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Multiplicity associated to high pT events and multiplicity fluctuations
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It is shown that the difference between the multiplicity associated to high pT events and the unbiased multiplicity
is given by the normalized variance of the multiplicity distribution, as a consequence of high pT events being self-
shadowed. We discuss the possibility of checking the nonmonotonic behavior with centrality of the normalized
variance by measuring the difference between multiplicities.
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In the last few years very interesting phenomena related
to high pT physics have been observed at RHIC experiments
[1,4], namely, a strong supression of inclusive high pT hadron
production in Au-Au central collisions compared to the scaling
with the number of binary nucleon-nucleon collisions. The
data [6] also show the disappearence of back-to-back jet-like
hadron correlations in Au-Au collisions, contrary to what is
observed in d-Au and p-p collisions, and a nonmonotonic
behavior of the fluctuations in transverse momentum and
multiplicity [6–9] with a maximum around low centralities. In
order to explore further the physical phenomena involved [10],
different correlations related to high pT events are being
studied.

High pT events are self-shadowed [11]. In this paper
we show that due to this property the difference between
the multiplicity associated to high pT events and the total
multiplicity is directly related to the variance of the multiplicity
distribution. In this way, the observed dependence on centrality
of the normalized variance can be translated into the difference
between multiplicities. In particular, the supression of the
normalized variance at large centrality will correspond to
a decrease in the difference between multiplicities with
increasing centrality.

The behavior of the normalized variance has been explained
in the string percolation approach as a consequence of the
dependence on centrality of the number of clusters with
different number of strings. At low centrality there is no
overlapping of strings, all the clusters have only one string and
the fluctuations arise only from the multiplicity ditribution of
one string. As the degree of centrality increases, clusters of
different number of strings are formed giving rise to different
multiplicity distributions due to the different color of the
clusters and therefore different cluster tensions. Now, there are
additional fluctuations coming from the different distributions.
Above the percolation threshold, essentially only one large
cluster is formed and again the fluctuations are suppressed. In
this approach, the formation of such a large cluster implies that
both multiplicities will be equal, independently of the hardness
of the event.

We start our discussion by describing hadron-hadron,
hadron-nucleus, and nucleus-nucleus collisions, which we
label HH, as a superposition of independent elementary

interactions. We are specifically interested in such collisions
involving an elementary interaction or process of type C. We
shall say that a particular HH collision or event is of type C
if at least one of the elementary collisions involved in that
event is also of type C. It is easy to show that C events
are self-shadowed. Indeed, in hadron-nucleus collisions, the
inelastic cross section can be written as

σhA(b) =
A∑

n=1

(
A

n

)
(σT (b))n(1 − σT (b))A−n, (1)

where we can write

(σT (b))n =
n∑

i=0

(
n

i

)
(σC)i(σNC)n−iT (b)n, (2)

σC and σNC being the elementary nucleon-nucleon cross
sections for events of type C and for the rest of events,
respectively. The final cross section for events of type C must
contain at least one elementary σC in the sum, therefore [11]

σhA
C (b) =

A∑
n=1

(
A

n

) n∑
i=1

(
n

i

)
σ i

Cσ n−i
NC T (b)n

× (1 − (σC + σNC)T (b))A−n

= 1 − (1 − σCT (b))A. (3)

Equation (3) shows that C-events are self-shadowed, in the
sense that their cross section in HH depends only on their cross
section in nucleon-nucleon collision. Similar considerations
can be done for hadron-hadron and nucleus-nucleus collisions
[12]. There are many different self-shadowed events, for
instance nondiffractive, annihilation, nonisolated fast baryons
or high pT events. In all of them, depending on wether σC is
small or large, σhA

C behaves like A or A
2
3 , respectively.

If we denote by αC the probability for an elementary
collision to be of type C, one can trivially write

N (ν) =
ν∑

i=0

(
ν

i

)
(1 − αC)ν−iαi

CN (ν), (4)
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and

NC(ν) =
ν∑

i=1

(
ν

i

)
(1 − αC)ν−iαi

CN (ν) � ναCN (ν), (5)

NNC(ν) = (1 − αC)νN (ν) � (1 − ναC)N (ν), (6)

where N (ν), NC(ν), and NNC(ν) stand for the total number
of events, the total number of events of type C, and the
total number of non-C events produced with ν collisions,
respectively. The last equalities of Eqs. (5) and (6) hold in
the limit of small αC . Since∑

ν

N (ν) = N, (7)

∑
ν

νN (ν) = 〈ν〉N (8)

and ∑
ν

NC(ν) =
∑

ν

αCνN (ν) = NC, (9)

with N the total number of events and NC the total number of
events of type C, we then have that the probability distribution
for C events with ν collisions is

PC(ν) = αCνN (ν)∑
ν NC(ν)

= νN (ν)

〈ν〉∑
ν N (ν)

= νP (ν)

〈ν〉 . (10)

In Eqs. (7)–(9), the sums are over the index ν, the
number of collisions, whose range is from 1 to 1, A and
AB for hadron-hadron, hadron-nucleus, and nucleus-nucleus
collisions, respectively. However, instead of the number of
collisions, another elementary blocks, such as number of
Pomerons, number of strings or number of parton-parton
interactions could be used as far as the total amplitude of
the whole process can be expressed as a superposition of the
elementary amplitudes of the mentioned blocks. For instance,
the hadron-hadron cross section is usually expressed in terms
of a sum over elementary cross sections corresponding to
Pomeron exchanges. In this case, the hadron-hadron cross
section corresponding to events of type C is related to the
elementary cross section of type C obtained from cutting a
Pomeron.

The total multiplicity P (n) is obtained by the convolution
of the elementary multiplicity distributions p(n),

P (n) =
∑

ν

∑
n1+ ... +nν=n

P (ν)p(n1) . . . p(nν). (11)

If we denote by G(z) and g(z) the generating functions of P (n)
and p(n), respectively,

G(z) =
∑

n

znP (n), g(z) =
∑

n

znp(n), (12)

we have

G(z) =
∑

ν

P (ν)g(z)ν . (13)

Doing the first two derivatives of Eq. (13) we relate the
total dispersion, D,D2 = 〈n2〉 − 〈n〉2, to the dispersion d and

multiplicity n, of the distribution of the elementary interaction,

D2

〈n〉2
= 〈ν2〉 − 〈ν〉2

〈ν〉2
+ d2

〈ν〉n2 , 〈n〉 = 〈ν〉n. (14)

Since ν is very high in nucleus-nucleus collisions, the second
term of Eq. (14) can be neglected, and the normalized disper-
sion of the total multiplicity is approximated by the normalized
dispersion of the number of elementary interactions. This
provides an argument to extend Eq. (10) to the multiplicity
distribution [13,14]:

PC(n) � nP (n)

〈n〉 . (15)

Notice that the right hand side of Eq. (15) is independent of
C. Equation (15) has been checked in high energy pp collisions
for the multiplicity associated to W± and Z0 production, and
also for the multiplicity distribution associated to jet produc-
tion and annihilation [14]. In nucleus-nucleus collisions, data
of ISR experiments on events with pT � 3 GeV/c produced in
α-α collisions also satisfy Eq. (15) [15].

From Eq. (15) we have

〈n〉C − 〈n〉 = D2

〈n〉 . (16)

Equation (16) is our main result: the difference between
the average multiplicity associated to high pT events and
the unbiased average multiplicity is given by the normalized
variance of the unbiased distribution.

Equations (10), (14), (15), and (16) have been obtained
assuming independent superposition of elementary interac-
tions. This assumption is not justified at RHIC energies where
collective interactions are at work. However, we think that
Eqs. (10), (14), (15), and (16) are valid even in this case. In
fact, the experimental data on the multiplicity distributions on
nucleus-nucleus are well described by the negative binomial
distribution

P (n, k) = γ k

�(k)n!

�(n + k)

(1 + γ )n+k
, (17)

where k is given by

1

k
≡ D2

〈n〉2
− 1

〈n〉 (18)

and

γ = k

〈n〉 . (19)

P (n, k) can be rewritten in the form

P (n, k) =
∫ ∞

0
dNW (N )P (N, n), (20)

where P (N, n) is the Poisson distribution

P (N, n) = exp (−N )
Nn

n!
(21)

and W (N ) is the Gamma function

W (N ) = γ

�(k)
(γN )k−1 exp (−γN ), (22)
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with 1
k

given by

1

k
= 〈N2〉 − 〈N〉2

〈N〉2
. (23)

In the framework of percolation of strings [16], Eq. (20)
represents the superposition of clusters of different number
of strings which decay according to a Poisson multiplicity
distribution of mean value N , and this average value of the
multiplicity of each cluster is related to the number of strings
of each cluster [17,18]. In this approach W (N ) plays the same
role as P (ν), the probability of ν elementary collisions, and
therefore we expect that for events of type C

WC(N ) = N

〈N〉W (N ) (24)

and

PC(n, k) =
∫ ∞

0
dNWC(N )P (N, n)

=
∫ ∞

0
dN

N

〈N〉W (N )P (N, n) = n + k

〈n〉 + k
P (n, k).

(25)

In the limit of high 〈n〉 we recover Eq. (15). We emphasize
that Eq. (25) is obtained assuming that Eq. (10), valid for the
distribution of the number of collisions P (ν), can be extended
to W (N ), the cluster size distribution. RHIC experimental data
can test directly Eq. (15), checking whether any deviation
occurs. Equation (16), taking into account that D � 〈n〉 for the
minimum bias distribution [19], predicts 〈n〉C � 2〈n〉 which
can be easily experimentally checked.

We can go further exploring the centrality dependence
of Eq. (16). NA49 Collaboration [7] has measured D2

〈n〉 as a
function of the number of participants for Pb-Pb collisions
in the rapidity interval 4 < y < 5.5 and in the pT range
0.0005 < pT < 1.5 GeV/c. The data show that D2

〈n〉 decreases
from a value of 1.8 at Npart � 50 down to 1 for the highest
number of participants. The values for pp are around one.
However differences between multiplicities of order 1 or 2 are
impossible to measure. We must require at least differences of
the order of 20–30 charged particles. Thus, instead of D2

〈n〉 at a
fixed number of participants we must look at broader bins of

the number of participants in such a way that the multiplicity
distribution becomes wider and thus D becomes more similar
to 〈n〉, what would make the difference between multiplicities
larger.

For instance we can look at eight equal spacing intervals
of Npart, such as 0–50, 50–100, 100–150, 150–200, 200–250,

250–300, 300–350 and 350–400, measuring D2

〈n〉 for each inter-
val. Equation (16) can then be checked by measuring in every
interval the difference between the average multiplicity of
those selected events with at least one particle with transverse
momentum larger than a fixed value, say pT = 2 GeV/c, and
the average multiplicity of all events.

To be more explicit, for the above mentioned intervals, at
SPS energies and in the rapidity range −0.75 < y < 0.75, the
mean multiplicity of charged particles is approximately [5]:
20, 65, 112, 164, 215, 268, 323, 380. On the other hand,
the corresponding values of D2

〈n〉 for charged particles at the
same energy are approximately: 101, 160, 142, 110, 88, 76,
71, 70 [7]. (We have used a rapidity gap of 1.5 to coincide
with the rapidity interval where D2

〈n〉 was measured.) Therefore
we predict that the multiplicity of events with at least one
particle with pt > 2 GeV/c for the corresponding centrality
bins would be: 121, 225, 254, 274, 303, 344, 394, 450.

In the framework of percolation of strings, as we said
before, we expect a nonmonotonic behavior of D2

〈n〉 with
centrality, increasing at low centrality up to Npart � 50–100
and decreasing at high centrality. The quantitative prediction
will depend on the range of rapidity, transverse momentum
and centrality bins used.

Equation (16) will test two aspects of the collisions: the
self-shadowing nature of high pT events and the dependence
of the multiplicity on the clustering of particle sources.

In conclusion, we have shown that the difference between
the multiplicity associated to high pT events and the unbiased
multiplicity is given by the normalized variance of the
multiplicity distribution. We predict a nonmonotonic behavior
with centrality of this difference which can be checked
experimentally.
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