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Application of the Jeukenne-Lejeune-Mahaux folding model to α-nucleus elastic scattering
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A systematic analysis of α(4He)-nucleus elastic scattering is made by using a microscopic optical model
potential obtained by the double folding of the complex nucleon-nucleon (NN) effective interaction based on the
G-matrix theory. We adopt the so-called JLM interaction as the complex NN interaction and test its applicability
to the 4He elastic scattering by 12C, 16O, 28Si, and 40Ca over a wide range of incident energy and scattering angle.
The experimental cross sections for incident energies ranging from Elab = 40 to 240 MeV are well reproduced
by the double folding potential up to backward angles. Although modification of the real and imaginary potential
strength by about 25% and 35%, respectively, on average is necessary to reproduce the data, the renormalization
factors are found to be almost constant with respect to the incident energy and target mass number.
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I. INTRODUCTION

The microscopic description of a nucleus-nucleus interac-
tion is one of the fundamental subjects in nuclear physics.
In particular, it is very important to understand the complex
optical potential for composite projectiles from a microscopic
point of view not only to understand the relevant reaction
dynamics involved but also to develop a practical tool for
predicting optical potentials of colliding systems for which the
elastic scattering measurement is absent or difficult, such as
in the case of neutron-rich or proton-rich β-unstable nuclei. In
those cases in which elastic scattering can be strongly affected
by reaction channels that are strongly connected to the elastic
channel, such as collective excitation channels of deformed
nuclei or projectile breakup channels of loosely bound sys-
tems, there exists a strong dynamic polarization effect that has
to be accounted for by, for example, coupled-channel (CC)
calculations. In such cases, a microscopic interaction model
serves as a tool for providing the “bare” optical potential to be
used in CC calculations, rather than the net optical potential
which includes the dynamic polarization effects.

The double folding model (DFM) is one of the simplest and
most practical tools for constructing the interaction potential
between complex nuclei. In DFM, an effective nucleon-
nucleon (NN) interaction in nuclear medium is doubly folded
with nucleon density distributions in the projectile and target
nuclei. One of the most famous and successful effective NN
interactions is the so-called M3Y G-matrix interaction [1] or
its density-dependent version, DDM3Y one [2,3]. The DFM
with the M3Y or DDM3Y interaction, however, provides us
only with the real part of the nucleus-nucleus potential. In
such a case, an imaginary potential must be added to the
real DFM potential “by hand” to describe elastic scattering
of the interacting pair. The imaginary potential is normally
assumed to have some suitable functional form, such as
the Woods-Saxon form or its derivative, and the potential
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parameters included are determined phenomenologically so
as to reproduce the experimental data of elastic scattering.

For nucleon-nucleus scattering, many attempts have been
made to microscopically construct the imaginary part of the
optical potential, including folding model studies with the use
of complex G-matrix interactions. For composite projectiles,
however, the imaginary part of the optical potential is still
treated phenomenologically in most cases, except for some
pioneering works [4–6] in which complex optical potentials for
light composite projectiles were constructed by DFM with the
use of a complex G-matrix interaction proposed by Jeukenne,
Lejeune, and Mahaux [7] (which we call the JLM interaction
hereafter). Those works showed that the measured elastic
scattering cross sections were well reproduced by the complex
DFM potentials, but large reduction (renormalization) factors
for both real and imaginary parts were required. However,
many of the projectile nuclei investigated there were either
loosely bound systems against projectile breakup, such as 6,7Li
and 7,9Be, or β-unstable, neutron-rich or proton-rich nuclei,
such as 11Li and 17F. For such projectiles, one would expect
substantial dynamic polarization effects due to the breakup
process [8] which cannot be accounted for by the folding
model potential based on the effective NN interaction, and,
hence, at least some fraction of the renormalization could
originate from the dynamic effects [8]. Therefore, it is not
very suitable to test the validity of the DFM itself by elastic
scattering of such loosely bound projectiles.

Since application of the DFM with complex G-matrix
interactions to composite-projectile scattering is still very
limited and its applicability has not been established, it is
worth testing the DFM with the JLM interaction (which we
refer to as the JLM folding model in the present paper) to
elastic scattering of 4He, the most stable composite nucleus,
on various target nuclei over a wide range of incident energy.
In Ref. [4], the JLM interaction was already tested on 4He
elastic scattering but only for the case of a 12C target at
incident energies Elab = 104 ∼ 173 MeV. In this paper, we
apply the JLM folding model to the elastic scattering of 4He
on 12C, 16O, 28Si, and 40Ca target nuclei over the energy range
Elab = 40 ∼ 240 MeV and investigate its validity together
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with the possible systematics of the renormalization factors
required to reproduce the experimental data.

II. JLM FOLDING MODEL

The JLM interaction is designed so that the Hartree term
alone is able to reproduce the entire nucleon-nucleus optical
potential in nuclear matter; hence, the interaction can be
used in the folding calculation without treating the exchange
component explicitly [7]. Therefore, the nucleus-nucleus
potential from the JLM interaction is given by the direct term
of the double folding potential [4] defined by

UJLM(R) =
∫

ρ1(r1)ρ2(r2)vNN (s; ρ,E)d r1d r2, (1)

where ρ1 and ρ2 are nucleon densities in the projectile and
target nuclei, respectively, R denotes the distance between the
centers of mass of the colliding nuclei, and s = R + r1 − r2

is the relative vector between interacting nucleon pair. The
isoscalar part of the JLM interaction with the finite-range
correction has the form [7]

vNN (s; ρ,E) = gR(s)V0(ρ,E) + igI (s)W0(ρ,E), (2)

where V0(ρ,E) and W0(ρ,E) are the real and imaginary
parts of the interaction strength, and their density and energy
dependence are parametrized [7] in terms of polynomial forms
of ρ and E as

V0 =
3∑

i,j=1

aijρ
i−1Ej−1, (3)

W0 =
[

1 + D

(E − εF )2

]−1 4∑
i,j=1

dijρ
i−1Ej−1. (4)

The coefficients D, aij , and dij and the definition of the Fermi
energy εF are given in Ref. [7]. The finite-range form factor
of the effective interaction was taken to be a single-Gaussian
form

gR(s) = (tR
√

π )−3 exp(−s2/t2
R), (5)

gI (s) = (tI
√

π )−3 exp(−s2/t2
I ), (6)

for the real part and imaginary part, respectively. The values
for the range parameters are taken to be tR = 1.2 fm and
tI = 1.75 fm following Ref. [5]. The complex DFM potential
with JLM interaction is written as

UJLM(R) = VJLM(R) + iWJLM(R), (7)

where the real and imaginary parts of the DFM potential are
given by

VJLM(R) =
∫

ρ1(r1)ρ2(r2)gR(s)V0(ρ,E)d r1d r2, (8)

WJLM(R) =
∫

ρ1(r1)ρ2(r2)gI (s)W0(ρ,E)d r1d r2. (9)

The potential strength V0 and W0 depend on the density ρ

through Eqs. (3) and (4). In folding models, the local-density
approximation (LDA) is introduced to account for the density

dependence of the effective NN interaction used. Several ways
of evaluating the local density are tested in the double folding
procedure with the JLM interaction [4,5]. One of them is the
geometric average of the individual densities,

ρ =
√

ρ1

(
r1 + s

2

)
ρ2

(
r2 − s

2

)
, (10)

and the other is the arithmetic average,

ρ = 1

2

[
ρ1

(
r1 + s

2

)
+ ρ2

(
r2 − s

2

)]
, (11)

which were referred to as JLM(1) and JLM(2) in Ref. [5],
respectively. In both cases, the averaged density is evaluated
at the midposition of the interacting nucleons. The different
prescriptions for LDA lead to slight differences in shape and
central depth of the folded potential, but such minor differences
cause no essential change in the calculated cross sections, as
demonstrated in Ref. [5]. In fact, we have reconfirmed it in the
case of 4He scattering. In this paper, we adopt the geometric
average but apply another type of prescription [4] for LDA

ρ =
√

ρ1(r1)ρ2(r2), (12)

where the local density is evaluated at each position of
the interacting nucleons. This enables us to greatly reduce
the computational time for numerical integrations. Again, the
difference between (10) and (12) is negligible in the present
case of 4He elastic scattering.

III. 4He ELASTIC SCATTERING

Now, we apply the JLM folding model to 4He elastic
scattering by 12C, 16O, 28Si, and 40Ca target nuclei for incident
energies Elab = 40–240 MeV. The nucleon densities are taken
from Ref. [9] for 4He, Ref. [10] for 12C, and Ref. [11] for 16O.
For 28Si and 40Ca, the densities are deduced from the charge
densities extracted from electron-scattering experiments by
unfolding the charge form factor of a proton in the standard
way [9].

It is known that the JLM interaction tends to overestimate
the strength of both real and imaginary parts when it is
applied to the double folding model [4,5]. We then introduce
renormalization factors NV and NW for the real and imaginary
parts, respectively, and define the microscopic optical potential
with the JLM interaction as

Uopt(R) = NV VJLM(R) + iNWWJLM(R) . (13)

We adjust the renormalization factors so as to attain optimum
fits to the experimental data for elastic scattering cross
sections. We have used an automatic potential search code
ALPS [12] to search for the best-fit values of the renormal-
ization factors. We analyze 4He elastic scattering by the 16O
target at five incident energies Elab = 48.7, 54.1, 69.5, 104,

and 146 MeV; the 40Ca target at six energies Elab =
40.05, 47.0, 53.9, 80.0, 104, and 140 MeV; the 12C target at
five energies Elab = 104, 120, 145, 166, and 172.5 MeV; and
the 28Si target at three energies Elab = 104, 166, and 240 MeV.
The experimental data are taken from [13–20], and numerical
data of the experimental cross sections are available at the
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TABLE I. Values of renormalization factors for the real part NV

and for the imaginary part NW for the folding potential with the JLM
interaction obtained from optimum fits to the experimental data for
4He elastic scattering by various target nuclei. Volume integrals per
nucleon pair of the real and imaginary parts of the central potentials
are also listed.

Target
nucleus

Elab

(MeV)
NV NW −JV /AP AT

(MeV fm3)
−JW /AP AT

(MeV fm3)

12C 104 0.733 0.618 326 109
120 0.741 0.637 318 113
145 0.729 0.638 296 112
166 0.737 0.624 285 107
172.5 0.721 0.636 275 108

16O 48.7 0.780 0.480 383 67.8
54.1 0.780 0.500 378 73.0
69.5 0.750 0.630 352 98.7

104 0.740 0.660 321 108
146 0.740 0.680 293 113

28Si 104 0.700 0.680 302 112
166 0.705 0.670 265 108
240 0.692 0.687 219 101

40Ca 40.05 0.720 0.450 354 58.8
47.0 0.740 0.500 359 68.4
53.9 0.740 0.610 354 87.0
80.0 0.700 0.650 317 102

104 0.702 0.651 301 106
140 0.690 0.620 274 101

nuclear data base [21], except for the Elab = 146 MeV case on
the 16O target and the Elab = 140 MeV case on the 40Ca target.
For these cases, we use the calculated cross sections obtained
by phenomenological optical potentials which are known to
reproduce well the experimental data [17,22].

The results are shown in Figs. 1–4. The solid curves show
the results of best-fit JLM folding model calculation with
the renormalization factors given in Table I. The values of
volume integral per nucleon pair of the renormalized JLM
folding model potentials are also given in the table. For
16O and 40Ca targets, we also compare our results with
the calculated cross sections obtained by phenomenological
optical potentials (POPs), which are shown by the dotted
curves in Figs. 1 and 2. All the calculated cross sections
reproduce well the experimental data up to the most backward
angles, with about 25 ∼ 30% renormalization (reduction) to
the real part and about 35% to the imaginary part of the JLM
folding potential.

The precise reproduction of characteristic oscillatory pat-
terns at the middle and backward angles of experimental
cross sections for the low-energy scattering by 16O and 40Ca
targets is particularly impressive. The large bump at middle
angles followed by a deep minimum and a rapid oscillation at
backward angles are typical features of refractive scattering of
an α particle which penetrates into the deep interior of nuclear
potential and is deflected toward backward angles, known as
the nuclear rainbow phenomenon and the anomalous large-
angle scattering (ALAS). This kind of refractive scattering

0 50 100 150

10−10

100

4He+40Ca   Elastic scattering

θc.m.[deg]

dσ
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ELab=40.05MeV

JLM
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140.0MeV
(x10−15)

(x10−12)

FIG. 1. Ratios of cross sections for 4He elastic scattering by 40Ca
to the Rutherford cross sections, at Elab = 40.5, 47.0, 53.9, 80.0, 104,
and 140 MeV . Solid curves show the results of calculation with JLM
folding model multiplied by renormalization factors given in Table I.
Dotted curves are calculated results with best-fit POPs [20,22–24].
Experimental data are from Refs. [13,20].

is known to precisely probe the detailed shape and depth of
the nuclear potential over the entire radial range. Therefore,
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54.1MeV (x10−2)

69.5MeV (x10−4)

146.0MeV

104.0MeV (x10−6)

POP
JLM(x10−8)

FIG. 2. Same as Fig. 1, but for 4He elastic scattering by 16O at
Elab= 48.7, 51.4, 69.5, 104, and 146 MeV. Experimental data are
from Refs. [13,16,17]. Dotted curve for 146 MeV is the calculated
result with best-fit POPs [17].
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FIG. 3. Same as Fig. 1, but for 4He elastic scattering by 12C at
Elab = 104, 120, 145, 166, and 172.5 MeV. Experimental data are
from Refs. [13–15].

precise reproduction of this refractive scattering by the present
JLM folding model calculation implies that the folding model
predicts precise shapes of the real part as well as the imaginary
part of the optical potential consistent with the observed
refractive phenomena, although the strength of the folding
potential has to be renormalized.

As examples, we show the comparison between the (renor-
malized) JLM folding model potentials and the POPs in the
cases of 4He+16O scattering at Elab = 69.5, 104 and 146 MeV
in Fig. 5 and 4He+40Ca scattering at Elab = 47.0, 80.0, and
104 MeV in Fig. 6. The shape of the real and imaginary
parts of POP is well reproduced by the JLM folding model.
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FIG. 4. Same as Fig. 1, but for 4He elastic scattering by 28Si
at Elab = 104, 166, and 240 MeV. Experimental data are from
Refs. [13,15,19].
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FIG. 5. Comparison of JLM folding potential with a best-fit POP
[17] for 4He scattering by 16O at Elab = 69.5, 104, and 146 MeV.
Real and imaginary parts of the folding potentials for each Elab are
multiplied by renormalization factors NV ,NW .
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FIG. 6. Same as Fig. 5, but for scattering by 40Ca at Elab = 47.0,
80.0, and 104 MeV. POPs for Elab = 47.0, 80.0 MeV are from
Ref. [20], and that for 104 MeV is from Ref. [24].
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Particularly, in the cases of 69.5 MeV scattering by 16O and
47.0 MeV scattering by 40Ca, two kinds of potentials are
almost identical in both real and imaginary parts, as seen in
Figs. 5 and 6, which is consistent with almost perfect fits
to the experimental data up to backward angles, as seen in
Figs. 1 and 2.

The difference between folding potential and POP becomes
noticeable as we go to higher energies, especially in the case of
the 40Ca target, as seen in Fig. 6. However, it should be noted
that the imaginary potential becomes stronger as the incident
energy increases; hence, cross sections, even at backward
angles, become less sensitive to fine details of the potential
at short distances because of the increase of absorption at
higher energies. In other words, there exists uncertainty in
the depth and shape of the POP itself, particularly at short
distances, as discussed in Ref. [20] based on the analysis using
a model-independent shape for the optical potential, such as
the sum-of-Gaussian (SOG) form. In addition, a noticeable
difference in shape for the imaginary part at short distances
between POP (dotted curves) and the folding potentials (solid
curves), seen in the case of Elab = 80.0 and 104 MeV on
the 40Ca target, may partly be due to a restricted functional
form (the Woods-Saxon form in these cases) adopted for
the imaginary part of POP [20,24]. In fact, a more suitable
functional form, the squared Woods-Saxon form, was adopted
for the real part of POP (dotted curves for the real part of
Elab = 80.0 and 104 MeV potentials in Fig. 6) as well as for
the real and imaginary parts of POP for the 16O target [17]
(dotted curves in Fig. 5) which are much closer to the shape
of folding potentials.

Next, we compare in Figs. 7 and 8 the volume integral
per nucleon pair, JV /AP AT and JW/AP AT , for the real and
imaginary parts of the folding potential and POP [20,22–24],
as a function of incident energy per nucleon (Elab/AP ) for each
target nucleus. For 16O and 40Ca targets, we also plot the values
obtained by the folding potential with the use of the DDM3Y
effective NN interaction for the real part, which are also
multiplied by renormalization factors given in [16,25]. In each
figure, the solid and dotted curves show the energy dependence
of JV /AP AT and JW/AP AT for the JLM folding model poten-
tial multiplied by a constant renormalization factor shown in
each figure. It is seen that most values obtained by the optimum
fits to the experimental data at each energy (solid circles and
solid squares) lie closely to the curve with a constant renor-
malization factor at energies higher than Elab/AP � 20 MeV.
This allows us to expect that the JLM folding model with
constant renormalization is able to predict correct optical
potentials for 4He elastic scattering for incident energies of
Elab/AP � 20 MeV.

For Elab/AP � 20 MeV, however, as shown only in the cases
of 16O and 40Ca targets, both the real and imaginary potentials
start to deviate from the uniform curves extrapolated from
the higher energy side. Namely, the imaginary part rapidly
decreases as the incident energy decreases, while the real part
has slightly larger values than the solid curve of a constant
renormalization factor and tends to show a bell-shape-like
behavior, which is more clearly seen in the case of the 40Ca
target. This trend is not limited to the present JLM folding
model but is common to all types of optical potentials, as
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FIG. 7. Energy dependence of the real and imaginary parts of
the volume integral per nucleon pair of optical potentials for the
4He-16O and 4He-40Ca systems. Solid circles (solid squares) for
the real (imaginary) part are values of the present JLM folding
potential multiplied by a renormalization factor given in Table I. Open
triangles (open squares) for 4He-16O are of the real (imaginary) part
of POP [17], while open triangles and vertical bars (open squares)
for 4He-40Ca are of the real (imaginary) part of POP [20,22–24].
Open circles for the real part are of the folding potentials with the
DDM3Y interaction, which are also multiplied by renormalization
factors given in [16,25]. Solid and dotted curves show the energy
dependence of JV /AP AT and JW /AP AT for the JLM folding model
potential multiplied by a constant renormalization factor.

clearly seen in the figures. This kind of anomalous behavior
of optical potentials is known as the “threshold anomaly”
[26] which is widely observed in optical potentials not only
of α particles but also of nucleon and various heavy ions
near the Coulomb-barrier energies. The threshold anomaly
occurs mainly because of an effective closure of open reaction
channels that occurs when the incident energy drops below
the effective Coulomb barrier of the colliding system. This
anomaly is well explained in terms of the “dispersion relation”
[27] which holds between the real and imaginary parts of the
generalized optical potential. That is, the present JLM folding
model is unable to reproduce the effective closure of reaction
channels below the Coulomb barrier energies, although it
should be noted that the imaginary part of the JLM folding
potential also shows a slight decrease toward the lower energy
side, as seen in Figs. 7 and 8.

The characteristic behavior of optical potential as a function
of incident energy is more clearly observed in the energy
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FIG. 8. Same as Fig. 7, but for the 4He-12C and 4He-28Si systems.
Solid circles (solid squares) for the real (imaginary) part are values
of the present JLM folding potential multiplied by a renormalization
factor given in Table I.

dependence of renormalization factors for the present JLM
folding potential, NV and NW , as shown in Fig. 9 in the case
of the 40Ca target. It is clearly seen that a rapid decrease of NW

toward the lower energy side correlates well with the bell-shape
deviation of NV from the constant line (solid line), which
shows a typical behavior of the dispersion relation between
the real and imaginary parts of the dynamic polarization
component of the optical potential [26,27].

The target-mass dependence of the renormalization factors
is shown in Fig. 10 in the case of Elab = 104 MeV. It is seen
that the renormalization factors slightly depend on the target
mass number. The values are close to the average values of
NV = 0.71 and NW = 0.63, except for NW for the 28Si target,
for which the value visibly deviates from the average line. It is
noticed from Table I and Fig. 8 that NW for the 28Si target has
slightly larger values also for other incident energies, which
may suggest that the 28Si nucleus presents a slightly stronger
absorption to the incident α particle compared with other target
nuclei, two of which are closed-shell nuclei. Since the 28Si
nucleus is known to be a very deformed nucleus that shows
a typical rotational band, it may be reasonable to expect that
an additional absorption should be induced dynamically by
collective excitations, such as the collective rotation, of the
28Si nucleus in the collision with 4He. This kind of dynamic
effect may not be included in the imaginary part originated
from the G-matrix interaction evaluated in nuclear matter.

0 20 40 60
0

0.5

1
4He + 40Ca   renormalization factor

N
V

,W

ELab/AP [MeV]

NV

NW

0.70

0.63

FIG. 9. Energy dependence of renormalization factor for JLM
interaction deduced from the optimum fits to 4He+40Ca scattering.
Solid circles show NV ; open squares NW . Solid and dotted lines
show their constant values. Abscissa denotes the incident energy per
nucleon (AP = 4).

As we have seen in Table I, the values of the renormalization
factor required to reproduce the experimental data are almost
constant, NV � 0.70 ∼ 0.75 and NW � 0.65, in the energy
range of Elab/AP � 20 MeV. Although the constant values de-
pend slightly on the target, this indicates that the JLM folding
model has a predicting power on the 4He elastic scattering by
nuclei at least for Elab/AP � 20 MeV domain. Namely, one
can expect that the complex optical potential obtained by the
JLM folding model multiplied by renormalization factors of
NV � 0.70 ∼ 0.75 and NW � 0.65 to the real and imaginary
parts, respectively, generates correct elastic scattering cross
sections. Below the energy domain, the dynamic effect of an
effective closure of open reaction channels becomes evident,

0 20 40
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1
ELab=104.0MeV   renormalization factor

AT

N
V

,W
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NW

0.71

0.63

FIG. 10. Target mass dependence of renormalization factor for
JLM interaction. Solid circles and open squares show NV and NW ,
respectively; solid and dotted lines show their constant values.
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and, hence, the dynamic correction has to be added to the
folding potentials.

IV. SUMMARY AND DISCUSSION

In the present paper, we apply the JLM folding model
to elastic scattering of α particles (4He) by 12C, 16O, 28Si,
and 40Ca at incident energies of Elab = 40–240 MeV. All the
experimental cross sections are reproduced surprisingly well
by the double folding potential up to backward angles. The
shape of the real and imaginary part of phenomenological
optical potentials is well reproduced by the JLM folding model
over the entire radial range, although the strengths of the real
and imaginary parts have to be reduced by about 25% and
35%, respectively, on average. The renormalization factors are
found to be almost constant with respect to the incident energy
and target mass number, except for very low incident energies
below the effective Coulomb barrier of the colliding system
or for the 28Si target having a large deformation. This may
suggest that the JLM folding model has a predicting power of
the complex optical potential for nucleus-nucleus scattering
above Coulomb barrier energies, as long as the projectile
and/or target nuclei suffer from no strong collective excitation,
such as the rotation of a largely deformed nucleus or the
breakup of a weakly bound system. The collective excitations
of colliding nuclei generate a large amount of correction
(dynamic polarization potential) which should be added to
the folding potential obtained by the G-matrix interaction.
In other words, the JLM folding model with a suitable
constant renormalization can serve as the so-called bare optical
potential to be used in coupled-channel calculations which
explicitly treat the coupling to strong excitation channels. It is,
therefore, very interesting to apply the JLM folding model
to coupled-channel calculations for systems having strong
excitation channels, including the breakup ones, and to test its
validity as a practical interaction model for generating complex
bare optical potentials.

A large deviation of the volume integral per nucleon
pair in the sub-Coulomb barrier region from smooth curves
extrapolated from the high energy region, as seen in Fig. 7,
demonstrates a typical behavior of the so-called threshold
anomaly which can be well accounted for by the dispersion
relation [26,27] between the real and imaginary parts of optical
potential. A large deviation of the renormalization factor NW

from a constant value (seen in Fig. 9) indicates that the rapid
decrease of imaginary potential below the Coulomb barrier
cannot be reproduced by the intrinsic energy dependence of
the JLM folding model.

The defect in the sub-Coulomb barrier region may not
be limited to the present JLM folding model but may be
common to any folding model based on G-matrix interactions,
because the rapid decrease of imaginary potential strength
at the sub-Coulomb barrier region reflects, at least partly,
the finite size of the colliding nuclei. The finite size of the
nuclei may give rise to two effects on the imaginary potential,
which are absent in the nuclear matter evaluation. The first
one may simply be the existence of the Coulomb barrier
between composite nuclei, and below the Coulomb barrier

little incident flux can penetrate into the nuclear interaction
region, which strongly suppresses the nuclear reactions from
occurring at subbarrier energies. Another finite-size effect may
be a discrete excitation spectrum of the colliding nuclei and
resultant low level density, particularly at the low-excitation
energy region. This is in contrast with the case of nuclear matter
which has a continuous excitation spectrum outside the Fermi
sphere. The discreteness and low level density may suppress
nuclear excitations from occurring at low incident energies for
which the average excitation energy is rather low compared
to high-energy collisions. Therefore, it is reasonable that the
imaginary potential obtained by the folding model calculation
with a G-matrix interaction should be stronger compared with
the realistic optical potential for a finite nuclear system in the
sub-Coulomb barrier region.

On the other hand, for high-energy collisions, the average
excitation energy must be high enough so that the major
part of the excitation spectrum can be regarded as an almost
continuous one similar to that of the nuclear matter; hence,
the imaginary potential estimated by the folding model with
G-matrix interactions should give a good account of the
imaginary potential for the finite nuclear system.

The need for considerable renormalization NW � 0.65 to
the imaginary part of the present JLM folding potential even
in the high-energy region seems to contradict the above
discussion. However, this may not necessarily imply that the
JLM interaction itself largely overestimates the imaginary part.
It is more likely that the need for about 35% reduction of
the imaginary strength (and about 25% reduction of the real
part also) may be closely related to the adopted prescription
for evaluating the local density in the double folding model
(DFM) calculation of the nucleus-nucleus potential.

Since the JLM interaction (and many other effective
interactions) is originally designed to be used for constructing
the nucleon-nucleus potentials in a single-folding model calcu-
lation, its density dependence is parametrized so as to be valid
only for densities less than the saturation density ρ0 of nuclear
matter. However, its application to the DFM calculation for
nucleus-nucleus potential is not as straightforward because no
unique prescription for evaluating the local density has been
established.

In the present paper, and in many other works that used
the JLM interaction, the local density was evaluated either by
the geometric average [Eqs. (10) or (12)] or the arithmetic
one [Eq. (11)] of ρ1 and ρ2, because, and so that, the
averaged density (either geometric or arithmetic) does not
exceed ρ1 or ρ2 or, hence, the saturation density ρ0. As already
mentioned, no essential difference in the calculated 4He-target
DFM potential was observed between different prescriptions
given in Eqs. (10)–(12), as long as we adopted the “average
prescription” for evaluating the local density. However, the
average prescription clearly underestimates the density effects
as compared with another type of prescription, called the
“frozen density prescription,”

ρ = ρ1 + ρ2, (14)

which is also widely used in DFM calculations with DDM3Y
[3] or similar types of effective interactions [28]. The problems
connected with the choice of a prescription for evaluating the
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local density were also discussed (but only for the real part of
the potential) in an early paper [29] making use of the JLM
interaction.

Although no clear answer is available to the question of
which type of prescription for evaluating the local density
is correct or reasonable, the “underestimation” of the local
density in the average prescription [Eqs. (10)–(12)] with
respect to the frozen density one [Eq. (14)] apparently leads
to a relatively deeper potential because the strength of the
usual effective NN interactions evaluated by the G-matrix
theory increases with the decrease of density. Therefore, one
might expect that if the frozen density prescription is adopted,
one could obtain a much weaker folding potential for the
4He-nucleus system, and the optimum renormalization factors
NV and NW could possibly be close to unity.

However, as already pointed out [4,29], the extension of
the JLM interaction to the domain of density higher than the
saturation density ρ0, above which the JLM parametrization
is no longer valid, leads to the unrealistic strength of both
the real and imaginary parts of the DFM potential at short
distances where the local density evaluated by the frozen
density prescription largely exceeds the saturation density ρ0.
The unrealistic, strange behavior of the folding potential in the

high-density region is, however, mainly due to the polynomial
forms [Eqs. (3) and (4)] adopted for parametrizing the density
dependence of the JLM interaction in the original paper [7]
and may not be due to an essential defect or invalidness
of the JLM interaction itself in the high-density region.
Therefore, a possible improvement of parametrization for the
ρ dependence of the JLM interaction to make it applicable
to the higher density domain could enable us to apply
the frozen density prescription in the DFM calculation with the
JLM interaction. Such an improvement could, at least partly,
resolve the substantial renormalization problem observed in
the present paper in the case of 4He-nucleus scattering and
similar problems observed in applications to other heavy-ion
scattering [4–6]. A study in this direction is under way by the
present authors.

ACKNOWLEDGMENTS

The authors would like to thank Professor Y. Iseri for
valuable discussions about the JLM folding model and for
allowing them to use the ALPS computer code for the optimum
potential research done in this work.

[1] G. Bertsch, J. Borysowicz, H. McManaus, and G. R. Satchler,
Nucl. Phys. A284, 399 (1977).

[2] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).
[3] M. El-Azab Farid and G. R. Satchler, Nucl. Phys. A438, 525

(1985).
[4] F. Carstoiu and M. Lassau, Nucl. Phys. A597, 269 (1996).
[5] L. Trache, A. Azhari, H. L. Clark, C. A. Gagliardi, Y. W. Lui,

A. M. Mukhamedzhanov, R. E. Tribble, and F. Carstoiu, Phys.
Rev. C 61, 024612 (2000).

[6] J. C. Blackmon et al., Phys. Rev. C 72, 034606 (2005).
[7] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80

(1977).
[8] Y. Sakuragi, Phys. Rev. C 35, 2161 (1987).
[9] L. R. B. Elton, Nuclear Size (Oxford University, Oxford, 1961).

[10] M. Kamimura, Nucl. Phys. A351, 456 (1981).
[11] J. W. Negele, Phys. Rev. C 1, 1260 (1970).
[12] Y. Iseri, computer code ALPS (unpublished).
[13] G. Hauser, R. Lohken, H. Rebel, G. Schatz, G. W. Schweimer,

and J. Specht, Nucl. Phys. A128, 81 (1969).
[14] S. Wiktor, C. Mayer-Boricke, A. Kiss, M. Rogge, P. Turek, and

H. Dabrowski, Acta Phys. Pol. B 12, 491 (1981).
[15] I. Brissaud, M. K. Brussel, M. Sowinski, and B. Tatischeff, Phys.

Lett. B30, 324 (1969).
[16] H. Abele, H. J. Hauser, A. Korber, W. Leitner, R. Neu,

H. Plappert, T. Rohwer, G. Staudt, M. Strasser, S. Welte,
M. Walz, P. D. Eversheim, and F. Hinterberger, Z. Phys. A 326,
373 (1987).

[17] F. Michel, J. Albinski, P. Belery, Th. Delbar, Gh. Gregoire,
B. Tasiaux, and G. Reidemeister, Phys. Rev. C 28, 1904
(1983).

[18] H. Rebel, G. W. Schweimer, G. Schatz, J. Specht, R. Lohken,
G. Hauser, D. Habs, and H. Klewe-Nebenius, Nucl. Phys. A182,
145 (1972).

[19] D. H. Youngblood, Y. W. Lui, and H. L. Clark, Phys. Rev. C 65,
034302 (2002).

[20] H. P. Gubler, U. Kiebele, H. O. Meyer, G. R. Plattner, and
I. Sick, Phys. Lett. B74, 202 (1978); Nucl. Phys. A351, 29
(1981).

[21] Nuclear Data Base on www-nds.iaea.org (1999–2005).
[22] D. A. Goldberg, Phys. Lett. B55, 59 (1975).
[23] Th. Delbar et al., Phys. Rev. C 18, 1237 (1978).
[24] H. J. Gils, E. Friedman, H. Rebel, J. Buschmann, S. Zagromski,

H. Klewe-Nebenius, B. Neumann, R. Pesl, and G. Bechtold,
Phys. Rev. C 21, 1239 (1980).

[25] U. Atzrott, P. Mohr, H. Abele, C. Hillenmayer, and G. Staudt,
Phys. Rev. C 53, 1336 (1996).

[26] C. Mahaux, H. Ngô, and G. R. Satchler, Nucl. Phys. A449, 354
(1986).

[27] M. A. Nagarajan, C. C. Mahaux, and G. R. Satchler, Phys. Rev.
Lett. 54, 1136 (1985).

[28] D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C
56, 954 (1997).

[29] F. Duggan, M. Lassaut, F. Michel, and N. Vinh Mau, Nucl. Phys.
A355, 141 (1981).

034606-8


