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Canonical strangeness suppression in microscopic transport models
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We demonstrate the occurrence of canonical suppression associated with the conservation of a U(1) charge
in current transport models. For this study a pion gas is simulated within two different transport approaches
by incorporating inelastic and volume-limited collisions ππ ↔ KK for the production of kaon pairs. Both
descriptions can dynamically account for the suppression in the yields of rare strange particles in a limited box,
being in full accordance with a canonical statistical description.
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I. INTRODUCTION AND MOTIVATION

For many years the various properties of excited nuclear
matter occurring in heavy collisions have been studied within
statistical descriptions [1–6]. Here the underlying principle
is the stringent assumption of full thermal equilibrium in the
stage of the reaction to which the description is applied.

In the last 10 years thermal model ansatzes of hadronic
resonance gases via a grand canonical description have become
very popular again because detailed experimental results for
the yields of individual hadronic species became available
at various bombarding energies. Indeed, it was found that
the statistical description can be applied very successfully
for ultrarelativistic energies, indicating that the individual
hadronic particles seem to evolve to a point of nearly perfect
chemical equilibrium [7,8] (for a comprehensive review the
reader is referred to [9]).

However, for low collision energies (e.g., in the GSI
Schwerionensynchrotron (SIS), the BNL Alternating Gradient
Synchrotron (AGS), and the GSI-FAIR range) especially the
strange particles do become rare. Thus, as has been well known
for a long time, a canonical instead of a grand canonical
description of the strange particles must be applied. The
canonical approach results in a suppression in the yields for
rare particles in comparison to the grand canonical description
when treating the conservation of the corresponding U(1)
charge exactly [10–12]. Indeed, thermal models including the
canonical suppression have been applied rather successfully
for the description of the few measured hadronic yields in
heavy ion collisions at SIS energies [13–15].

A dynamical interpretation of the canonical suppression
has recently also been offered by the formulation and solution
of kinetic master equations [16,17]. It is the purpose of this
investigation to show that such an occurrence of canonical
suppression for rare particles is already warranted by present
day transport models.

A priori this is not a trivial statement. One could argue
that the transport models are based on solving a set of
coupled Boltzmann equations that originate from a grand
canonical treatment. However, this is not the case as the
realizations do conserve energy exactly and also the individual
quantum charges like baryon number and (net) strangeness are
conserved during the propagation and scattering processes as
well.

In the following section we briefly review the canonical
suppression of rare particles associated with the conservation
of a U(1) charge and we also summarize its dynamical formu-
lation via a master equation as given in [16,17]. In Sec. III we
describe our simulation setup. A pion gas is simulated by incor-
porating inelastic and volume-limited collisions ππ ↔ KK

for the production of kaon pairs. We employ two completely
different numerical realizations for the treatment of collisions.
The first model under investigation is UrQMD [18,19], where
two-particle collisions are realized via a standard geometrical
interpretation. For previous studies of the thermodynamic
properties of hadronic matter within the UrQMD model, the
reader is referred to [20–23]. In the second model the collisions
are treated by transition rates in small spatial subcells. The
latter algorithm has most recently been successfully introduced
in a covariant parton cascade to describe inelastic multiparticle
Bremsstrahlung processes of type gg ↔ ggg [24]. In Sec.IV
we present the results of our analysis. Section V then provides
a summary and a conclusion. We argue that a (canonical)
chemical equilibrium of kaons cannot by far be achieved at
intermediate energies for relativistic heavy ion collisions, at
least if known cross sections for the production of kaons are
assumed.

II. CANONICAL SUPPRESSION AND ITS DYNAMICAL
DESCRIPTION VIA A MASTER EQUATION

The statistical description of systems incorporating the
exact conservation of quantum numbers has been established
for many years and there exist several approaches of varying
complexity and generality [10–12]. Here we give a brief
summary of the results adapted to our needs. The conserved
U(1) charge to be considered is strangeness whose net value is
taken to be zero throughout our calculations and simulations.
Explicitly we consider only inelastic reactions of the type
ππ ↔ KK , where the kaons and antikaons bear strangeness
+1 and −1, respectively.

For a large number of kaons it is sufficient to treat
strangeness conservation on the average 〈NK〉 − 〈NK〉 = 0
(with NK,NK being the number of kaons and antikaons,
respectively). Introducing a chemical potential µs , or fugacity
λs = exp(µs

T
), to control the net strangeness content, one is led
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to the following grand canonical partition function

Zgc(V, T , λs) = exp
(
Z1

π + λsZ
1
K + λ−1

s Z1
K

)
, (1)

where Z1
i denotes the relativistic one-particle partition function

for noninteracting particles of type i (pions or kaons in this
case), V is the volume, T is the temperature, and mi is the
particle’s mass. K2 denotes a modifed Bessel function.

Z1
i (V, T ) = gi

V T

2π2
m2

i K2

(mi

T

)
. (2)

To consider a more general case, the one-body partition
functions in (1) would have to be replaced by sums over
one-body partition functions of all hadronic particles carrying
the corresponding integer in strangeness of 0,±1,±2, and ±3.

A small number of kaons (roughly spoken when the average
number becomes of order one) demands the conservation of
strangeness to be treated exactly, i.e., NK − NK = 0 for each
state contributing to the partition sum. This constraint leads to
a reduction of the available phase space for the production
process and ultimately one obtains the canonical partition
function describing the system via (I0 and I1 denote Bessel
functions)

Zc(V, T ) = exp
(
Z1

π

)
I0(x), (3)

with

x = 2
√

Z1
KZ1

K
= 2Z1

K. (4)

From (1) and (3) one can calculate the density nK of
particles with strangeness +1, the kaons, via the relation

n
gc
K = 1

V
λs

∂

∂λs

ln Zgc

∣∣∣∣
λs=1

= 1

V
λsZ

1
K = Z1

K

V
, (5)

and considering the canonical case one finds

nc
K = 1

V
λs

∂

∂λs

ln Zc

∣∣∣∣
λs=1

= 1

V

I1 (x)

I0 (x)

√
Z1

K

Z1
K

Z1
K = η n

gc
K , (6)

using that in the grand canonical picture 〈NK〉 − 〈NK〉 = 0

requires λs =
√

Z1
K
/Z1

K = 1.

Comparing (5) and (6), one defines the canonical suppres-
sion factor 0 � η � 1

η = nc
K

n
gc
K

= I1(x)

I0(x)
, (7)

which contains all relevant information on differences in the
equilibrium particle density between the grand canonical and
canonical description.

An alternative way of understanding this suppression is to
consider kinetic master equations [16,17] by looking at a single
process ab ↔ cc̄. PNc

(t) denotes the probability of finding
Nc particles c at a time t . In our case we have c ≡ K and thus
Nc = Nc̄ holds exactly, whereas particles a and b (the “pions”)
are assumed to be uncorrelated and abundant. Furthermore, the

probabilities for a single gain or loss process per unit time and
volume are denoted by G/V and L/V , respectively, where
G = 〈σGv〉 and L = 〈σLv〉 are the momentum-averaged cross
sections for the gain and loss processes. With that, a master
equation can be formulated [16]

dPNc

dt
= G

V
〈Na〉〈Nb〉PNc−1 + L

V
(Nc + 1)2 PNc+1

−G

V
〈Na〉〈Nb〉PNc

+ L

V
N2

c PNc
. (8)

A general solution of this equation is possible [17], but for
our purpose it is sufficient to look at the kinetic equation for the
time evolution of the average number 〈Nc〉. It can be obtained
when multiplying (8) by Nc and summing over it:

d〈Nc〉
dt

= G

V
〈Na〉〈Nb

〉 − L

V
〈N2

c

〉
. (9)

This equation can be easily treated in the two limiting cases
〈Nc〉 � 1 and 〈Nc〉 � 1. For abundant production of cc̄

pairs, i.e., when 〈Nc〉 � 1, the relation 〈N2
c 〉 ≈ 〈Nc〉2 holds.

However, for very rare production, i.e., when 〈Nc〉 � 1, one
has the relation 〈N2

c 〉 ≈ 〈Nc〉. Assuming a thermal momentum
distribution with

G

L
= Z1

cZ
1
c̄

Z1
aZ

1
b

, (10)

and looking at stationary solutions for large times (the
solutions describing an equilibrated system), one ends up with
(ε ≡ G〈Na〉〈Nb〉/L)

nc = 〈Nc〉
V

=
√

ε

V
= Z1

c

V
≡ ngc

c (11)

for 〈Nc〉 � 1. The opposite case 〈Nc〉 � 1 leads to

nc = 〈Nc〉
V

= ε

V
= Z1

cZ
1
c̄

V
≡ nc

c. (12)

Identifying particle-type c with kaons, it is clear that (11)
equals the grand canonical result (5). Equation (12) is just the
leading term in an expansion of the canonical result (6). Hence,
it is verified that an abundant production of particles leads to a
grand canonical description, whereas rare particle production
requires a canonical description.

Let us have a closer look at the canonical suppression factor
(7) using the asymptotic behaviors

lim
x→∞

I1(x)

I0(x)
→ 1 and lim

x→0

I1(x)

I0(x)
→ x

2
. (13)

Here, one sees that in the grand canonical limit the kaon
density nK is independent of the reaction volume, whereas in
the canonical regime with the number of kaons 〈NK〉 � 1 it
scales linearly with the volume as x ∝ V . Figure 1 illustrates
this behavior.

III. REAL TRANSPORT AND SIMULATION SETUP

The main objective of our study is to demonstrate that
current (large scale) transport models are able to reproduce
the effect of canonical suppression. This is not a trivial
investigation. One might argue that the transport algorithms
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are based on strictly solving the Boltzmann equation which
in turn originates from a grand canonical treatment. In the
stationary limit of the (coupled) Boltzmann equations the
equilibrium phase space distributions, where the various
collision terms for each particle population vanish, obey
Maxwell-Boltzmann statistics (or Bose-Einstein or Fermi-
Dirac statistics when the Pauli factors are included), so that
the individual densities are that of a grand canonical ensemble.
The reason for this is that when describing an annihilation
within a Boltzmann description the two (rare) particles are
assumed to be completely uncorrelated. This is, however, not
the case in the description via the master equation (8). Here
the occurrence of a pair of rare particles is explicitly taken care
of. Because of the nature of pair production the existence of
a kaon requires the existence of an antikaon. This leads to an
effective increase in the annihilation process compared to the
Boltzmann stosszahlansatz. Inspecting the loss term in (9), the
approximation leading to a Boltzmann process is given by

〈
N2

c

〉 Boltzmann process→ 〈
Nc

〉
2, (14)

which then leads to the grand canonical description. Staying
within the description of the master equation, the possibility
for annihilation is much higher. When there exists a kaon,
there must be an antikaon with which an annihilation process
is possible. 〈N2

c 〉 � 〈Nc〉2 for 〈Nc〉 � 1; hence the effective
annihilation rate incorporated correctly in the master equation
is much larger than that for a Boltzmann description, leading
to the canonical suppression.

Moreover the various numerical realizations of the un-
derlying transport equations do conserve energy and the
individual quantum charges (like baryon number and net
strangeness) exactly—as within a microcanonical treatment.
The argument of an “enhanced” annihilation should therefore
also apply within these realizations. To address this question,
we concentrate on the volume dependencies in the grand
canonical and canonical regimes as depicted in Fig. 1.

The simulation setup consists of a large box of 20 fm side
length holding a relativistic gas of pions. The pion gas provides
a heat bath for a much smaller reaction volume of variable
size centered within the large box. Inside this smaller and
likewise box-shaped reaction, volume processes ππ ↔ KK

are allowed, covering all possible isospin states of pions and
kaons. The kaons are reflected by the walls of the small reaction
volume and are thus bound to it, whereas these walls are
permeable for the pions. An illustration of this special spatial
setting is given in Fig. 2. After equilibration, the kaon density
within the reaction volume should be governed by Eq. (6),
which holds as a reference for the transport model results.
The idea therefore is to simulate different sizes of the inner
reaction volume and to extract the number of kaons 〈NK〉
for each simulation run by averaging over many time steps
to minimize the statistical fluctuations. These time steps are
sufficiently separated to avoid correlations. Furthermore the
data are taken after the equilibration of the system.

We implemented this scenario using two different types
of transport descriptions—the microscopic transport model
UrQMD [18,19] and a realization of a stochastic transport
model borrowed from a recently developed parton cascade
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FIG. 1. (Color online) Volume dependence of the kaon density
for a canonical ensemble [cf. Eq. (6)] for T = 170 MeV. g.c. denotes
the grand canonical calculations; c. labels the canonical result.

[24]. The former model makes use of a geometrical inter-
pretation of cross sections to solve the transport equations,
whereas the latter relies on the explicit calculation of transition
probabilities.

For standard applications, the UrQMD model provides
full space time dynamics for hadrons and strings. It is a
nonequilibrium model based on the covariant propagation of
hadrons and strings. All cross sections are fitted to available
data or calculated by the principle of detailed balance. For our
studies the code is modified such that only reactions ππ ↔
KK , together with elastic collisions among the pions and
kaons, remain possible. The ππ → KK inelastic reactions are

FIG. 2. (Color online) Illustration of the two boxes for the
numerical simulation: The pions (diamonds) move inside the larger
and fixed box and thus provide a heat bath for the kaons and antikaons
(open and filled circles), which can only move and interact inside the
small box. The size of the small box is varied for investigating the
dynamical occurrence of canonical suppression in small volumes.
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assigned a constant cross section of 1, 5, or 10 mb, whereas the
backward reactions are calculated via the principle of detailed
balance.

The simulation of 2 ↔ 2 processes within the stochastic
method is based on the calculation of a collision probability
for each possible particle pair per unit volume �3x and unit
time �t via [24]

P22 = vrelσ22
�t

�x3
. (15)

Here, vrel denotes the relative velocity and σ22 is the cross
section for the considered 2 ↔ 2 process. Similar to the
UrQMD setup, the cross sections are set to be constant in one
direction and calculated via detailed balance for the reverse
reaction. The so obtained probability is then compared with
a random number between 0 and 1 to decide whether the
collision does take place or not. The implementation of the
stochastic model is therefore closely related to the formulation
of the master equation (8) and its solution discussed in Sec. II.
We must stress one important point: The stochastic method
is, in principle, flexible to introduce test particles, that is, to
“subdivide” each particle into a number N of test particles [24].
However, for the following investigation it is crucial that the
produced kaons are not subdivided into further test particles.
We discuss this further below.

The initial conditions in both schemes are chosen such
that the pion gas acquires a temperature of T = 170MeV.
The appropriate number of pions and the total energy of the
system are calculated via the use of a grand canonical partition
function (1) for pions alone, as kaons are absent in the initial
state. The total energy evaluates to

U (T ,V ) = gπV

2π2
m2

πT 2
{
3K2

(mπ

T

)
+ mπ

T
K1

(mπ

T

)}
. (16)

A heat bath volume of 8000 fm3, as used in our simulations,
then corresponds to a population of 1348 pions bearing a total
energy of 747.5 GeV. Initially each pion is assigned the same
fraction of the total energy, giving one half of the particles
momenta in the positive x direction, while the remaining
particles start out bearing momenta in the negative x direction.
The spatial distribution is random.

IV. RESULTS FOR THE DYNAMICAL SUPPRESSION

A necessary verification of the simulations reliability is
to check for kinetic equilibration. Figure 3 demonstrates that
the energy distribution of the pions does become exponential
over six orders of magnitude with the desired temperature of
T = 170 MeV in both schemes.

Figures 4 and 5 now display the actual results in terms
of the kaon density as a function of the (small) reaction
volume. The minor fluctuations in the results indicate the
small statistical errors due to the finite number of averages
done. It is clear that the canonical suppression is reproduced
by both transport schemes. The kaon yield is suppressed for
small reaction volumes with respect to the grand canonical
limit. This verification states the main result of the present
study.
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FIG. 3. (Color online) Logarithmic energy spectra for the pion
gases within the UrQMD and cascade calculations. Both spectra are
identical within statistical fluctuations.

In general, certain deviations from the theoretical values are
to be expected because of the choice of initial conditions. Pion
number and energy content are fixed such that, without any
kaons present, the system is tuned to the reference temperature
of T = 170 MeV and fugacity λ = 1. The production of the
heavier kaons then leads to small changes in these parameters,
as the total energy in the system is conserved as well as the total
number of particles, because only particle number conserving
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FIG. 4. (Color online) Kaon density versus reaction volume as
extracted from simulations within the stochastic cascade (triangles).
For comparison, the dashed line indicates the grand canonical
behavior. The solid line shows the canonical volume dependence
of the kaon density, based on (6) for a temperature of T = 170 MeV
and corrected by taking small deviations in temperature and fugacity
into account.
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FIG. 5. (Color online) Kaon density versus reaction volume as
extracted from simulations using the UrQMD model. Cross sections
of 1mb (triangles), 5 mb (circles), and 10 mb (diamonds) were
assigned to the forward direction of the inelastic reactions ππ ↔
KK . The solid and dashed lines again provide the theoretically
expected behavior as seen in Fig. 4.

collision processes are included in the present study. This
slightly affects the equilibrium number of pions and thus also
the kaons. In the case of the stochastic cascade we investigated
the relative deviations of temperature Tnew = T + �T and
effective mesonic fugacity λeff = 1 + �λ more closely. It was
found that both deviations indeed grow with the number of
kaons produced and thus with the size of the reaction volume.
The observed deviations are on the order of 2% at most. Taking
these deviations into account, the theoretical results can be
adapted to the actual conditions present in the system at a given
size of the reaction volume by rescaling with the effective fu-
gacity factor. The actual theoretical reference curves in Figs. 4
and 5 are corrected that way.

The stronger deviations for the microscopical UrQMD
model cannot be solely explained by the changes in tem-
perature and fugacity. In fact, the crucial effect when using
the geometrical concept of incorporating binary collisions
is a decrease in the collision rate, when the expected mean
free path λm.f.p. = (nσ22)−1 for the particular reaction gets
in the order of the interaction length

√
σ22/π as pointed

out in [24]. This is due to the difference in the collision
times of the involved particles viewed from the computational
frame. During that interval the particle having the larger
collision time must not collide again to ensure causality.
Thus, the collision rate is decreased compared to the one
given by the collision integral. As different densities are
involved, one cannot expect forward and reverse reactions to
be affected in the same way and the changes in reaction rates
lead to a shifted stationary “equilibrium” value of the kaon
density.

This behavior can be clearly seen in Fig. 5, where the
kaon density is depicted for different cross sections of
the forward reaction ππ → KK . The smaller the chosen

cross section and thus the larger the mean free path, the
more accurately the theoretical result is reproduced. On the
contrary, for typical real mesonic cross section the numerical
shortcoming is in the range of 10% to 15%. Please note that
this deviation from the equilibrium value does not depend
on the specific implementation of the ππ ↔ KK process.
We have also checked that the process ππ ↔ f2 ↔ KK with
the proper energy-dependent cross sections leads to the same
result.

Too few kaons relative to the pions are simulated in
comparison to the theoretical limit either in the canonical or the
grand canonical regime. Such a discrepancy in kaon number
relative to the pion number with respect to experimental results
has been reported in several URQMD calculations [25]. It
might well be that a better implementation of the collision
criteria will enhance the kaon relative to the pion yield. We
leave this for a detailed future investigation.

Another instructive way to analyze the results is to look
at the suppression factor η (7) as a function of the average
number of kaons 〈NK〉c present in the system. This relation is
independent of the temperature, which can be easily shown:
Because the suppression factor is a function of Z1

K, η =
η(Z1

K ), the one-body partion function can in principle be
expressed in terms of η,

Z1
K = Z1

K (η), (17)

which then leads to

〈NK〉c = η〈NK〉gc = ηZ1
K (η). (18)

Figure 6 states the summary of the investigation and depicts
the previous functional relation together with the simulation
results. Here the temperature and fugacity deviations were
taken into account for the cascade results. For the calculations
employing the UrQMD model the suppression factor was
calculated by taking the ratio of the actual kaon density
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FIG. 6. (Color online) Suppression factor η as a function of the
average kaon number.
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nK (V ) divided by the density nK (V → ∞) in the limit of
very large volumes. Within this prescription the sensitivity
on the cross section vanishes almost completely. Apart from
the demonstration of the excellent agreement between theory
and simulation, the plot illustrates the two limiting cases
considered when solving the kinetic equation (9). Small
particle numbers 〈N〉 � 1 are associated with the canonical
regime, whereas for abundant particle production 〈N〉 � 1 the
grand canonical description is fully valid.

V. SUMMARY AND CONCLUSIONS

We have demonstrated that two current (large scale)
transport models are able to reproduce the effect of canonical
suppression. As a particular example we have chosen the
production of kaons and antikaons via pions. The overall kaon
yield is suppressed with respect to the grand canonical limit for
small reaction volumes and thus small numbers of produced
kaons.

The present transport algorithms are based on solving
the Boltzmann equation with additional constraints; i.e., the
solutions maintain the correlations due to charge, strangeness,
and energy conservation. The canonical suppression for kaon
numbers 〈NK〉 considerably smaller than one, as pointed out
in [16], originates dynamically from an enhancement of the
annihilation process by 1/〈NK〉 as compared to standard,
grand canonical formulation of the Boltzmann equation. The
reason is that any kaon in the system requires the existence
of a corresponding antikaon due to strangeness conservation.
Thus the probability of finding a particle-antiparticle pair turns
into a highly correlated conditional probability compared to
that obtained via the uncorrelated Boltzmann stosszahlansatz.
The so enhanced annihilation probability then leads to the
canonical suppression in the kaon yields. As the calcula-
tions show, it is manifest that the occurrence of canonical
suppression is dynamically reproduced by the two presented
schemes for solving the kinetic transport equations. A small
discrepancy, i.e., a slightly lower kaon yield on the order of 10
to 15%, is present when employing typical cross sections. This
discrepancy can be traced back to the numerical realization
of the occurrence of collisions via the standard geometrical
description. Deviations of the same order of magnitude
∼10%–20% are also encountered for other produced particle
species and in the collision rates. As already emphasized,
detailed investigations within the UrQMD model are in order to
clarify how important such effects are for the understanding of
kaon yields in relativistic heavy ion collisions, as typically too
few kaons are produced relative to the pions, when compared
to experimental results [25].

Addressing especially the dynamical generation of canon-
ical suppression, one has to worry about even more signifi-
cant violations when other numerical transport schemes are
invoked. One popular scheme is the so called test-particle
method; i.e., each real particle is subdivided into N test
particles to obtain smoother distributions or to suppress other
numerical artefacts (see, e.g. Ref. [24]). When applying this
idea of particle subdivision to the stochastic method, it will
rescale the volumes V of Fig. 4 by a factor 1/N , so that the

grand canonical limit is achieved for much smaller volumes.
This is, of course, unphysical. Thus, whenever the canonical
suppression is of relevance for the understanding of particular
yields, the test-particle method must be avoided.

Another often applied method is the so called perturbative
method with “virtual” particles (for a discussion, see [26].
Here it is assumed that the exotic particles being produced are
so rare that their behavior does not alter the overall dynamics.
If the backreaction of kaon production, i.e., the annihilation
of a kaon and its antiparticle, is not considered correctly, then
detailed balance is violated and the system can never achieve
full and correct chemical equilibrium.

When simulating real heavy ion collisions to address the
production of kaons for lower or moderate relativistic energies
(for a very recent work, see [27], one has indeed to worry
whether these backreactions are important in the sense that the
rates necessary to achieve chemical equilibrium are smaller
or comparable to the overall lifetime of the fireball. Various
applications of thermal models for such low energies have been
put forward in several works over the last years for describing
hadronic yields in heavy ion collisions at SIS [13–15,28]. As
only very few yields are available, the soundness of such an
analysis is not evident. In principle, such an analysis rests on
the assumption that chemical equilibrium among the individual
hadronic particles is temporarily achieved, which implies that
the corresponding time scales are sufficiently short compared
to the lifetime of the fireball.

From transport theory residing on binary elastic and
inelastic hadronic collisions, it has been known for a long
time that for intermediate to moderate energies the kaons
are predominantly produced before the initial motion is
substantially degraded and when the system is still far from
any (quasi-)equilibrium stage (for a discussion and review,
see [29]. Putting it differently, when the momenta of the
nucleons are sufficiently degraded and the system has to
some extent thermalized, the time scale for production of
strange particles via the considered inelastic kinetic reactions
becomes extremely large. For a particular calculation in a static
environment at somewhat larger energies, it was found that
the equilibration of the kaons is exceeding the lifetime of a
potential fireball by at least two orders of magnitude [30]. In
this analysis the comparison was made, however, to a grand
canonical estimate.

Yet, as we argue now, a chemical equilibrium situation of
kaons with canonical suppression included cannot be achieved
even temporarily when assuming known cross sections. Within
a grand canonical environment the rate for chemical equilibra-
tion of a particle C for a reaction of type A + B ↔ C + D

is given by τ−1 ≈ 〈σCDvCD〉nD , where nD is the particle
density of species D. With nK = nK , if there is only one
kaon, then there also has to exist one antikaon in the particular
realization of the system. Hence, for such a situation of a
canonical realization, where the reactions π + π ↔ K + K

will drive the kaons to chemical equilibrium, the subsequent
equilibration rate is obtained by substituting for nD the
effective antikaon density 1/V . The rate thus reads

τ−1
chem;K ≈ 〈σKK→ππvKK〉 1

V
. (19)
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In a UrQMD simulation the typical averaged cross section
rather close to threshold is given by 〈σKK→ππvKK〉 ≈ 2 mb,
so that τchem;K ≈ 5V/(fm2c). Any typical reaction volume at
intermediate time scales in a relativistic heavy ion reaction is
on the order of 100 fm3. Hence, kaons cannot be expected to
come or stay close to chemical equilibrium.
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