C-O mixture with
xC = 1

2 . A domain for any reaction ij is restricted by two
lines along which the characteristic burning time τi = ni/Rij

of nuclei i is constant (taken to be 106 years for a lower
line and 1 year for an upper line, for example). Above
the upper line, the reaction ij is so fast that the nuclei i

cannot survive for a long time. Below the lower line, the
reaction is so slow that the nuclei i survive almost forever.
Therefore, the strips represent the temperature and density
domains of greatest relevance for the carbon and oxygen
nucleosynthesis through the reactions under discussion. For
determining these domains, we have taken the optimal model
from Table II. The domains do not change significantly
under variations of fractional numbers of C and O within
reasonable limits. For densities ρ <∼ 109 g cm−3, the strips

FIG. 5. (Color online) Carbon ignition curves in 12C-16O matter.
Dot-and-dashed line is the optimal model for carbon burning in pure
carbon matter. Solid and dotted lines are optimal models for uniform
C-O mixtures with xC = 0.5 and 0.1, respectively. Other lines are for
C-O BIMs with xC = 0.5. Short-dashed lines give the highest and
lowest theoretical ignition curves for uniform mixtures. Long-dashed
line is for the C-O bcc crystal at low temperatures.

are almost horizontal; nuclear burning in them proceeds in the
thermonuclear regime, and the reaction rates depend mainly
on the temperature. In contrast, the strips become almost
vertical at low temperatures, reflecting the pycnonuclear
burning regime where the reaction rates depend mainly on the
density.

The strips show a strong heterogeneity of the different
reactions. It is evidently caused by different heights of
Coulomb barriers. With increasing ρ and/or T in the C-O
matter, carbon will burn first in the C+C reaction and could
be burnt almost completely before reaching the T -ρ domain,
where the C+O reaction can be efficient.

Finally, we have studied the carbon ignition curve, which
is a necessary ingredient for modeling nuclear explosions of
massive white dwarfs (supernova Ia events) and carbon ex-
plosions in accreting neutron stars (superbursts). The ignition
curve is usually determined as the line in the T -ρ plane (Fig.
5), where the nuclear energy generation rate equals the local
neutrino energy losses. At higher T and ρ (above the curve), the
nuclear energy generation exceeds the neutrino losses (which
cool the matter) and carbon ignites. We have calculated such
curves for C-O mixtures. All reactions (C+C, C+O, and O+O)
have been taken into account but the C+O and O+O reactions
have appeared to be unimportant owing to the heterogeneity
of nuclear burning. The presence of oxygen affects carbon
ignition only through the C+C reaction rate and the neutrino
emission rate. The neutrino energy losses have been assumed
to be produced by plasmon decay and by electron-nucleus
bremsstrahlung. The neutrino emissivity owing to plasmon
decay has been obtained from extended tables calculated by
M. E. Gusakov (unpublished); they are in good agreement with
the results of Itoh et al. [54]. The neutrino bremsstrahlung
emissivity has been calculated using the formalism of
Kaminker et al. [55], which takes into account electron band
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structure effects in crystalline matter. For a C-O mixture,
this neutrino emissivity has been determined using the linear
mixture rule.

The dot-and-dashed line in Fig. 5 shows the carbon ignition
curve, calculated using the optimal model of carbon burning
in pure carbon matter (xC = 1; from Ref. [11]). The solid
and dotted lines are the same curves in C-O mixtures with
xC = 0.5 and 0.1, respectively (assuming the optimal reaction
model and a uniform mixture at low temperatures). At ρ <∼
109 g cm−3, the curves depend weakly on the density because
carbon burns in the thermonuclear regime. At T <∼ 108 K,
the curves depend weakly on the temperature because carbon
burns in the pycnonuclear regime. A strong bending of the
curves in the density range from ∼109 to ∼3 × 109 g cm−3 is
associated with the transition from thermonuclear burning to
pycnonuclear. As the carbon fraction decreases, the ignition
curve shifts to higher T and ρ, mainly because of the drop in
the C+C reaction rate.

The short-dashed lines in Fig. 5 show the uncertainty
of the solid ignition curve (xC = 1

2 , a uniform C-O mix-
ture) associated with the uncertainties of the reaction rates
(assuming the maximum and minimum reaction rates from
Table II). In the thermonuclear regime, the uncertainties are
small; while in the pycnonuclear regime, they are substantial.
The long-dashed line shows the ignition curve calculated under
the assumption that a regular bcc C-O lattice is formed in the
C-O mixture (xC = 1

2 ) after the crystallization. The blocking
of the C+C reaction rate by oxygen ions in the bcc lattice shifts
the ignition curve to higher ρ. The sudden break in this line is
associated with the crystallization (analogous to the break in
the long-dashed line in Fig. 4).

The carbon ignition curve obtained by equating the nuclear
energy generation and the neutrino losses becomes unreliable
for T <∼ 108 K (e.g., Ref. [11]). The main reason is that this
curve falls in the T -ρ domain, where the characteristic carbon
burning time is unrealistically large (exceeds the age of the
universe). In addition, the neutrino emission becomes a very
slow, inefficient means for carrying away the nuclear energy;
thermal conduction can be much more efficient. As a result,
the carbon ignition condition becomes nonlocal, complicated,
and dependent on a specific model (a neutron star, white
dwarf, etc.).

V. CONCLUSIONS

We have studied the problem of Coulomb barrier pene-
tration for nonresonant nuclear fusion reactions in a dense
MCP of atomic nuclei. We have considered all five nuclear
burning regimes (Secs. III B–III F) and analyzed calculations
of nuclear reaction rates in an MCP for these regimes,
available in the literature. We have proposed (Sec. III G)
a unified phenomenological expression for the reaction rate
valid for all regimes. It generalizes an analogous expression
proposed recently [11] for an OCP. The expression contains
several parameters which can be varied to account for current
theoretical uncertainties of the reaction rates.

Our main conclusions are the following:

(i) The reaction rates in the thermonuclear regimes (with
weak and strong plasma screening) can be calculated
sufficiently accurately. In the regime of strong screening
and for reacting nuclei with nonequal charges, our
expression is more accurate than those proposed in the
literature (Sec. III C).

(ii) The reaction rates in other regimes (zero-temperature
and thermally enhanced pycnonuclear regimes; interm-
diate thermo-pycnonuclear regime) are much less cer-
tain. They are very sensitive to currently unknown
microphysical correlation properties in an MCP (a
uniform mix, a regular crystalline lattice, a phase-
separated matter, a matter with impurities and defects);
they are much richer in physics than those in the OCP
case.

(iii) At low temperatures, we have mainly considered re-
actions in a uniform mix. Other MCP microstructures
can strongly decrease or increase the reaction rates. For
instance, the reactions in a regular MCP lattice can be
strongly suppressed by the absence of nearby reacting
nuclei.

(iv) Our phenomenological expression can be improved
(Sec. III G) after new calculations of the reaction rates or
main properties of the MCP are performed. It would be
important to know the actual microstructure of the MCP
at low temperatures (first of all, the availability of closest
neighbors, local separations, and oscillation frequencies
of neighboring nuclei, particularly in the presence of
impurities and lattice defects).

(v) Although our main formula in Sec. III G assumes a unif-
orm mix at low T , the presented results are
sufficient to understand qualitatively the reaction
rates for other cases (following the prescriptions of
Sec. III D).

For illustration, we have considered (Sec. IV) C+C, C+O,
and O+O nuclear reactions in a dense carbon-oxygen mixture,
which is important for the structure and evolution of massive
white dwarfs (supernova Ia explosions) and accreting neutron
stars (as sources of superbursts). For this purpose, we have
calculated and parametrized the appropriate astrophysical
factors (Sec. II). The main results of our analysis are as
follows:

(i) The ranges of densities and temperatures at which the
C+C, C+O, and O+O reactions are very important look
like narrow regions in the temperature-density diagram
(Fig. 2); the regions do not strongly overlap, which means
a strong heterogeneity of these reactions.

(ii) With increasing density and/or temperature, carbon starts
burning first in the C+C reaction (because carbon nuclei
have a lower Coulomb barrier); this reaction is very
important in the nuclear evolution of C-O mixtures.

(iii) Carbon burning in the C+C reaction is affected by
the presence of oxygen. The effect is simple in the
thermonuclear regimes but more complicated in other
regimes (at low temperatures).
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(iv) Carbon ignition in a C-O mixture occurs (Fig. 5) in
thermonuclear regimes as long as ρ <∼ 109 g cm−3 (and
T >∼ 3 × 108 K). It can be calculated quite accurately.
With the decrease of carbon fraction, the ignition curve
shifts to higher ρ and T .

(v) At ρ >∼ 109 g cm−3 and T <∼ 3 × 108 K the ignition
condition becomes uncertain (Sec. IV). The formation
of a regular C-O lattice after crystallization can block
the C+C reaction and shift carbon ignition to higher
densities.

Our consideration in this paper was general. More quan-
titative nuclear network simulations involving thermonuclear

and pycnonuclear burning in dense stellar matter are currently
in progress.
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