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Macroscopic-microscopic calculations have been performed with the Yukawa folded mean field for
134 spherical even-even nuclei and 6 deformed ones at temperatures 0 � T � 5 MeV and elongations ranging from
oblate shapes to the scission configuration of fissioning nuclei. The Strutinsky type free-energy shell corrections
for this sample of nuclei and their temperature and deformation dependence are found by a folding procedure in
particle-number space. The average dependence of the single-particle level-density parameter on mass number A

and isospin I is determined and compared with previous estimates obtained using the relativistic mean-field theory,
the Hartree-Fock approximation with the Skyrme effective interaction, and the phenomenological Thomas-Fermi
approach adjusted to experimental data. The estimates for the level-density parameter obtained for different
deformations are fitted by a liquid-drop type expression.
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I. INTRODUCTION

The nuclear single-particle (s.p.) level-density parameter
plays a crucial role in transport theories dealing with the
fission dynamics or the decay of compound nuclei (confer,
e.g., Refs. [1–3]). The aim of the present article is to determine
this quantity as well as the temperature dependence of the shell
energy for high excited nuclei (T � 5 MeV). The macroscopic-
microscopic method [4] with the Yukawa folded mean-field
potential [5] and the Lublin-Strasbourg Drop (LSD) model [6]
as well as the new Strutinsky shell-correction method [7]
has been used in the present study. In Ref. [8] we have
already studied the mass-number and isospin dependence of
the s.p. level-density parameter obtained for spherical nuclei
in the relativistic mean-field theory (RMFT) [9] with the NL3
parameter set [10] and in Ref. [11] with the Skyrme SkM∗
effective interaction [12].

In these previous studies [8,13], to which the present inves-
tigation represents a substantial improvement and extension,
the traditional Strutinsky shell-correction method [14] was
used to extract the shell effects from the RMFT self-consistent
energies in a way similar to Refs. [15–17] for the Gogny
Hamiltonian with the D1S force [18]. To obtain the shell-
correction energy at finite temperature the phenomenological
expression of Refs. [19,20] for its variation with temperature
was used rather than to evaluate the Strutinsky shell-correction
energy at finite temperatures [21]. Similarly as in Ref. [22],
the s.p. level-density parameter was approximated in Refs.
[23,24], where the investigation was based on the RMFT-NL3
model by a liquid-drop type expression. In Ref. [25] the latest
version of the Strutinsky smoothing method based on the
N -folding method [7] was used to evaluate the smoothed
s.p. free energy at finite temperatures. The same method
was also applied in Ref. [11] to extract the level-density
parameter from self-consistent Hartree-Fock calculation with
the Skyrme SkM∗ force. All these results were restricted
to spherical even-even nuclei and the dependence of the
single-particle level-density parameter on deformation was not
investigated. One has also to realize that the self-consistent

models have systematically underestimated the s.p. level
density as compared to the phenomenological Thomas-Fermi
approach [26], which was adjusted to the experimental data, as
shown in Fig. 3 below. That is why, in the present investigation,
we decided to apply our method to the s.p. level scheme
obtained with a Yukawa folded [5] (YF) mean-field potential.
The same sample of spherical even-even nuclei was used and
it turns out that the level-density parameter obtained in this
way is, indeed, much closer to the phenomenological data
(Fig. 3) than all previous self-consistent estimates. Encouraged
by these results we have performed an additional study of
the deformation dependence of the level-density parameter
obtained with the YF model.

II. NUCLEAR ENERGY

In the macroscopic-microscopic method [4] the nuclear
energy consists of the macroscopic part, e.g., of liquid drop
type and the shell and pairing corrections. It is well known that
the pairing correlations disappear at temperature of the order
of T ≈ 1 MeV. That is why we have decided not to include
them in our investigation as we are rather interested in hot
nuclei. The microscopic corrections are then simply given by

Emicr = E
(p)
shell + E

(n)
shell. (1)

This shell-correction energy is obtained as the difference
between the sum of occupied s.p. energies and the correspond-
ing sum obtained by a smoothing procedure [14]. Until quite
recently this smoothing was always accomplished by applying
the traditional Strutinsky method in which one performs a
Gauss-Hermite folding in the space of the single-particle
energies (the so-called e-folding) [14] using the s.p. spectra
obtained within one of the phenomenological mean-field
potentials, as, e.g., of Nilsson [27], Woods-Saxon [28], or
Yukawa-folded [5] type. The new method consists in a folding
in the particle-number space (the so-called N -folding) [7] and
allows, in fact, smoothing of any quantity that fluctuates with
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the number of particles, as, e.g., the free energy at different
temperatures. In the ground state (i.e., for zero temperature)
the shell energy is defined by the following expression

E
(q)
shell =

∑
νocc

ε(q)
ν − Ẽ(q), q = {n, p}, (2)

where Ẽ(q) is the smoothed sum of s.p. energies obtained,
e.g., by the N -smoothing approach of Ref. [7] applied to the
Yukawa folded single-particle levels.

III. YUKAWA-FOLDED POTENTIAL

The Yukawa-folded [5] single-particle potential Vsp con-
tains the central mean-field Vcent, as well as a spin-orbit
potential Vso and, in the case of protons, a Coulomb field
VCoul

V (q)
sp (r̄ ) = V

(q)
cent(r̄ ) + V (q)

so (r̄ ) + VCoul(r̄ )δpq, (3)

where q = {n, p}. The central potential is given by the volume
integral

Vcent(r̄1) =
∫

V (r12)
ρ (r̄2)

ρ0
d 3r2, (4)

where r12 = |�r1 − �r2|, ρ is the diffuse density of the nucleus,
and V (r12) is the folding potential, which is [5]

V (r12) = V
(q)

0 gλ(�r1, �r2). (5)

Here V
(q)

0 is the strength of the interaction that can be chosen
differently for protons and neutrons and the Yukawa folding
function

gλ(�r1, �r2) = 1

4πλ2

e−|�r1−�r2|/λ

|�r1 − �r2|
(6)

of width λ is normalized to unity∫
gλ(�r1, �r2)d 3r2 = 1. (7)

The diffuse density ρ (�r2) is again obtained by a folding
procedure using the same Yukawa function but with a slightly
different width parameter d:

ρ(�r2) =
∫

ρ0(�r1)gd (�r1, �r2)d 3r1, (8)

where the uniform density of the nucleus ρ0 is given by

ρ0(�r ) =
{

ρ0 = 3A/4πR3
0 for r � R0

0 for r > R0
(9)

and R0 is the radius of the corresponding spherical nucleus.
The Coulomb potential VCoul is calculated assuming a

uniform charge distribution in the nucleus

VCoul(�r1) = 3eZ

4πR0

∫
V

d3r2

|�r1 − �r2|
, (10)

whereas the spin-orbit term is obtained from the central
potential Vcent using the standard prescription

Vso = i�(q) �∇Vcen · [�σ × �∇ ], q = {n, p}, (11)

where �σ is the vector of 2 × 2 Pauli matrices.

TABLE I. Constants used in the Yukawa-folding procedure.

Constant Value Unit Constant Value Unit

λ 0.8 fm d 0.7 fm
Vs 52.5 MeV Va 48.7 MeV
C1p 2.76 × 10−4 MeV C2p 0.3092 MeV
C1n 2.07 × 10−4 MeV C2n 0.3479 MeV
D1 1.117 × 10−2 D2 3.15

The following parameters of the single-particle potentials
for protons and neutrons [31] were used:

V (p)
o = Vs + Va δ̄ and V (n)

o = Vs − Va δ̄ , (12)

where

δ̄ = I + D1Z
2/A5/3

1 + D2/A
1/3

, I = N − Z

A
(13)

and

�(p) = C1pA + C2p and �(n) = C1nA + C2n (14)

with the appropriate constants listed in Table I above.

IV. THE PARTICLE-NUMBER CONSERVING
SHELL-CORRECTION METHOD

The shell energy is the difference between the sum of
occupied single-particle energies and its smoothed value
Ẽ(q)(Nq) corresponding to the number Nq of particles of
species q(q = {n, p}), which is obtained by a folding pro-
cedure in the particle number space (N space). To perform
the smearing procedure one has to define a set of quantities Sn

corresponding to different particle numbers n but built on the
same single-particle energy spectrum

Sn =
n∑

ν=1

εν − bn4/3 − V ′n, (15)

from which the harmonic oscillator background is subtracted
to keep the quantities Sn small. The parameters b and V ′ in the
above expression are obtained by minimizing the mean-square
deviations:

Nmax∑
n=Nmin

Sn
2 = min, (16)

where the limitsNmin andNmax of the sum are equal to (N 1/3 ∓
3γ )3, respectively, and γ = 0.78 is the smearing width used
in the folding [7].

To obtain the smoothed sum of s.p. energies Ẽ(q) in Eq. (2)
one has now to perform a Gauss-Hermite folding of the set Sn

to obtain

S̃N =
Nmax∑

n=Nmin

2

3 n2/3
Sn j

(N 1/3 − n1/3

γ

)
, (17)
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where j (u) is a normalized weight function that is given by a
Gaussian multiplied by a sixth-order correction polynomial [7]

j (u) = 1

γ
√

π
e−u2

(
35

16
− 35

8
u2 + 7

4
u4 − 1

6
u6

)
. (18)

Having obtained the folded value S̃N , where shell effects have
already been washed out, we can now get an estimate of the
smooth energy Ẽ(q)(N ) by restoring the harmonic oscillator
background that was subtracted in Eq. (15):

Ẽ(q)(N ) = S̃N + bN 4/3 + V ′N . (19)

V. FREE-ENERGY SHELL CORRECTION

A mean-field Hamiltonian with a Yukawa-folded single-
particle potential [Eq. (3)] was used to obtain the double
degenerate single-particle levels ε

(q)
ν of protons and neu-

trons of 134 spherical even-even and 6 deformed nuclei.
The s.p. energy sums for these nuclei (disregarding pairing
correlations) were evaluated as well as their deformation
dependence parametrized through the elongation parameter
c of the so-called Funny Hills shape parametrization [29].
Assuming that the single-particle spectrum does not change
with temperature (see Ref. [30]), similar sums but at different
temperatures (T = 0, 1, 2, 3, 4, 5 MeV) are determined as

Esp(N ; T ) =
∞∑

ν=1

2 ενnν, (20)

where the single-particle occupation numbers are given by

nν = 1

1 + exp[(εν − µ)/T ]
(21)

and µ is the chemical potential obtained from the particle
number equation

N =
∞∑

ν=1

2nν , N = {Z,N}. (22)

The Helmholtz free-energy is then obtained according to

F (N ; T ) = E(N ; T ) − S(N ; T )T , (23)

where S is the entropy given by

S = −
∞∑

ν=1

[nν ln(nν) + (1 − nν) ln(1 − nν)] . (24)

It is a well-known fact that with increasing temperature the
shell effects are gradually washed out to disappear completely
at temperatures around T = 3 MeV. The free shell-correction
energy is defined as the difference between the free energy
F (N ; T ), Eq. (23), at that temperature and its smooth part
F̃ (T ) obtained here by the same N -folding method as was
described in the previous section.

The frequently used phenomenological approximation of
Refs. [19,20] gives the temperature dependence of the free

shell-correction energy in the form

Fshell(N ; T ) = Fshell(N ; 0)
τ

sinh τ
, (25)

where Fshell(N ; 0) is the shell-correction energy at zero
temperature and τ =2π2T/h̄ω with h̄ω=40A−1/3 MeV.

Supposing a quadratic temperature dependence of the
smooth free energy

F̃ (N ; T ) = F̃ (N ; 0) − aT 2 (26)

allows us to obtain the level-density parameter that determines
the smooth entropy as

S̃ = 2aT . (27)

The level-density parameter a enters the definition of
the Helmholtz free energy, so its proper value is crucial
for, e.g., evaluating the adiabatic fission barriers at finite
temperatures.

The level-density parameter a has often been approximated
in the form

a = A

n
MeV−1, (28)

where A is the mass number and n ≈ 10. In Ref. [8] the
variation of the level-density parameter a with Z and A

was investigated. This dependence shall be confirmed by our
present study of the level-density parameter obtained in the
framework of the Yukawa-folded single-particle potential and
the new averaging method in particle number space. The
smoothed value of the free energy at given temperature T

for N nucleons is obtained as

F̃ (N ; T ) =
Nmax∑

N=Nmin

2

3 N2/3
F (N ; T ) j

(N 1/3 − N1/3

γ

)
, (29)

where the normalized Strutinsky weight function j (u) is the
sixth-order polynomial given in Eq. (18). The lower and upper
limits in Eq. (29) given as

(
N 1/3 ∓ 3γ

)3
are such that a large-

enough number of single-particle levels are included to ensure
the accuracy of the estimate of the smooth energy of the order
of 0.01 MeV. The free shell energy for the N nucleon system
at temperature T is given by the difference

Fshell(N ; T ) = F (N ; T ) − F̃ (N ; T ). (30)

The levels-density parameter a is then obtained from Eq. (26)

a = [F̃ (N ; 0) − F̃ (N ; T )]/T 2. (31)

VI. RESULTS

We first show the results of calculations performed as
described above for 134 nearly spherical nuclei between
the proton and neutron drip lines, having, according to
Ref. [31], almost vanishing quadrupole moments. In Fig. 1
the free shell-correction energy for protons and neutrons,
evaluated according to Eq. (30), is plotted for temperatures
T = 0, 1, 2, 3, 4, and 5 MeV as a function of the mass number
A of these nuclei. One notices the rapid decrease of these
shell-correction energies with temperature leading essentially
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FIG. 1. Free shell-correction energy for protons (upper part) and neutrons (lower part) for a sample of 134 nearly spherical nuclei evaluated
at various temperatures T with the Yukawa-folded potential as function of mass number A.

to their disappearance beyond T ≈ 2–3 MeV. It appears from
the figure that the proton shell-correction energies remain
essentially constant as function of A along a given isotopic
chain (a weak A dependence remains through the radius
constant R0 and the mass and isospin dependence of the
depth parameter V

(q)
o ), whereas the parallel lines appearing for

the neutron shell-correction energies correspond to different
neighboring isotopic chains.

In Fig. 2 the difference of the average total (neutron +
proton) free energy F̃ at zero and finite temperature is shown as
a function of the mass number A, as well as the corresponding
factor n obtained from it through Eq. (28). One can notice

that this quantity varies with mass number being substantially
smaller than the commonly used value of 10 for nuclei with
mass number smaller then 180.

In Fig. 3 the results of our calculation are compared to the
values obtained with the self-consistent (RMFT and Skyrme
Hartree-Fock) approaches and the phenomenological Thomas-
Fermi estimates that are the closest to the experimental values
of the level-density parameter [37]. We find that our YF values
are much closer to the phenomenological estimate than those
obtained in a self-consistent mean-field approach that are close
to each other but are found to underestimate the level-density
parameter significantly. The fact that our approach gives a fair
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FIG. 2. Differences between the averaged total free energies at T = 0 and T = 1, 2, 3, 4 MeV for spherical even-even nuclei as function
of the mass number A (upper part) obtained within the Yukawa-folded approach. The corresponding factor n = A/a of Eq. (28) is also shown
(lower part). The frequently used heuristic value n = 10 is given as a dashed line.
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FIG. 3. Level-density parameter obtained with the Yukawa-folded mean-field approach (YF) and their liquid-drop type fit,
Eq. (32), [YF4(A, Z)] to spherical and deformed nuclei as compared to the self-consistent results of RMFT [25], Skyrme Hartree-Fock [11]
calculations, and Thomas Fermi estimates (TF) [26] for spherical even-even isotopes (upper left), isotones (upper right), and β-stable nuclei
(lower left). The corresponding factor n = A/a is also shown (lower right).

reproduction of the experimental level-density parameter does
not really come as a surprise, considering that the Hamiltonian
of our approach with the Yukawa folded mean-field potential
has an unity effective mass. It is, indeed, well known that

effective interactions like the Skyrme or Gogny forces, which
mostly have an isoscalar effective mass of the order of 0.7
(needed for the description of giant vibrations), yield a level
density that is too low, at least in spherical nuclei. It is only
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FIG. 4. Deformation dependence of the total (neutron + proton) shell correction energy as function of the Funny-Hills elongation
parameter c (see text) for different temperatures T .
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FIG. 5. Temperature dependence of the total shell-correction energy for different values of c as obtained with the approximation of Eq. (25).

through considering correlations that go beyond the mean-
field approach that level densities close to the experimental
data are obtained [33]. However, the work of Tondeur and
Pearson (see, e.g., Ref. [34,35]) have shown that a reasonable
level density can be obtained at the level of the Hartree-Fock
approximation when a density functional with an effective
mass close to m∗/m=1 is chosen.

As the Yukawa-folded level-density parameters turn out
to be the closest to the phenomenological estimates, their
dependence on deformation has been investigated for a few
even-even nuclei: 40Ca, 50Cr, 100Ru, 150Sm, 200Hg, 250Cf.

Figure 4 shows the deformation dependence of the shell-
correction free energy at different temperatures. These shell
corrections plotted here for different selected nuclei as function
of the Funny-Hills [29] elongation parameter c are seen to
oscillate around zero up to T ≈ 3 MeV, essentially vanishing
above this temperature.

It is now interesting to compare the decrease with tempera-
ture of these shell-correction energies between the predictions
of the phenomenological function [Eq. (25)] presented in
Fig. 5 and the exact result obtained by the above described
folding procedure in N space shown in Fig. 6. It is interesting
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FIG. 6. Same as Fig. 5 but with the temperature dependence obtained by a folding procedure in N space (see text).
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FIG. 7. Level-density parameter as function
of c obtained by folding in N space (YF, solid
lines) as compared to the four-parameter fit,
Eq. (32) (YF4, dashed lines).

to notice that the evaluation of the temperature dependence
obtained by folding in particle number space produces results
quite similar to those obtained by the approximate treatment
of Eq. (25), but with a somewhat higher critical temperature at
which the shell-correction energy disappears, as can be clearly
seen by a comparison of both figures. This is in particular the
case for light nuclei where these shell effects survive up to
T = 4 to 5 MeV.

Because of the the unnatural increase of a for the spherical
case c = 1, caused by the omitting in our averaging the
zero-point vibrations [36], we decided to use for the cases
T = 0 and c = 1 the value of a obtained by the traditional
Strutinsky folding in the e space. For the rest of points (i.e.,
T 	= 0 and c 	= 1) we used the N -folding. We have found that
sample of the a parameter data for the 134 spherical and 6 de-
formed nuclei is well approximated by the following formula
[YF4(A,Z)]:

a/MeV = 0.092A + 0.036A2/3Bsurf(def) + 0.275A1/3

×Bcurv(def) − 0.00146Z2/A1/3BCoul(def), (32)

where Bsurf, Bcurv, and BCoul are the ratios of surface, curvature,
and Coulomb energy of a deformed as compared to the
corresponding spherical nucleus [38]. We did not include any
isospin dependence here because it leads only to a marginal
improvement of the quality of the fit. The level-density
parameter grows with increasing nuclear deformation, as
shown in Fig. 7, which shows the level-density parameter a

for six different nuclei in different regions of the periodic
table as obtained by our folding procedure and by the fit of
Eq. (32) [denoted by YF4(A,Z)]. The quality of the fit
is quite satisfactory (watch for the scale). It should just
be treated here as a rough estimate and starting point
to a broader investigation of a much larger amount of
nuclei.

VII. CONCLUSIONS

The following conclusions can be drawn from our analysis:

(i) The free energy evaluated using the energy spectra
obtained in a Yukawa-folded mean field exhibits a
parabolic temperature dependence.

(ii) The level-density parameter a varies substantially
with the mass and deformation (elongation) of a
nucleus and can be well approximated by a liquid-
drop type expression even in the absence of isospin-
dependent terms but with the inclusion of a curvature
term.

(iii) The self-consistent RMFT and Skyrme Hartree-Fock
approaches produce very similar predictions for the
single-particle level densities, but they are consistently
too small in comparison with the phenomenological
Thomas-Fermi estimates of Ref. [26] adjusted to the
experimental data.

(iv) The Yukawa-folded mean-field approach predicts
single-particle level densities in much closer agreement
with the Thomas-Fermi estimates of Ref. [26] than the
self-consistent models.

(v) The shell corrections obtained with the Yukawa-folded
mean field and folding in particle number space N
survive up to T ≈ 5 MeV for lighter nuclei, whereas
the phenomenological temperature smoothing predicts
its disappearance already at T ≈ 3 MeV.

The level-density parameter obtained by the described
above method can be applied to high excited nuclei only. In our
model the enhancement of the level density around the Fermi
energy due to the nonlocality of the single-particle potential is
missed. This effect is important at low excitations [39,40] and
this is the reason why at zero temperature our estimates of the
a parameter are too small.

In the next step we are going to perform dynamical
calculations like in Ref. [3] of the decay of hot compound
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nuclei to confront the theoretical predictions for light-particle
multiplicities and fission rates with the experimental data and

to test the quality of the single-particle level-density parameter
derived in the present article.
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