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Contribution of radiative gluons and spin-one diquarks to the F2 structure function
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We calculate unpolarized quark distribution functions and the F2 structure functions for the proton and the
neutron. The calculations are preformed in the light-cone frame. For the bare nucleon we have used three
different distributions, namely, the spin-0 diquark, the spin-0 plus spin-1 diquark, and the no diquark models. By
using perturbative QCD an initial gluon distribution is generated inside the core nucleon. The physical nucleon
is assumed to be a superposition of the bare nucleon plus the virtual light-cone Fock states of baryon octets
and decuplets and pseudoscalar meson pairs. The initial distributions are evolved. The F2 structure functions
calculated from the evolved distributions are compared with NMC and ZEUS results along with a CTEQ6M fit.
Also, it is shown that the meson cloud is a contributing factor to sea-quark asymmetry and to Gottfried sum-rule
violation.
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I. INTRODUCTION

The original intent of this series of work was to use the
meson cloud model (MCM) to gain some insight into nucleon
structure [1–3]. (An extensive list of work, both experimental
and theoretical, to investigate nucleon F2 and g1 structure
functions can be found in Refs. [1–3].) We were able to show,
for example, that the meson cloud is a contributing factor to
sea-quark asymmetry [3], Gottfried sum-rule violation [3],
rather significant strange sea-quark polarization [1,2], etc.
However, there were some shortcomings; for example, the
spin-0 diquark calculation of the neutron’s first moment of g1

turned out to be positive even after introduction of the gluon
anomaly [1,2]. To overcome this problem we add a spin-1
diquark component to the core nucleon with the expectation
that the new model will reproduce both the unpolarized and
polarized structure functions reasonably well. In the present
work we concentrate on the unpolarized case.

In Sec. II we briefly present a light-front representation
of three-body systems and introduce the two types of wave
functions that we will use for core nucleon. This will be
followed by the formalism for the MCM in Sec. III. Results
and discussion will be presented in Sec. IV.

II. LIGHT-FRONT REPRESENTATION OF THE NUCLEON

Since the original work by Dirac [4] several decades ago,
there has been extensive use of the light-front frame to study
high-energy processes. A more in-depth study of the subject
for the interested reader can be found in Refs. [5–8]. Here
we present basic definitions and the formalism [9,10]. A four-
vector in the light-front frame is defined as

a = (a+, a−, a⊥), (1)

where a± = (a◦ ± a3)/
√

2 and a⊥ = (a1, a2). Following the
relativistic treatment of the nucleon by Terent’ev [11,12],
we separate the center-of-mass motion of the three quarks
in the nucleon from their relative motion by transforming
their momenta, p1, p2, p3, into total and relative momenta

as follows:

�P = �p1 + �p2 + �p3, (2a)

ξ = p+
1

p+
1 + p+

2

, η = p+
1 + p+

2

P + , (2b)

xq⊥ = (1 − ξ )p1⊥ − ξp2⊥,
(2c)

Q⊥ = (1 − η)(p1⊥ + p2⊥) − ηp3⊥.

Then, the Hamiltonian of the system takes the form

H = P 2
⊥ + M̂2

2P + , (3)

where M̂ is the mass operator with the interaction term W :

M̂ = M + W, (4a)

M2 = Q2
⊥

η(1 − η)
+ M2

3

η
+ m2

3

1 − η
, (4b)

M2
3 = q2

⊥
ξ (1 − ξ )

+ m2
1

ξ
+ m2

3

1 − ξ
, (4c)

with m1,m2, and m3 as the constituent quarks masses. M and
M3 can be rewritten in a more transparent way in terms of the
relative momenta q and Q:

E1 =
√

q2 + m2
1, E2 =

√
q2 + m2

2,
(5a)

E3 =
√

Q2 + m2
3, E12 =

√
Q2 + M2

3 ,

ξ = E1 + q3

E1 + E2
, η = E12 + Q3

E12 + E3
, (5b)

M = E12 + E3, M3 = E1 + E2, (5c)

where q = (q1, q2, q3) and Q = (Q1,Q2,Q3).
The wave function of the nucleon can be written as

� = �χφ, (6)

where �,χ , and φ are the flavor, spin, and momentum
distributions, respectively. We are going to consider two
different wave functions for the core nucleon. First, assume
that the nucleon is a quark-diquark system. In general, the
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nucleon state can be a linear combination of the spin-isospin
diquark states (0,0), (0,1), (1,0), and (1,1), which can be written
as

�1 = A√
2

[
uud

(
χρ1φλ1

1 + χρ2φλ2
1

) − udu
(
χρ1φλ1

1 − χρ3φλ3
1

)
− duu

(
χρ2φλ2

1 + χρ3φλ3
1

)]
+ B√

6

[
uud

(
χρ1φ

ρ1
1 + χρ2φ

ρ2
1 − 2χρ3φ

ρ3
1

)
+udu

(
χρ1φ

ρ1
1 − 2χρ2φ

ρ2
1 + χρ3φ

ρ3
1

)
+ duu

(−2χρ1φ
ρ1
1 + χρ2φ

ρ2
1 + χρ3φ

ρ3
1

)]
+ C√

2

[
uud

(
χλ1φ

ρ1
1 + χλ2φ

ρ2
1

)
−udu

(
χλ1φ

ρ1
1 − χλ3φ

ρ3
1

) − duu
(
χλ2φ

ρ2
1 + χλ3φ

ρ3
1

)]
+ D√

6

[
uud

(
χλ1φλ1

1 + χλ2φλ2
1 − 2χλ3φλ3

1

)
+udu

(
χλ1φλ1

1 − 2χλ2φλ2
1 + χλ3φλ3

1

)
+ duu

(−2χλ1φλ1
1 + χλ2φλ2

1 + χλ3φλ3
1

)]
. (7a)

For the second case we assume that there is no clustering of
the quarks inside the nucleon [9]:

�2 = −1√
3

(uudχλ3 + uduχλ2 + duuχλ1)φ2. (7b)

We will be using three wave functions called Set 1, Set 2,
and Set 3. Sets 1 and 2 correspond to the models that we
have used in Refs. [1–3]. Set 1 is the spin-0 diquark with
A = 0.9798, B = −0.2, C = 0.0, and D = 0.0 in Eq. (7a).
Set 2 is Eq. (7b). Set 3 is the new model in which we choose
A = −0.7874, B = 0.0, C = 0.0, and D = −0.6164 in
Eq. (7a). Also, in Eq. (7), u and d represent the up and
down flavor. χρi and χλi with i = 1, 2, 3 represent the Melosh
transformed spin wave functions [13], for example,

χ
ρ3
↑ = 1√

2
(↑↓↑ − ↓↑↑), (8a)

χ
ρ3
↓ = 1√

2
(↑↓↓ − ↓↑↓), (8b)

χλ3
↑ = 1√

6
(↓↑↑ + ↑↓↑ −2 ↑↑↓), (8c)

χλ3
↓ = 1√

6
(2 ↓↓↑ − ↓↑↓ − ↑↓↓). (8d)

The spin wave function of the ith quark is

↑= Ri

(
1
0

)
, ↓= Ri

(
0
1

)
. (9)

In Eq. (9), Ri are the Melosh matrices:

R1 = 1√
a2 + Q2

⊥
√

c2 + q2
⊥

×
(

ac − qRQL −aqL − cQL

cQR + aqR ac − qLQR

)
, (10a)

R2 = 1√
a2 + Q2

⊥
√

d2 + q2
⊥

×
(

ad + qRQL −aqL − dQL

dQR − aqR ad − qLQR

)
, (10b)

R3 = 1√
b2 + Q2

⊥

(
b QL

−QR b

)
, (10c)

where

a = M3 + ηM, b = m3 + (1 − η)M, (11a)

c = m1 + ξM3, d = m2 + (1 − ξ )M3, (11b)

qR = q1 + iq2, qL = q1 − iq2, (11c)

QR = Q1 + iQ2, QL = Q1 − iQ2. (11d)

The functions φ
ρi

1 , and φλi
1 , with i = 1, 2, 3, and φ2 are

the momentum wave functions, which we take to be of the
following form:

φ
ρi

1 = Nρi(Xj − Xk)φsi
1

/
XT , (12a)

φλi
1 = Nλi(Xj + Xk − 2Xi)φ

si
1

/
XT , (12b)

with i �= j �= k, and [9]

φ2 = N

(M2 + β2)3.5
. (12c)

Also,

X3 = Q2
⊥

2η(1 − η)β2
Q

+ q2
⊥

2ηξ (1 − ξ )β2
q

+ m2
1

2ηξβ2
q

+ m2
2

2η(1 − ξ )β2
q

+ m2
3

2(1 − η)β2
Q

, (13a)

X2 = q2
⊥

(1 − η)(1 − ξ )β2
Q + ξβ2

q

2β2
Qβ2

qηξ (1 − ξ )(1 − η + ξη)

+Q2
⊥

(1 − ξ )(1 − η)β2
q + ξβ2

Q

2β2
Qβ2

qη(1 − η)(1 − η + ξη)

+ q⊥Q⊥
β2

Q − β2
q

β2
Qβ2

qη(1 − η + ξη)
+ m2

1

2ηξβ2
q

+ m2
2

2η(1 − ξ )β2
Q

+ m2
3

2(1 − η)β2
q

, (13b)

X1 = q2
⊥

(1 − ξ )β2
q + ξ (1 − η)β2

Q

2β2
Qβ2

qηξ (1 − ξ )(1 − ξη)

+Q2
⊥

(1 − ξ )β2
Q + ξ (1 − η)β2

q

2β2
Qβ2

qη(1 − ξ )(1 − ξη)

− q⊥Q⊥
β2

Q − β2
q

β2
Qβ2

qη(1 − ξη)
+ m2

1

2ηξβ2
Q

+ m2
2

2η(1 − ξ )β2
q

+ m2
3

2(1 − η)β2
q

, (13c)

XT = X1 + X2 + X3, (13d)
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and

φsi
1 = 1

(1 + XT )ni
. (13e)

In these equations βQ, βq , and β are confinement scale
parameters and Nρi

, Nλi
, and N are normalization constants.

III. THE MESON CLOUD MODEL IN THE LIGHT-CONE
FRAME

Using the convolution model, one can decompose the
physical nucleon in terms of the core nucleon and intermediate,
virtual meson-baryon states [1–3 and references therein]:

|N〉 = Z1/2

[
|N〉bare +

∑
BM

βBM |BM〉
]

, (14)

where Z is the probability of the physical nucleon being in
the core state, BM stands for a virtual baryon-meson state,
and βBM is the probability amplitude for the physical nucleon
being in the BM state. The summation in Eq. (14), in general,
includes all physically possible pairs from the meson octet and
baryon octet and decuplet. In terms of the quark distributions
one can write

qN (x) = Z

{
qN,core(x) +

∑
MB

αMB

[∫ 1

x

nMB(y)qM

(
x

y

)
dy

y

+
∫ 1

x

nBM (y)qB

(
x

y

)
dy

y

] }
, (15)

where x is the fraction of the total momentum of the nucleon
being carried by quark q, αMB are spin-flavor Clebsch-Gordan
coefficients, nMB and nBM ,the splitting functions, are the
probabilities of the nucleon being in state MB or BM ,
respectively, and y is the fraction of the momentum being
carried by the meson (baryon) in nMB(y) (nBM (y)). The
splitting functions must satisfy the following equations:

nMB(y) = nBM (1 − y) (16)

and

〈xnMB〉 + 〈xnBM〉 = 〈nBM〉. (17)

In Eq. (17) 〈n〉 and 〈xn〉 are the first and second moments
of the splitting functions. Equation (16) ensures the global
charge conservation and Eq. (17) ensures ensures momentum
conservation.

To calculate qN (x) one needs to know qN,core(x),
qM (x), qB (x), and nMB(x) explicitly. To calculate the core
quark distribution we use the following expression [14]:

qi,core(x) =
∫

[dx][dk⊥]δ(xi − x)|φ(xi, k⊥ i)|2, (18)

with

[dx] = dx1 dx2 dx3√
(x1x2x3)

, [dk⊥] = dk⊥1dk⊥2,

(19)∑
i

xi = 1,
∑

i

k⊥i = 0,

where x1 = ξη, x2 = η(1 − ξ ), and x3 = 1 − η. For φ in this
equation we use the expression in Eq. (12). We calculate qM (x)
in the following way [15]:

qM (x) = 1

4

∫
dk⊥

x(1 − x)
M◦(x, k⊥)|�π (x, k⊥)|2, (20a)

where

M2
◦ (x, k⊥) = k2

⊥ + m2
q

x(1 − x)
, (20b)

�π (x, k⊥) = Ne
−k2

(2
π )2 , (20c)

and

k2 = (
k2
⊥
/

4 + (x − 1/2)2m2
q

)/
x(1 − x), (20d)

qB(x) is calculated using the core distributions. To calculate
nMB(x) we use [16,17]

nMB(x) = g2
NMB

16π2

∫ 1

0

dy

y(1 − y)

∫ ∞

0
dk2

⊥

∣∣�MB

(
M2

MB

)∣∣2(
M2

MB − m2
N

)2

1

y

× [(mB − ymN )2 + k2
⊥] (21a)

for meson-baryon octet intermediate states and

nMB(x) = g2
NMB

16π2

∫ 1

0

dy

y(1 − y)

∫ ∞

0
dk2

⊥

∣∣�MB

(
M2

MB0
)∣∣2(

M2
MB − m2

N

)2

× 1

6m2
By3

[
(mB + ymN )2 + k2

⊥
]2

× [(mB − ymN )2 + k2
⊥] (21b)

for meson-baryon decuplet intermediate states. In Eqs. (20)
and (21), �(M2

MB) is the vertex form factor, which is
parameterized by the exponential function of the invariant
mass MMB of the intermediate baryon-meson state:

�
(
M2

MB

) = e
− (M2

MB
−m2

N
)


2
MB , (22)

with 
MB free parameters that are determined by fitting
experimental data. Putting all these pieces together and
using all possible intermediate baryon-meson states one could
calculate the physical quark distributions in the proton and
the neutron. In the current work we use pseudoscalar mesons
and baryon octet and decuplet intermediate states. These initial
distributions are calculated at some initial low Q2

◦. To be able to
compare our results with experiments, we evolve these initial
distributions using DGLAP equations [18–20] to some final
high Q2. The DGLAP equations are

dqi(x, t)

dt
= α(t)

2π

∫ 1

x

dy

y


 2f∑

j=1

qj (y, t)Pqiqj

(
x

y

)

+G(y, t)PqiG

(
x

y

)
 , (23a)

dG(x, t)

dt
= α(t)

2π

∫ 1

x

dy

y


 2f∑

j=1

qj (y, t)PGqj

(
x

y

)

+G(y, t)PGG

(
x

y

) 
 (23b)
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TABLE I. Parameters used in Sets 1, 2, and 3. Here mu, md, βQ, and βq are all in GeV, and µp and µn are in
nuclear magneton units. Sets 1 and 3 represent our diquark-quark models, whereas Set 2 represents parameters used by
Schlumpf [9,10].

mu md βQ βq n1 n2 n3 µp µn

Set 1 0.250 0.210 0.25 0.45 2.8 2.8 2.6 2.82 −1.61
Set 2 0.263 0.263 0.607 0.607 3.5 3.5 3.5 2.81 −1.66
Set 3 0.250 0.210 0.25 0.45 2.8 2.8 2.6 2.79 −1.68

for singlet distributions and

dqNS(x, t)

dt
= α(t)

2π

∫ 1

x

dy

y
qNS(y, t)P NS

(
x

y

)
(23c)

for nonsinglet distributions. In Eq. (23) α is the QCD running
coupling constant, q and G are the quark and gluon distribution
functions, respectively, the P s are the splitting functions, f is
the number of flavors, and t is defined as

t = ln
(
Q2/Q2

◦
)
. (23d)

Having the distribution functions one can calculate the nucleon
structure functions:

2F1 = F2/x =
f∑
i

e2
i [qi(x) + q̄i(x)], (24)

where ei is the charge of the ith quark.

IV. RESULTS AND DISCUSSION

In Table I we present the parameters, in energy units of
GeV, that have been used in Eqs. (12), (13), (16), and (17) to

calculate the quark distribution functions and the proton and
neutron structure functions. Set 1 represents the spin-0 diquark
distribution for the core nucleon. Set 2 is the set of parameters
used by Schlumpf [9] and represents a symmetrical distribution
of quarks inside the nucleon. Set 3 is a superposition of the
spin-0 and spin-1 diquark wave functions. In our calculations
we have used three other sets identified as Set 1g, Set 2g,
and Set 3g. These sets are identical to Set 1, Set 2, and
Set 3 in all respects but have gluons present in the initial
distributions before the introduction of the meson cloud. We
use the work by Barone and collaborators [21] to build up
a gluon distribution inside the nucleon. (More details are
presented in the Appendix.) In this approach one starts with
the bare nucleon and builds the gluon distribution in small
increments of Q2 (see the Appendix). In Fig. 1 we show the
gradual change in the Set-3 u-quark distribution from bare
nucleon to the final state of Q2 = 0.5 GeV2. The total number
of gluons at this stage turns out to be about 6 and they carry
around 27% of the nucleon’s momentum.

For the cutoff parameters we have used a universal value of
0.880 GeV for all vertices. This numerical value is well within
the acceptable range [3]. For the coupling constants we choose

FIG. 1. xu-core distributions for Set 3 at different Q2 values, as gluons are built up inside the nucleon.
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TABLE II. Initial momentum transferred squared and QCD scale
parameter for this work, NMC [26,27], ZEUS [28,29], CTEQ6M
four-flavor, and CTEQ6M five-flavor [31].

This work NMC ZEUS CTEQ6M-4f CTEQ6M-5f

Q2
0(GeV2) 0.50 20.0 7.0 1.69 1.69


(GeV) 0.318 0.250 0.255 0.326 0.226

[16–22] g2
pπ◦p/4π = 13.6 and g2

p�++π−/4π = 10.85 GeV−2.
Other coupling constants are related to these two through the
quark model [22–24].

Starting at the initial momentum transferred the quark
distributions are evolved by using the code by Miyama
and Kumano [25] to the final momentum transferred and
compared with NMC [26,27] and ZEUS [28–30] results and
a CTEQ6M fit [31]. The code uses the M̄S renormalization
scheme and calculates Q2 evolution to the next-to-leading
order of running coupling constant using brute-force numerical
integration. Some of the input parameters are the initial
and final momentum transferred squared, the QCD scale
parameter, and the number of flavors, which can be three
or four. Table II presents the initial momentum transferred
squared and the QCD scale parameter for our work, NMC,
ZEUS, and CTEQ6M. The NMC data are reproduced using
Eq. (2) in Ref. [27]. The ZEUS data are reproduced using the
ZEUS-S QCD NLO fit [28,29]. To generate CTEQ6M results
we have used their 
5f [31], where 5f means five flavors.
However, our value is more in line with 
4f , as is shown
in Table II. All initial distributions are evolved to the final
momentum transferred of 70 GeV2. In Figs. 2 and 3 we present

our initial xu-valence and xd-valence quark distributions for
the three models and compare them with the corresponding
CTEQ6M distributions [31]. A few points are to be made
here. One is that the introduction of the gluons improves the
distributions considerably. This is evident by observing the
differences between Set-3 and Set-3g distributions. Another
point is that the addition of spin-1 leads to a slight reduction
in the difference between our model and the CTEQ6M in the
midregion of x values. Also, the Set-2g u-valence distribution
is lower than the diquark models from x � 0.3 to x ∼ 0.7. The
same is true, to a lesser degree, for d-valence distributions in the
range x � 0.2 to x ∼ 0.5. This is the reason that the structure
function calculated using Set 2 undershoots the observation for
the aforementioned range of x to a higher degree and therefore
it is not a suitable model for the unpolarized case. In Fig. 4
we present sea-quark asymmetry generated by pseudoscalar
mesons and their corresponding baryons. Our results show
that the meson cloud does indeed play a role as a source of
sea-quark asymmetry. However, the CTEQ6M data peak at
much lower x. The addition of a vector meson to the cloud
could reduce the difference in magnitude of our results from
those of CTEQ6M but we do not expect much shift in the
position of the peak. One point has to be made is that, in
the CETQ6M fit, the strange quark distribution is assumed to
be the same as the antistrange quark distribution. However,
in reality we know that that is not the case and our results
do indeed show the strange quark asymmetry. Of course,
the net strangeness inside the nucleon is zero and in our
case

∫ 1
0 [s(x) − s̄(x)]dx ∼ 10−04 ∼ 0. We evolve the initial

distributions to Q2
f = 70 GeV2. Having seen the significant

difference between the initial Set-3 and Set-3g distributions,

FIG. 2. Initial xu-valence distributions for Set 3g (spin-0 and spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), Set 3, and
CTEQ6M.
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FIG. 3. Initial xd-valence distributions for Set 3g (spin-0 and spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), Set 3, and
CTEQ6M.

we will consider Set 3gs and not Set 3. The results for xu-
valence and xd-valence distributions are shown in Figs. 5 and
6. As expected there is a shift to lower x for the distributions.
Also, the differences between our models and CTEQ6M and
ZEUS have reduced noticeably. For x � 0.5 there is rather

good agreement between both diquark models and the ZEUS
result. Figures 7 and 8 compare the sea-quark and gluon
distributions of our models with ZEUS and CTEQ6M. For
both cases our model results are somewhat lower than those
of CTEQ6M and ZEUS for x � 0.05; sea-quark Set 3g is

FIG. 4. Sea-quark asymmetry owing to the meson cloud for Set 3g (spin-0 and spin-1 diquark) and CTEQ6M.
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FIG. 5. Evolved xu-valence distributions for Set 3g (spin-0 and spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), CTEQ6M,
and ZEUS.

closest to CTEQ6M and ZEUS, whereas Set 2g has the largest
difference. The addition of vector mesons to the cloud will
most likely improve our results. For x � 0.02 all three models
overshoot observation.

We use the final quark distributions to calculate the
F2 structure functions for the proton and the neutron.
Figures 9 and 10 show the structure function F2 for the
proton and the neutron, respectively. In both cases the three

FIG. 6. Evolved xd-valence distributions for Set 3g (spin-0 and spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), CTEQ6M,
and ZEUS.

035204-7



F. ZAMANI PHYSICAL REVIEW C 74, 035204 (2006)

FIG. 7. Evolved sea-quark distributions for Set 3g (spin-0 and spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), CTEQ6M,
and ZEUS.

models are within the ZEUS error-bar range all the way down
to x ∼ 0.02. Between x = 0.02 and x = 0.1 our F2p has a
better agreement with data compared with F2n. For x > 0.1
the situation is reversed. For x < 0.02, our results diverge

from data rather significantly, indicating that the model is not
suitable for that range. Figures 11 and 12 show F2p − F2n

and F2n/F2p, respectively. These two graphs demonstrate
clearly that the diquark models are indeed in better agreement

FIG. 8. Evolved gluon distributions for Set 3g (spin-0 and spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), CTEQ6M,
and ZEUS.
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FIG. 9. F2 structure function
for the proton. Circles and tri-
angles are NMC and ZEUS fits,
respectively, at Q2 = 70 GeV2.
The line-symbol is the CTEQ6M
fit. The lines are the results of
our model Set 3g (spin-0 and
spin-1 diquark), Set 1g (only spin-
0 diquark), Set 2g (no diquark),
and Set 3.

with observation than the case in which there is no
diquark.

In the quark model, the Gottfried sum rule (GSR) [32] can
be written as

∫ 1

0

dx

x
[F2p(x,Q2) − F2n(x,Q2)] = 1

3
. (25)

NMC [33,34] results show deviations from the right-hand side
of Eq. (25):

∫ 1

0

dx

x
[F2p(x, 4 GeV2) − F2n(x, 4 GeV2)]

= 0.240 ± 0.034 ± 0.021. (26)

FIG. 10. F2 structure function for the neutron. Circles and triangles are NMC and ZEUS fits, respectively, at Q2 = 70 GeV2. The line
symbol is the CTEQ6M fit. The lines are the results of our model Set 3g (spin-0 and spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no
diquark), and Set 3.
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FIG. 11. Difference in proton and neutron F2 structure functions. Circles and triangles are NMC and ZEUS fits, respectively, at
Q2 = 70 GeV2. The line symbol is the CTEQ6M fit. The lines are the results of our model Set 3g (spin-0 and spin-1 diquark),
Set 1g (only spin-0 diquark), Set 2g (no diquark), and Set 3.

This deviation can be attributed to the flavor asymmetry of
the nucleon sea. In Table III, we present GSR results for
our models, NMC, ZEUS, and CTEQ6M at Q2 = 70 GeV2.
For NMC and ZEUS calculations we have used their
parametrizations and integrated over x from zero to one.
Therefore, one can conclude that the MCM does indeed
contribute to the GSR. However, the pseudoscalar meson cloud

alone is not enough to reproduce the observation. However, the
two diquark model predications are closer to the observation
relative to the symmetrical case.

Now we briefly summarize our work. We used a quark-
diquark model for the bare nucleon. We considered two
different diquark distributions: one only spin 0 and the other
a superposition of spin 0 and spin 1. Both models agreed

FIG. 12. Ratio of the neutron
to proton F2 structure function.
Circles and triangles are NMC
and ZEUS fits, respectively, at
Q2 = 70 GeV2. The line symbol
is the CTEQ6M fit. The lines
are the results of our model
Set 3g (spin-0 and spin-1 di-
quark), Set 1g (only spin-0 di-
quark), Set 2g (no diquark), and
Set 3.
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TABLE III. GSR results for this work, NMC [26], ZEUS [27,28], and CTEQ6M
five-flavor [29] at Q2 = 70 GeV2.

Set 3g Set 2g Set 1g NMC ZEUS CTEQ6M-5f

GSR 0.265 0.266 0.277 0.212 0.232 0.236

reasonably well with the NMC and ZEUS results for nucleon
F2 structure functions, down to x about 0.02, for the cases
for which we had introduced gluons in the core nucleon.
Our calculation also showed that the meson cloud model
is a source of sea-quark asymmetry and Gottfried sum-rule
violation. However, our GSR violation was not as pronounced
as observation. One could improve on this by including the
vector mesons in the model. However, to get the whole picture
one needs to take into account other sources, such as the Pauli
effect, that could contribute to the violation.

APPENDIX

Following the work done by Barone and collaborators [21],
one can consider a transition v(x) → q(x) + g(x), where v(x)
is the initial valence quark distribution in the quark model
and g(x) is the gluon distribution generated in the process.
Knowing v(x), one can calculate q(x) and g(x) in the following
way:

q
(
x,Q2

1

) = v(x)

[
1 −

∫ 1

0
dyG

(
1 − y,Q2

1, 0
)]

+
∫ 1

x

dy

y
G

(
1 − y,Q2

1, 0
)

×
[
v

(
x

y

)
− yv(x)

]
, (A1)

g̃
(
x,Q2

1, 0
) =

∫ 1

x

dy

y
v

(
x

y

)
G

(
y,Q2

1, 0
)
, (A2)

where the flux of gluons generated from the target quark is

G
(
x,Q2

1, 0
) = 4

3

∫ Q2
1

0
d2�k αs(�k2)

2π
V

(−k2
g

)

×
(
[1 + (1 − x)2]�k2 + x4m2

f

)
x
[�k2 + (1 − x)µ2

G + x2m2
f

]2 , (A3)

the gluon’s virtuality is

− k2
G =

�k2 + x2m2
f

(1 − x)
, (A4)

V (�k), the vertex function related to the charge form factor of
the nucleon, is

V (�k) = 1 − Fcharge(3�k2), (A5)

mf is the mass of the quark with flavor f , and µG is the
effective mass of gluons, introduced so that the color forces
do not propagate beyond the confinement radius, and is taken
to be about 145 MeV.

To perform the next step of evolution from Q2
1 to Q2

2(Q2
2 >

Q2
1), one repeats this procedure by replacing v(x) → q(x,Q2

1)
and G(x,Q2

1, 0) → G(x,Q2
2,Q

2
1), which leads to new gluon

distribution

g
(
x,Q2

2

) = g̃
(
x,Q2

2,Q
2
1

) + g̃
(
x,Q2

1, 0
)
, (A6)

and obviously these along with Eq. (A1) will lead to q(x,Q2
2).

This procedure can be repeated in small steps until one reaches
the desired final Q2, which in our case is 0.5 GeV2. At
this momentum transfer is where we introduce the meson
cloud and evolve the distributions to the final momentum
transfer.
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