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Self-consistent random-phase approximation at finite temperature
within the Richardson model
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The self-consistent random-phase approximation (SCRPA) is extended to nonzero temperature. Within the
SCRPA, the collective dynamics of nucleon pairs is built on the occupation numbers that deviate from the
Fermi-Dirac distribution as a result of temperature-dependent correlations beyond the RPA. The equations for
single-particle occupation numbers are derived using the method of the double-time Green’s functions. The
approach is applied to the Richardson model of pairing. The results of numerical calculations for energies of
states and occupation numbers, as well as for the thermodynamic quantities such as the excitation energy and
heat capacity of the system, are compared with those obtained within the conventional RPA and the perturbative
thermal SCRPA and with the exact results. We find that, overall, the SCRPA offers a better agreement with the

exact results.
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I. INTRODUCTION

The random-phase approximation (RPA) is recognized
as a powerful method for treating collective dynamics of
small-amplitude motion in many-body systems. The recent
development of the RPA includes its extension and improve-
ment in two major directions. In the first direction, in order
to describe highly excited nuclei (hot nuclei), the RPA was
extended to finite temperature within the finite-temperature
RPA (FT-RPA) [1]. Here, as in the standard statistical approach
to nuclear study, the observables are replaced with averages
over the statistical ensemble at a given temperature 7,
which corresponds to the excitation energy of the system.
Traditionally, in the construction of the FT-RPA equation,
the collective dynamics is built on thermodynamic states,
whose single-particle occupation numbers are replaced with
those given by the Fermi-Dirac distribution of noninteracting
particles. The correctness of this substitution has been taken
for granted for years, although it is clear that the single-
particle occupation numbers in general should not follow the
distribution of free particles because of the residual interaction.

In the second direction, the RPA was improved by taking
into account dynamic correlations due to interactions or sym-
metries. The first step was the now well-known renormalized
RPA (RRPA) [2], which was proposed as a remedy for the
violation of the Pauli principle within the original RPA. As a
further step in this direction, Dukelsky and Schuck proposed
the method of self-consistent RPA (SCRPA) [3,4], which
they successfully applied to the multilevel-pairing model
with double degeneracy, known as the Richardson model
(also called the picket-fence model) [4,5]. Compared to the
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RRPA, the SCRPA offers a significant improvement thanks
to the inclusion of the screening corrections, which are the
expectation values of the products of two pairing operators in
the correlated ground state. It has been shown in Refs. [4,5]
that these corrections overscreen the interaction, turning it
from attraction to repulsion in agreement with the trend of the
exact solution. As a result, the SCRPA yields solutions that
are much closer to the exact ones than those given by the RPA
for the correlation energy of the system with N particles, as
well as the energy of the first excited state of the system with
N + 2 particles.

The goal of the present work is to merge these two directions
by offering an extension of the SCRPA to finite temperature.
The method proposed in this work takes into account nonper-
turbative correlations between particles, which are included
in the traditional zero-temperature SCRPA, and extends the
treatment of these correlations to finite temperature. With
these SCRPA correlations taken into account, the distribution
of single-particle occupation numbers naturally deviates from
the Fermi-Dirac distribution for noninteracting fermions.

The typical incoherent particle-particle interactions and
Pauli exchange terms are the main factors that do not permit the
full dynamic decoupling of the RPA modes. Indeed, the time
evolution of the RPA modes that follows from the commutators
between single-particle operators and the Hamiltonian involve
operators which are more complex than the single-particle
ones. As a result, one obtains an infinite hierarchy of algebraic
equations, which couple the single-particle propagator to the
higher-order ones. The formal solution of this infinite set of
equations yields a single-particle Green’s function, which is
different from that for free fermions by the presence of the mass
operator. The latter includes the effects of coupling to complex
(multiple-particle and multiple-hole) configurations, which in
principle cannot be treated exactly. Therefore, approximations
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have to be made to close the hierarchy. In Ref. [3], e.g., the
full single-particle Green’s function is expressed in terms of
a series of unperturbed single-particle propagators. The per-
turbation theory was used to cut the series up to the first order
to obtain RRPA solutions [2]. This scheme was then applied
to the Richardson model at finite temperature in Ref. [6],
and referred to thereafter as the TSCRPA. The average over
the statistical ensemble within the TSCRPA was restricted
to terms that are linear in the perturbation series (the linear
dissipative process). Moreover, in the numerical calculations,
an additional approximation for the single-particle occupation
number, called the extended quasiparticle approximation,
was made, which neglects the imaginary part of the mass
operator in the complex energy plane, assuming a negligible
single-particle damping. This allowed the replacement of
the Breit-Wigner-like kernel of the single-particle spectral
intensity with a § function, and permitted the exact expression
for the single-particle occupation number to be expanded in
power series in the frequency near the SCRPA solutions [7].

The approach of the present work is different from that
of Refs. [3,6]. We extend the SCRPA to finite temperature
using the equation of motion for the double-time Green’s
functions [8,9]. To close the hierarchy of equations, a standard
decoupling approximation introduced by Bogolyubov and
Tyablikov [8,9] is used to lower the order of double-time
Green’s functions. From this closed set of equations, one
obtains the single-particle Green’s function. The double-
time Green’s functions have three types, namely, the causal,
retarded, and advanced ones. The causal double-time Green’s
function is the same as the Matsubara Green’s function used
in Ref. [6] if the latter is taken at the pure imaginary time
(t, t") = (it, it’). It does not allow an analytic continuation
into the complex energy plane; therefore, it is not suitable for
the derivation of the single-particle damping. The advantage
of the approach in the present paper is that it uses the retarded
and advanced double-time Green’s functions, which can be
analytically continued into the complex energy plane. This
analytic continuation yields a mass operator, whose imaginary
part directly corresponds to the single-particle damping. This
method is free from any constraints of perturbation theory.

In the present paper, we shall see if the conventional
assumption, which replaces the single-particle occupation
numbers within the FT-RPA with those given by the Fermi-
Dirac distribution [1], is valid for practical applications. We
shall also estimate the effect of correlations beyond RPA
on the energies of excited states, occupation numbers, and
thermodynamic quantities such as the excitation energy and
heat capacity of the system. The Richardson model is used
as a testing ground for all the derivations and numerical
calculations. The results of calculations are compared with
those given by the conventional FT-RPA, the TSCRPA, and
the exact solution proposed in Ref. [10]. It is important to
point out that although the RRPA and SCRPA have solutions
at any values of the interaction parameter, in the region above
the RPA collapsing point the energy of the ground state of
the (N + 2)-particle system relative to that of the N-particle
system obtained within the SCRPA deviates significantly
from the exact result, and the discrepancies increase with
increasing interaction parameter [4,5,11]. In this region, a
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self-consistent quasiparticle RPA should be constructed based
on the quasiparticle representation [12]. This is beyond the
scope of the present paper. Therefore, all the numerical
calculations in this work are limited to the region of the
interaction parameter below the RPA collapsing point.

The paper is organized as follows. The outline of the
Richardson model and its exact solution are discussed in
Sec. II. The FT-RPA for this model is presented in Sec. III. The
extension of SCRPA to finite temperature (FT-SCRPA) for the
same model is carried out in Sec. IV. The results of numerical
calculations are analyzed in Sec. V. The paper is summarized
in the last section, where conclusions are drawn.

II. THE RICHARDSON MODEL

The Richardson model under consideration in the present
paper consists of 2 double-fold degenerate equidistant levels,
containing N fermions that interact via the pairing force with
a strength given by the parameter G. The Hamiltonian for this
model is [4,5,11]

Q Q
H=>)(&—MNi—GY PP, (1)
i=1 i, j=1
where the particle-number operator N; and pairing operators
Pl.T, P; are given in terms of single-particle creation and
destruction operators, cj and ¢;, as

pl=clct

Ni=cle+cle,  Pl=cd,,  P=@EH. @

These operators fulfill the following exact commutation
relations:

[P P]1=68;(1 — Ny), 3)

[Ni»P_;[]ZZ(SijP;» [N;, Pj] = —26;; P;. €]

The single-particle energies take the values €, = ke with k
running over all 2 levels. Only the ph-symmetric case is
considered here, which means that in the absence of interaction
(G =0), the lowest 2, = /2 levels are occupied with
N = Q particles (two particles on each level). Numerating
particle (p) and hole (k) levels from the levels closest to
the Fermi surface, the particle and hole energies are equal
to €, = €(2/2+ p) and €, = €(2/2 — h + 1), respectively,
with p(h) =1, ..., Q/2.

The pairing problem described by the Hamiltonian (1)
can be solved exactly in several ways using the Richardson
method [13], the infinite-dimensional algebras in Ref. [14], or
the recently proposed exact-pairing method, which amounts to
direct diagonalization in the Fock space [10]. The last option is
used in the present paper because of its simplicity. The pairing
Hamiltonian (1) does not affect unpaired particles, leaving
them stationary on given levels. These partially occupied levels
can serve as quantum numbers, called seniority. Each level
k can contain s, = 0 or 1 unpaired particle. In the case of
sy = 1, the unpaired particle can be on either one of two
time-conjugated orbitals, which doubles the degeneracy of the
resulting many-body state. Hence, in the exact solution, the
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pairing eigenstate with energy e, can be labeled with the set
of seniorities {sj, 57, ..., S} and has the degeneracy d; = 2°,
where the total seniority s = >, s; is the total number of
unpaired particles with the values s = 0,2, ..., Q.

Having obtained the exact eigenvalues of the Richardson
model, we can calculate the grand potential €2(8) and grand-
partition function Z(B) of the grand-canonical ensemble at
finite temperature 7 = B! as[15,16]

Q(p) = —B 'InZ(p),

5)
Z(B) =) _ di(N)exp{—Blex(N) — AN1},
N,k

where d;(N) is the degeneracy for a given N-particle system.
The average quantities such as the average particle number
(N) and the total energy £(T') of the system are defined from
the grand potential with the standard thermodynamic relations
as

o
=Z""(B)Y_ Ndu(N)exp{—Blex(N) — AN}, (6)
N.k
B
ey = LE2ON _ 72057 g e
op NI
x exp{—plex(N) — ANT} — A(N). (7)

In the statistical approaches to many-body systems such
as the methods of single-particle and double-time Green’s
functions, it is convenient to use the grand-canonical ensemble
because it often simplifies calculations [17], although it
allows the particle number to fluctuate. Therefore, the use
of the grand-canonical ensemble in finite nuclei requires
the chemical potential A to be adjusted at each value of
temperature T to preserve the average particle number (N). If
there is no summation over the varying particle numbers N in
Egs. (5)—(7), one recovers the averages over the canonical
ensemble, in which Eq. (6) becomes an identity.

In the comparison with the FT-RPA and FT-SCRPA
solutions in this paper, we will refer to the thermodynamic
quantities, which are obtained by giving the statistical weights
within the canonical ensemble to the exact solutions, as the
“exact” ones, having in mind the underlying thermodynamics
put in them. We prefer to average the exact solutions over the
canonical ensemble rather than in the grand-canonical one as
the former does not allow the particle-number fluctuations.
The comparison of the results obtained by averaging over the
micro-canonical, canonical, and grand-canonical ensembles is
an interesting subject, which deserves a separate study.

III. FT-RPA

The FT-RPA equation and its derivation for particle-hole
(ph) RPA can be found in many references, some of which are
quoted in Ref. [1]. The present section outlines the FT-RPA for
the particle-particle (pp) case within the Richardson model.
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For the derivation of the FT-RPA equation, it is convenient
to use the operators in the notation of Ref. [5]

0,=-P/, ®

whose exact commutation relations follow from Egs. (3) and
4) as

[Q[)v QL!] = (Spp’D[h
Ty T
(Mi, Q;1=1268;0;,

Mp:Np, MhZZ—Nh, Qj):P[L’

[Qh, Q1 = 8w Diy 9
(M;, Q;1=-25;;0;, (10)
where the operators D), and D, are defined as [11]

D,=1-M,=1-N,, Dpy=1-M,=N,—1. (11)

Using the definitions (8) and (11) , the Hamiltonian (1) acquires
a convenient form [5]

Q/2 Q/2
H=eQ/4+) (€, —M)M, = (& — 1 —G)M,
p=1 h=1
~GY 0,0,-GY 0low
pp' hh'
+GY (0,0} +0,0m. (12)

ph

The FT-RPA equation is derived similarly to the RRPA [2].
The pp case uses the pair-addition and pair-removal operators
(phonons) in the form

Q) Q
=t
Al =2 X0, -2 Y0
P h
13
o 1 o (13)
RL=2 X0, =) Y0
h 14
respectively, where the notation
_ of _ O,
= S 0= i=ph (14
(D;) (Di)

is used to denote the renormalized operators. Operator AL
transfers the states of the system with N = Q particles to those
of the system with N 4 2 particles. Operator Ri transfers the
states of the N-particle system to those of the system with
N — 2 particles.

Using Eq. (9), one can see that the ensemble average of the
commutation relations for the pair-addition and pair-removal

operators leads to the boson-type commutation relations
(A ALY =800, (R RLD =80, (19

provided the amplitudes X and Y satisfy the following
normalization (orthogonality) conditions

XXy = N = b
p h

Y oXiXi =D VY = (16)
h p
A AR
PIEAFED I AL
V4 h
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The closure relations

ZX"X“ ZWYA = Spp's

Z X;Xh — Z YA = S, (17)
ZXWA ngY,ﬁ‘ =0,
I

guarantee the following inverse transformation of Eqgs. (13)

[ZX”A' +y Y;Rk},
A

On= \/(Dh>|:ZX2RA +y Y}l‘AL].
A n

The FT-RPA equation is obtained in a standard way by
linearizing the equation of motion or by using the double-time
Green’s functions method [1]. The derivation of the FT-RPA
is based on the following three assumptions:

Q) =
(18)

(i) In a way similar to the RPA, which calculates all the
matrix elements within the Hartree-Fock (HF) ground state, the
FT-RPA, while dealing with excited nuclei, replaces the state
at some energy with the grand-canonical ensemble average of
noninteracting fermions. As a result, the particle-occupation
number (N;) is approximated as

(N)) = (cles) + (¢! e i) ~ 2nfP, (19)

where nfP is the occupation number given by the Fermi-Dirac
distribution

P =[efE 417 (20)

In the statistical average within this approximation, the full

Hamiltonian (1) is replaced with its single-particle part H —

Hp=)" i€ — A)c}c ; corresponding to the noninteracting
Fermi gas.

Within the FT-RPA the temperature-dependent A is found

from the equation
2 P =n, 1)
j=p;h
which leads to (HF|N,|HF) = 0 and (HF|N,|HF) = 2 at
T = 0. This means that the ground-state correlations beyond

RPA are ignored. Within this assumption, the correlation
factors (D;) (i = p, h) are approximated as

(Dp)~1—-2n"P (D)) ~2mP — 1. (22)

(ii)) The number v, of addition (removal) phonons in the
thermal equilibrium is set to zero, i.e.,

v =(ALA) =0, v =(R]R)=0. (23)

(iii) The screening corrections, which contain the thermal

averages (Q:-L Q;) and (Q}L Qj/), are also neglected.
Under the above assumptions, the matrix form of the
standard FT-RPA equation for the addition modes is

A B\ (x* Xt
Coe)(e)=lie). o
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where the submatrices A, B, and C have the same form as that
of the RRPA ones [2,4,5,11]

AFTRA _ (0 [H, O 1))

= 2e, — M3,y — G/ (1 —221) (1 - 22P). (25)
By = —([Q,. [H. Q;11)

= G\/(1—201P) (2n}P - 1), 6)
CETR™ = ([0, [H, 0} 1)

= 2er — A — G)ouy + G (202 — 1)(2nfP — 1),

27

At T = 0 the single-particle occupation numbers become

f)D =0 and nfP = 1, so one recovers the RPA submatrices.

IV. EXTENSION OF SCRPA TO FINITE TEMPERATURE
FOR RICHARDSON MODEL

A. Derivation of FT-SCRPA equations

1. Equations for the screening corrections

Compared to the RRPA, the advantage of the SCRPA is the
inclusion of the screening corrections containing the nonzero
expectation values of the products of two pair operators

(0),0,). (0] Q) and (Q,Qy). After the solution of the RPA
(SCRPA) equation [see, e.g., Egs. (19)—(22) in Ref. [11]] or
the FT-RPA equation (24) with submatrices (25)—(27), the
model Hamiltonian can be represented as that of harmonic
oscillators with /2 frequencies E,, = EN 2 — &N given by

the addition modes, and 2/2 frequencies E; = &, (N) SiN_z)

given by the removal modes, where 8(() ) is the energy of
the N-particle system in the RPA (SCRPA) ground state (at
T = 0) or in thermal equilibrium (at 7' # 0). Together with
Eq. (15) this means that the addition (removal) phonons are
independent bosons. Therefore, the occupation numbers for
these modes at T # 0 can be approximated by the Bose-
Einstein distribution for noninteracting bosons with energies
E,, and E;,, respectively. This gives
v = (AfA) ~ (B — D7
(28)
v, = (RIR,) ~ (fFr — 1),

Here, as in the derivation of Eq. (20) for noninteracting
fermions, the full Hamiltonian H (1) is replaced with that
describing the noninteracting Bose gas of phonons. Using
assumption (28) and Eqs. (15)—(18), we obtain the screening
corrections in the form

(010,) = (PIP,) =/(D,)(D,)
[Z XEXh v+ YYh(l+ v)\):| ., (29)
A
(0,01) = (0} 0}) =—(P/P,) =

—(P}Py) = \/(D,)(Dy)
x |:ZX},Y;(1 + VA)"‘ZXZ’Y;V/{|a (30)
A Iz
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(O Ow) = (P}, Py) — 8w (Dy) = V/(Dy) (D)

X [Z X)X, + Z YY1+ vﬂ)] . (3D
A

n

These expressions are general because they are true for both
ph asymmetric and symmetric cases. In the latter case, one
recovers from them Eq. (22) of Ref. [6]. At T = 0, the phonon
occupation numbers v, and v, vanish, so one recovers from
Egs. (29)—(31) the expressions for the screening corrections
within SCRPA [4,5,11]. The derivation of the FT-SCRPA
submatrices A, B, and C for the addition modes is carried
out in a standard way by calculating the expectation values
of the double commutators in Egs. (25)—(27) making use of
Eqgs. (29)—(31) above. By factorizing (D; D;) ~ (D;){D;), one
obtains the FT-SCRPA submatrices, which have the same form
as that of the SCRPA ones [4,5,11], i.e.,

A =26 =2+ s ;(QLQ,J - %}Q,,Qw)
X 8ppr — G/ (Dp)(Dy), (32)
B,y = G\/(D,)(Dy), (33)
Cww=-2{er—1—G+ % ;<Q; Qi)
=Y 40500 | { dww + G/ (D) (D). (34)
~

2. Equation for the occupation number

To self-consistently solve Eq. (24) with submatrices (32)—
(34), we need to derive the equation for the occupation number
n; (i =n,h)

np=3(Np),  ny=5(Np), (35)

from which one can calculate the correlation factors (D;) using
Eq. (11).

For this purpose, we will employ the method of double-time
Green’s functions, which is briefly summarized as follows.
The retarded double-time Green’s function for two Heisenberg
representations JA(¢) and B(t") of operators A and B is defined
as [9]

G'(t,1) = ((A@); B1")), = —i0(t — t')([A(1), B(t)]+),

(36)
where (¢t —t') is the step function, [A, B], = {A, B)
AB + BAif A and B are fermion operators, and [A, B]_ =
[A, B] = AB — BA if they are boson operators. The ad-
vanced double-time Green’s function G*(z, t') is obtained from
the retarded one by replacing —i6(r — ') withi6(¢t' — t), while
the causal double-time Green’s function is given as

G'(t, 1) = —i(TANB()),

with 7~ denoting the time-ordered product. The presence of the
step function in the definitions of the retarded and advanced

37
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Green’s functions allows them to be analytically continued
into the complex energy plane [9]. The equation of motion is
the same for all three types of Green’s functions and is written
in the form
dG(t—1) ,
i =8 = H(A®). B()]x)
+ ({[A@®), HOL B())).

We now apply Eq. (38) for the retarded double-time Green’s
functions to derive the equation for the occupation number 7;.

Since the latter is defined in terms of the quantity (clicii), it
corresponds to the single-particle Green’s function

Gi(t —1') = ({ci(®); e ().
Calculating the exact commutators at the right-hand side (rhs)
of Eq. (38) for G;(t —t') (39) and the Hamiltonian (1), we
obtain the exact equation of motion for G;(t — t')
dGi(t —1)
l —
dt

(38)

(39)

=8t —1t)+ (& — V)Gt — 1)
~G Y Ty —1),
J

where T';;(t — t') denotes the double-time Green’s function

(40)

Ty = ()P el @),

which is a higher-order one compared to G;(¢t — t’). We derive
for function I';; an equation of motion in the same way using
Eq. (38) and Hamiltonian (1). The exact result yields

,dr,’/(f — t/)
l—
dt

(41)

=8(t —1")n;8i; + 2€; — € — Myt — 1)

+G Y {(PL e P ey c] )
-

— (e, 11 = NjOIPp(): ()} (42)

Different from the instantaneous approximation in Refs. [3,6],
Egs. (40) and (42) are obtained here without neglecting any
part of the model Hamiltonian (1). To lower the order of the
two Green’s functions in the last term at the rhs of Eq. (42),
we apply the Bogolyubov-Tyablikov decoupling of the higher-
order Green'’s functions by pairing off operators referring to
the same times [8,9], namely,

((Pj,([)ci () P;(1); cl ()

(PLOP (D0 c] (1))
~ (PLP))Gi(t — 1), 43)

(el (11 = NyOIP(e): ] (1)) ~ (1 = (N;)Fijp(e — 1),
(44)

This decoupling is the simplest one for our present task as it is
limited to lowest-order Green’s functions and factors out the
screening corrections (P jT, P;) as well as the correlation factors
(1 — {N})). Substituting the expressions at the rhs of Egs. (43)
and (44) for the terms in the last sum at the rhs of Eq. (42), and
taking the Fourier transforms of Egs. (38) and (42), we obtain
the following closed set of equations for Green’s functions
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G;(E) and I';;(E) in the energy plane E
(E— 6+ 0GB +GGE) = 5. (49)
(E —2¢; +€ +MIG(E)+ G —2n;)Gi(E)
—GM;G;(E) = %n_,-&-j, (46)
where E, in general, is complex. In Egs. (45) and (46), the first

one of which is still exact, the following shorthand notations
are used:

G(E)y=) Ty(E), M;=>(PlP). (47
J J

Extracting G;(E) from Eq. (46) and inserting it into Eq. (45),
one obtains the expression of I';;(E) in terms of G;(E) as

1—2n; GM;
M(E)y=———"" " |[E—¢+2 /
J( ) E—2€j+€,’+)\|:< €+ +1—2n,)
1 I/ljSij
XGi(E)— — (1 ————]]|. (48)
2 1 —2n;

where (i) = (pp’) or (hh'). Using Eq. (48) to calculate G;(E)
and inserting the result into Eq. (45), we finally obtain the

explicit form of function G;(FE) as
1 1
Gi(E)= — ) (49)
27‘[ E—El' +)»+(DI(E)

where the mass operator ®;(E) has the form

M,
q),(E) = |n; +GX]:E —26j —|—El~ +)\'

o l +Z 1 —2n; B n; ’
G j¢iE—2€j+6[+)\, E—6[+)\,
(50)
i, J)=(p,p), (h,}).

The presence of the mass operator ®;(E) in the Green’s
function G;(E) in Eq. (49) shows the difference between the
single-particle propagation and that of noninteracting single
particles. Hence the functional form of the occupation number
n; is not the one given by the Fermi-Dirac distribution (20)
either.

Knowing the Green’s function G;(E) (49), we find the time-
correlation function

ﬁ@—ﬁz@%%ﬁ»=/

—0Q

o0

Ji(@)e " dw  (51)

from the relation of the spectral intensity J;(w) (w real) with
the Green’s functions:
Ji(@)=ilGi(w+ie) = Gi(w—ie)le™ + 1)~ (& - 0).

(52)
The explicit expression for the spectral intensity is derived
from Eqs. (49) and (52) in the form [8]

1 Viw)(ef + 1)

T = ot B + @)

. (53
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where y;(w) is the single-particle damping, which is obtained
as the imaginary part of the analytic continuation of the mass
operator ®;(E) into the complex-energy plane £ = w * i¢,
namely,

Di(wxie) = i(w) Fiyi(w). (54)
After some algebra, we find from Egs. (50) and (54)

Vi(@) = Sm[Dr( + ie)] = Bi(w)Ci(w) — A;(0)D;(w)

Ciz(w)—i-Diz(w) ’
(55
where
1
i(w)=n+G T T
Ai(w) = n; + ;M]Pw_zej_HHLk
Bi(w)=7GY M;s(w—2¢; +6€+ ),
J
Cil@) = = + 31 - 20 )P———
e G vy " w—2€ +¢€+ A
T (56)
—nP—,
C()—Gi+)n
Di(w) = 71|:Z(1 —2n,)8(w — 2€j + € + 1)
i
—n;6(w—¢€ + )»)i|.

The symbol P in Eqgs. (56) denotes the principal value of the
corresponding integral. The derivation of Egs. (54)—(56) has
used the identity

1 1
=P iTS(E —
—Xis - Fimd( ), 57)

where ¢ — 0. In practical calculations of the damping y;(®)
based on Egs. (55) and (56) the following presentation of the
8 function is used

1 ( 1 1 )
8(x) = — — , (58)

2wi \x —ie x+ie

with a sufficiently small ¢. The 7 = ¢ limit of the time-
correlation function (51) gives the final equation for the
single-particle occupation number n;, i.e.,

n — ! /‘°° vilw)(eP? + 1)1
Tr ) wo—€ 4+ A+ D) + Y (@)

Since the single-particle damping (55) is determined by the
screening corrections M; = ) j,(PjT, P;), the omission of the
screening corrections is equivalent to neglecting the damping,
i.e., setting y;(w) — 0. In this case, the expression under
the integral at the rhs of Eq. (59) can be approximated with
(€P” + 1)7'8(w — &); hence, n; — niP(&), i.e., one recovers
the Fermi-Dirac distribution of noninteracting fermions at
shifted energies €/ = €; + A given by Eq. (A2) of the Appendix
VI. Neglecting the mass operator ®;(E) in Eq. (49), one
recovers from Eq. (59) the Fermi-Dirac distribution of free
fermions at energies ;.

dow. (59)
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The set of Eq. (24) with submatrices (32)—(34), Egs. (28)—
(31), (50), (55), and (59) should be solved self-consistently
with the normalization condition (16) at each value of
temperature. They form the FT-SCRPA equations, whose
solutions define the X*, Y* amplitudes and the energies E,
for the addition mode as functions of temperature. In practical
calculations, the FT-SCRPA equations are solved by iteration
as follows:

(i) The starting values for n; are assumed to be ntP°

(ii)) They are used as inputs to solve the SCRPA equations
(24) with submatrices (32)—(34).

(iii) The solution of the SCRPA equation yields the correla-
tion factors (D;) following the recipe of Ref. [5], from
which one obtains 7; using Egs. (11) and (35).

(iv) Using the obtained 7i;, one calculates M; (47), ®;(w)
(50), and y;(w) (55).

(v) Using these quantities, one calculates the occupation
number n; from Eq. (59).

(vi) Using the obtained n; as inputs, one goes back to step
(ii) and repeats the iteration until the required precision
for convergence is achieved.

B. Pair-transition probability, energy-weighted sum of
strengths, and excitation energy

We derive here the expressions for the quantities which
reflect the evolution of the system at 7 # 0. At zero
temperature, the probability of the transition generated by the
pairing operator

K=2.0,-
p

between the ground state |0) of the N-particle system and

the excited state |u) of a system with N + 2 particles is

proportional to the square B(u, T = 0) of the matrix element
(ulK10), ie

B(u, T [{(0]A, K |0)]. (61)

At T # 0, replacing the expectation value (0] ... |0) in the

ground state at the rhs of Eq. (61) with the statistical ensemble

average, (...), as well as using Eqgs. (13), (16), (17), and (29)—
(31), we obtain

> 0y +he. (60)
h

=0) = [(ulK|0)]* =

2
B, T)=| Y J/(D)Xh = > /(DY) . (62)
p h
Using Eq. (3) and the decoupling within FT-RPA
(PIP) = (clelje_ver) = (clevel jeo) ~ 80 (nfP)?, (63)

we estimate the corresponding value within the FT-RPA as

nFD)?
B(w, T)rrrea = Z W_ \/1(;;—%
—2n
»
FD)2
)yl (64)

_;,/anD—l "
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The energy-weighted sum of strengths (EWSS) is proportional
to the quantity

Sy =Y E.B(u.T). (65)
%

The Landau splitting (spreading) of the distribution is
calculated as

> EiBu,T)
>.Bw.T)
(66)

o=yv<E>—<E>2 <E's=

The excitation energy of the system is defined as
=&(T) - £(0) (67)

where £(T) is the total energy of the system at temperature
T, which is obtained by averaging the Hamiltonian (12) in the
form

E(T) = Z(e,, — (1= (D))

Qp

— Y (e —r=G)1— (D)~ G
h

Y (050,

pp’

+ > (0} ow)

QZ
—2) el |- ©®
hh' ph

The value £(0) of this energy at T = 0 is nothing but the energy
in the ground state of the N-particle system (i.e., E(()N) atT =
0), obtained in Ref. [5].

For comparison, the excitation energy within the FT-RPA is
calculated by taking the ensemble average of Hamiltonian (1)

under assumption (i), and by using the inverse transformation
(18). The result yields

Efrpa = E(T)rtrea — E(0)FTRPAS (69)
where
E(T)rrrea = 2 Z (6j —M)n"P — GZ (2n,° — 1)
j=p:h
-G Z\/ ZnFD FD ZY,\Y,\
+ Z\/ FD_ 1) (2nfP — Zyﬂy,g

23 (1 —2010) (20> — 1) Y X}¥2
ph 1

(70)

The correlation energy is calculated as the difference between
the total energy £(7') and the HF energy yg, namely,

Ecor = g(T) - SHFa (71)
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T=0 —
i —
2 ----
— 3 ----------
S N
[
¥
15 2 25
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FIG. 1. Energy of the ground state (thermal equilibrium) of the
system with 2 = 10 levels and N = 12 particles relative to that of the
system with Q = N = 10 obtained within the RPA as a function of
interaction parameter G at several temperatures 7' (in MeV) shown
by the numbers in the figure.

where
Eur =2 Z(e j—MnfP -G Z n"PnfP. (72)
J i<y
Finally, the specific heat is calculated in a standard way [1] as
AE(T
C= L (73)
oT

V. RESULTS OF NUMERICAL CALCULATIONS

A. Ingredients of numerical calculations

The FT-RPA and FT-SCRPA equations were solved numer-
ically at T # O for additional modes within the Richardson
model with the level distance € = 1 MeV at several values of N.
In Sec. V B we choose to discuss in detail the results obtained
with N = 10. For the comparison with the perturbative
approach in Sec. V C the results of calculations obtained for
N =6 and 8 are also analyzed. Since all calculations are
carried out at finite 7, in the rest of the paper we will omit the
prefix FT by addressing the FT-RPA and FT-SCRPA simply as
RPA and SCRPA, respectively.

The value of G, at which the RPA collapses, does not
stay constant but increases with 7 from around 0.34 MeV at
T =0 [4,5,11] to around 2.25 MeV at T = 4 MeV as shown
in Fig. 1. As we aim to follow the evolution of the RPA and
SCRPA solutions as functions of T starting from 7 = 0, we

PHYSICAL REVIEW C 74, 034326 (2006)

prefer to choose the values of G within a range where the
RPA solutions exist at any 7', namely, up to GREA| which is
the value of G obtained within the RPA at T = 0. In this
region, the BCS has no solution. ' The calculations are carried
out using a smoothing parameter ¢ = 0.5 MeV. We did not
find significant differences for all quantities considered in this
paper when carrying out the calculations using different values
of ¢ between 0.1 <e< 1 MeV.

As the RPA and SCRPA preserve the seniority, in comparing
the energies of the addition modes with the exact results we
use for the latter the energies of the excited states at a given
seniority in the system with N + 2 particles relative to the
thermal equilibrium (or the ground state if T = 0) of the system
with N particles at the same seniority. These exact energies
are found from Eq. (7) as

E; = V() — £ = (E(N +2)); — (E(N))i — 2,
(74)

wherei =1,2,...correspond to the states with total seniorities
s=0, 2,4, ..., and the temperature-dependent chemical
potential is defined as A = %[(E(N + 2)) — (E(N))].

B. Analysis of numerical results

It is worth mentioning that the limitation of the configu-
ration space leads to the Schottky anomaly [18], according
to which the heat capacity increases with 7 only up to a
certain temperature, then decreases as 7T increases further.
With Q = N = 10, the heat capacities obtained within the
RPA and SCRPA reach the maximum at 7, ~ 1.2-1.3 MeV.
The bump at 7 < 0.25 MeV is caused by the limitation of the
energy space within the RPA and SCRPA, while no bump is
seen in the exact heat capacity. This effect has been discussed in
the context of the ground-state rotational band in Refs. [18,19],
where the eigenvalues depend on the angular momentum J
and the band number n rather than on A; and s; as in the
present model. Figure 2 shows thatat 7' < T, the heat capacities

!The value of GRPA coincides with that of GBS if the self-energy

crit crit
term —Gv? is included in the single-particle energy €, = ¢, — Gv? in
solving the BCS equation. Otherwise GBS < GRPA (see Ref. [12]).

crit crit

In the present model with N = 10, if the self-energy term is neglected,
we obtain GBS ~ 0.28 MeV at T = 0.

crit  —

N W OO N

—_

o 05 1 5 0 05
T (MeV)

T (MeV)

1 15 0 0.5 1 1.5 2
T (MeV)

FIG. 2. Heat capacity of the 2 = N = 10 system as a function of temperature 7. Thin solid, thick solid, and dotted lines show the RPA,
SCRPA, and exact results, respectively. Panels (a)—(c) correspond to the results obtained at G = 0.1, 0.2, and 0.25 MeV, respectively.

034326-8



SELF-CONSISTENT RANDOM-PHASE APPROXIMATION . .. PHYSICAL REVIEW C 74, 034326 (2006)

10 ©

FIG. 3. Energies of the excited
states E, of the system with Q =
10 and N = 12 relative to the
thermal equilibrium of the system
with Q = N = 10 as functions of
temperature 7. Notations are as
in Fig. 2.

E, (MeV)

o FIG. 4. Correlation  energies
N S — g e ’ E . as functions of temperature.
Y I I S - Notations are as in Fig. 2.
-1
-2
0 1 2 3 0 1 2 3 0 1 2 3 4
T (MeV) T (MeV) T (MeV)
2 3
T=0— =0— =0 —
(a) 02— (b) 8T 55l © Toe—
04— 04— — 04 ——
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1 |
05 : 25 |
; \ i
— o I |
|_.\ 0 0 i ‘ 11 lt | I |
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1
1
|
05 : o 1 A
| ‘ | B ‘ ;. !
Lo f o fd ! | Lo ! | |
HIN BT 1 ] HI \

E (MeV) E (MeV) E (MeV)
FIG. 5. Squared matrix elements B(u, T') corresponding to the pair-transition probabilities within RPA (a)—(c) and SCRPA (d)—(f) at T =

0.2, 0.4, 0.6, and 0.8 MeV as indicated by the numbers next to line notations in the figure. Panel pairs (a) and (d), (b) and (e), and (c) and (f)
correspond to the results obtained at G = 0.1, 0.2, and 0.25 MeV, respectively.
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% (a) (b) (©
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S, (arbitrary unit)
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0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 2
T (MeV) T (MeV) T (MeV)

FIG. 6. EWSS S, (65) (a)—(c) and Landau splitting o (66) (d)—(f) as functions of temperature. Notations for the lines are as in Fig. 2; for
the panels as in Fig. 5.
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FIG. 7. Total energies £(T') as functions of temperature. Notations are as in Fig. 2.
18
16/ (a) (c)
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= 10
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FIG. 8. Excitation energies as functions of temperature. Notations are as in Fig. 2.
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10

E, (MeV)

FIG. 9. Same energies E, as in Fig. 3 but obtained at G =
0.33 MeV. Dashed lines show the TSCRPAI results of Ref. [6].

obtained within the SCRPA are slightly closer to the exact one
as compared to the results obtained within the RPA.

Shown in Fig. 3 are energies E, of the excited states
obtained within the RPA (thin lines), SCRPA (thick lines),
and the exact energies (dotted lines) as functions of 7. While
the RPA energies are nearly temperature independent, the two
lowest SCRPA energies (1 = 1 and 2) expose a clear increase
with temperature. Except for the lowest level, the SCRPA
energies, in general, agree better with the exact ones. The
SCRPA results are also larger than the RPA ones at all T, but
the difference decreases at higher levels. This feature means
that one can neglect the slight difference between the RPA
and SCRPA in the description of collective high-lying states
such as giant resonances. Meanwhile, the difference between
the two approximations in the description of low-lying states,
in particular, the lowest one, is quite significant and cannot
be neglected, especially at high temperatures. A consequence
of this effect is clearly seen in the correlation energies E.qr,
which are shown in Fig. 4. At T = 0, all the RPA, SCRPA,
and exact correlation energies are close to each other. With
increasing T, the difference starts to appear: the ascent of the
RPA and SCRPA energies with T becomes steeper at larger G.
The SCRPA values always remain smaller than the RPA ones,
and therefore they are closer to the exact correlation energy.
The latter has an opposite curvature, which shows a decrease
atlow T and an increase at around 7 > 1.5 MeV.

The quantities B(u, T') obtained within the SCRPA (62)
and RPA (64) at several temperatures are shown in Fig. 5.
They decrease with increasing 7. This decrease is stronger
for the lower-lying states. Although the values of B(u, T)
obtained within the SCRPA are smaller than the corresponding
ones given by the RPA, the larger values of the SCRPA
energies E,, lead to larger values for EWSS within SCRPA
as compared to those given by the RPA, as shown in Figs.
6(a)-6(c). Both the values of EWSS obtained within RPA
and SRPA decrease monotonously with increasing 7. The
Landau splitting o shown in Figs. 6(d)-6(f) also decreases
with increasing 7. Up to T ~ 1.6 MeV the decrease obtained

PHYSICAL REVIEW C 74, 034326 (2006)

0.9
0.8
0.7

0.6 (c) N=10

0125 025 05 1 2 4 8
T (MeV)

FIG. 10. Occupation numbers of the lowest and highest hole
levels as functions of T obtained for several particle numbers N
at G ~ GRPA_ corresponding to each value of N. Notations are as in
Fig. 9. The numbers at the right margin give the highest (4 = 1) and
lowest (h =3,4,and 5 for N = 6, 8, and 10, respectively) hole levels

for which the occupation numbers are calculated.

within RPA is slightly steeper than that given by the SCRPA.
The decrease of Landau splitting was seen previously in the
decrease of the quantal width as the temperature increased
within the phonon-damping model, which describes rather
well the temperature dependence of the giant dipole resonance
[20].

The total energy £(T') and excitation energy E* are dis-
played in Figs. 7 and 8, respectively, as functions of 7. For both
quantities, the SCRPA results agree better with the exact ones
than do those obtained within the RPA, although the difference
between them is rather small. Such a tiny difference indicates
that in realistic calculations of thermodynamic quantities the
conventional RPA might work reasonably well.
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FIG. 11. Breit-Wigner-like kernel J;(w)(ef® + 1) of the spectral
intensity (53) corresponding to the highest hole level for N = 10 and
G =0.33 MeV at several T = 0, 1, 2, 3, and 4 MeV, shown as the
numbers at the peaks of the distributions. The single-particle damping
y; 1s defined as the full width at the half maximum of the distribution.

C. Numerical comparison with the perturbative approach

In the Appendix, we analyze the formal connection between
the approach developed in the present work and the TSCRPA
of Ref. [6], which is based on the perturbation theory. In the
present section, we compare numerically the two approaches
using the results of calculations obtained at G ~ GRFA, which
are around 0.39, 0.35, and 0.33 MeV for N = 6, &, and 10,
respectively.

First of all, we found that the present approach and the
TSCRPA give quite close energies E,, of the addition modes.
An example for N = 10 shown in Fig. 9 compares E, of
the (2 =10, N = 12) system, which were obtained at G =
0.33 MeV within our approach, the TSCRPA1, and the RPA
with the exact results. At low T, the TSCRPA gives a slightly
lower E; and higher E, . as compared to the values obtained
within our approach. However, the gap between the exact
energy E; and the values offered by both of the SCRPA
approaches still remains irrecoverably large and increases with
T. The occupation numbers n;, for the highest hole level, i.e.,
the one located just below the chemical potential, where the
correlation effect is strongest, and for the lowest hole level,
where this effect is weakest, are shown in Fig. 10 as functions
of T. To magnify the difference at low 7, the temperature
axis is plotted here in the logarithmic scale. For the lowest
level, the exact occupation number is close to 0.9 at T =
0 and remains almost constant up to 7 >~ 0.3 MeV, then it
decreases smoothly with increasing 7. The results obtained
within our approach agree very well with the exact ones at
T = 0, where the TSCRPA overestimates them. The reason is
that the single-particle damping, neglected in the TSCRPA, is
rather strong as low T, as shown in Fig. 11. As T increases, the
damping gets smaller, and the occupation numbers obtained
within the two approaches converge to the value given by the
Fermi-Dirac distribution, which is almost the same as the exact
one. There still remains a significant discrepancy in the region
0.2 < T <1 MeV between the exact results and those offered
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E (MeV)
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FIG. 12. Excitation energies E* in panels (a)-(c) and heat
capacities C in panels (d)—~(f) obtained at G = GX'A for N = 6,
8, and 10. Notations are as in Fig. 9.

by both of the SCRPA approaches. For the lowest level, both
approaches give results close to the Fermi-Dirac distribution.
A noticeable deviation from the exact result here is seen at low
N and high T'.

Finally, in Fig. 12 we compare the excitation energies E*
and the heat capacities C obtained within our approach (thick
solid lines) and the TSCRPA1 (dashed lines) with the RPA
(thin solid lines) and exact results (dotted lines). The results of
TSCRPA1 were obtained using Egs. (20), (22), and (26) with
n, givenby Eq. (A.21) of Ref. [6]. Itis seen from this figure that
our approach and the RPA reproduce the overall temperature
dependence of E* and C given by the exact solutions at all
T and N. Moreover, the heat capacities C obtained within
our approach and the RPA converge to the exact values at
high T. Meanwhile, although the TSCRPA1 reproduces rather
well the exact results for E* and C at T < 2 MeV, it fails
badly to describe the exact results at 7 > 2 MeV, and the
difference increases with 7', although it slightly decreases with
increasing N. These results demonstrate the inefficiency of the
perturbative assumptions at high 7.

VI. CONCLUSIONS

The present paper extends the SCRPA to finite temperature,
where the single-particle occupation numbers are calculated
self-consistently. By using the double-time Green’s functions
method, the present approach is free from the constraints of
the perturbation theory. The analytic properties of the double-

034326-12



SELF-CONSISTENT RANDOM-PHASE APPROXIMATION . ..

time Green’s functions allow the calculations of the single-
particle damping to be carried out in a straightforward manner.
The calculations performed within the Richardson model show
that, except for the lowest-energy level, the results obtained
within the SCRPA are rather similar to those given by the
RPA, where the occupation numbers are approximated by
the Fermi-Dirac distribution for noninteracting fermions. As
compared to the RPA, the SCRPA offers a slightly better
agreement with the exact solutions for the thermodynamic
quantities such as the total energy, excitation energy, and heat
capacity. The difference from 1 (0) for the hole (particle)
occupation numbers obtained at 7 ~ 0 within the SCRPA
due to the ground-state correlations beyond RPA does not
affect significantly the integrated quantities obtained within
the RPA such as the EWSS and Landau splitting. This indicates
that in realistic calculations for high-lying states such as giant
resonances, the conventional RPA at finite temperature might
be sufficient and more convenient than the computationally
expensive SCRPA. For the first excited states, however, care
should be taken, particularly for light systems at the large
interaction strength, to ensure that the correlation effects are
properly included.

Last but not least, it is worth noting that the exact
solutions of a system with pure pairing do not represent a full
thermalization. The seniority conservation prevents a number
of particles to interact with each other. As a result, for the
exact solutions, the temperatures defined in different ways
do not agree [21]. Moreover, occupation numbers generally
do not show a Fermi-Dirac distribution. However, in realistic
nuclei, seniority is broken and residual interactions, no matter
how weak they are, immediately thermalize the systems, as has
been the case in the full shell model [22]. This is the reason why
the statistical approach to highly excited nuclei has become so
good. This also explains why one should not expect a perfect
agreement between the exact solutions and those given by
the RPA or SCRPA approaches. Furthermore, since the exact
solutions to the pairing problem describe an unphysical and
poorly thermalized situation at 7 # 0, which clearly lacks the
effect of particle-particle collisions in a nonpairing channel, the
FT-SCRPA is the preferred lowest-order approach for applica-
tions in realistic systems at finite temperature. This approach
still uses the pairing Hamiltonian to drive the dynamics, but
imposes the thermalization conditions on unpaired particles
to mimic the small and generally random contributions of
nonpairing residual interactions. More elaborated approaches
should include higher-order effects, which are beyond the
SCRPA, such as couplings to configurations more complicated
than ph, pp, and hh ones.
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APPENDIX A: PERTURBATIVE APPROACH AS LIMITING
CASE FOR SMALL SINGLE-PARTICLE DAMPING

The perturbative approach (TSCRPA) of Ref. [6] is based
on two assumptions: (1) the omission of the single-particle
damping (the imaginary part of the mass operator) and (2)
the additional consistency condition. These assumptions are
analyzed below in connection with the approach of the present
work.

1. Limit of very small single-particle damping

We have seen that our approach allows us to derive the
explicit form (49) for the single-particle Green’s function
without assuming any perturbation expansion. As a matter of
fact, the Green’s function in (49) can be expanded in a power
(Maclaurin) series of ®(E) as

Gi(E) = GYE) — GNE):(E)GYE)

+GUEYP(E)GNE)D{(E)G)(E) — ..., (AD)
with the unperturbed single-particle Green’s function G ?(E )=
[27(E —¢; +M)]~!. The diagrammatic representation of
Eq. (A1) is depicted in Fig. 13. Depending on the assumption
of the smallness of |®;(E)|, one may cut this series at the
term ~O(|P;(E)|") with a definite n. If |®;(E)| is so small
that only the first order (n = 1) can be kept, Eq. (Al) is
formally reduced to the truncation scheme (27) of Ref. [6].
The approximation scheme considered here is, therefore, more
general than that used in Ref. [6]. Consequently, Eq. (59)
is formally exact up to the mass operator ®;(w) and the
damping y;(w). No assumption on the smallness of y;(w) nor
perturbation expansion in power series of w was made in
Eq. (59). The explicit expression (55) for single-particle
damping is the major advantage of the present approach,
because the double-time Green’s functions method allows
the mass operator (50) to be analytically continued into the
complex-energy plane. The imaginary part of such contin-
uation yields the damping (55). This is not possible within
the method based on the perturbation theory [6], since the
causal Green’s functions used in the latter do not allow such
continuation.

In the limiting case of very small damping y;(w) (55), the
spectral intensity J; (@) (53) has a steep maximum at a certain
value w =¢;, which is defined as the pole of the Green’s
function (49), i.e., the solution of the equation

€6 =€ —L— D). (A2)

FIG. 13. Summation of diagrams in Eq. (Al). A right-arrow
double line denotes a (forward-going) particle (hole) pair with energy
2¢;, while a left-arrow single line stands for a (backward-going)
particle (hole) with energy €;. A thin horizontal line represents the
unperturbed Green’s function G?(E ). A bubble denotes the mass
operator ®;(E), and a gray rectangle represents M ; (47). The thick
solid line stands for the full Green’s function G;(E).
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In this case, following Ref. [9], we can expand the mass
operator ®;(w) (50) in power series of w near this value. As a
result, we obtain

{1+ (822 ] 7@l + 17!
Ji(w>:—[ d ~] — ., (A3)
T (w0 =€)+ Yy (&)
where
-1
~ ~ d;
vil€) =vyi(€) |1+ o , (A4)
w 0=%
under the assumption that
do;
—_— <1, (AS)
dCl) =%

i.e., Y(€;) plays the role of the damping of the elementary
excitation with a renormalized energy €; given by Eq. (A2). For
very small values of ¥;, replacing the Breit-Wigner-like kernels
Vi(€)/{(w —€)* 4+ ¥(&)} in J;(w) with the § functions using
Eq. (58), we get from (59)

. N/""’ S(w—7¢) do
)14 (42), .1 P+ 1)

do

© 8w =1 - (%), ]
x~ / ——dw
oo efo + 1
= ()b — &)
=n,~—/_oO oo 11 dow, (A6)

where 71; = (e + 1)"! are the occupation numbers of the
free (but renormalized) single-particle states, whose Green’s
functions are given as

1 1
2n E — €
instead of (49). The expansion at the rhs of Eq. (A6) is formally
the same as that given by Eq. (32) or (A.21) of Ref. [6]. The
difference is in the explicit expression mass operator ®;(w),
which leads to the difference in the last term at the rhs of
Eq. (A6).” One can see that because of the finite imaginary
part (finite damping), the singularities of the single-particle
Green’s function (49) on the real-energy axis are not the poles.
Only the approximate Green’s function, where the damping
is neglected, has poles on the real axis, which determine the
energy €; (A2) of (undamped) elementary excitations.

Gi(E) = (A7)

2As ®;(w) belongs to the Fourier transform of the retarded
single-particle Green’s function, it cannot be compared directly
with Eq. (28) of Ref. [6], which comes from the Fourier transform
of the lowest order in the perturbation expansion of the causal
Green’s function. For noninteracting single particles, e.g., the Fourier
transform of the causal Green’s function is given as G3(E) = [(1 —
n?D)G;.(E) + n?DGj(E)], where G'(E) = Qr)y NE —¢€; +ie),
and Gf;(E) = Q2n) YE - €; —ie)™' are temperature-independent
Fourier transforms of retarded and advanced Green’s functions,
respectively.
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2. Additional consistency condition

Strictly speaking, a fully consistent use of Eq. (23.15) of
Ref. [23], which relates the expectation value of the model
Hamiltonian to the single-particle causal Green’s functions,
only takes place if one neglects the last term at the rhs of (A6)
under the assumption (A5). In this case, n; >~ 7; and the model
Hamiltonian can be approximated as

H:ZE,-Ni.
i

Using the definitions (36) and (37), we relate the retarded
single-particle Green’s function (39) to the causal one in
Ref. [23] as

Git—t)=Git—1t)—il0@t — 1)+ 0 —)]Fit —1).
(A9)

(A8)

As the time-correlation function F;(r —t') satisfies the
equation idF;/dt = (c'(t')[a;(t), H(t)]) and since dO(t' —
t)/dt = —dO(t — t')/dt, it follows that, with Hamiltonian
(A8), the Green’s function in (39) also satisfies Eq. (23.15)
of Ref. [23], which is referred to as Eq. (25) in Ref. [6].

Because the perturbative approach of Ref. [6] used
Eq. (A6) including the integral term, it goes beyond the
consistency mentioned above. Therefore, an additional con-
sistency condition was introduced. This condition requires
that the total energies obtained from Eq. (25) of Ref. [6]
and those obtained by calculating the expectation value of
the Hamiltonian including the original two-body Green’s
functions in Eq. (26) of Ref. [6] are the same. However, as
has already been pointed out in Ref. [6], this is possible only
if, apart from the assumption of very small damping discussed
above, the expansion (Al) of the Green’s function (49) is
truncated to the first order in the renormalized single-particle
mass operator, i.e., one has to use

Gi(E) = GUE)[1 4+ ®;(E)GYE)]™

~ GUE)[1 — ®:(&)GYE)] (A10)

instead of the full single-particle Green’s function (49).
Generally speaking, this recipe is legitimate and, in principle,
desirable because it follows the standard perturbative treatment
of the mass operator as has been used in the particle-vibration
coupling [24] or hole-pair vibration coupling considered
here. However, in the present case within the SCRPA, a
complete application of this recipe is not as simple as using
the exact expression (68) to calculate £(T'). The reason is
that in following this recipe, the single-particle energies €;
(A2) need to be renormalized again so that the resulting
renormalized Green’s function can describe the propagation
of noninteracting newly renormalized single particles with
energies €, # €;, taking into account also the integral term at
the rhs of Eq. (A6). Only in this case one can properly represent
the final Hamiltonian in the form (A8) (with € replacing
€;) in order to fully satisfy the consistency condition of
Eq. (23.15) of Ref. [23]. Obviously, the renormalized energies
€; and €/ are already much more complicated than the single-
particle energy €; given by Egs. (30) or (A.19) of Ref. [6],
let alone the newly renormalized energies €. This means that
such a renormalization effect is missing in Ref. [6]. The crucial
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consequence of this is seen in the final expression (26) in
Ref. [6] for the total energy £(T'), which can be rewritten after
expressing F), in terms of X/, using Eq. (20a) therein as

QZ
ETSCRPA (T -+ 23 (e, — M1 = (D))
p

=2 (ICyl = E)XE[vu Xk + (1 4+ v)Yh].
P

(A11)

This result is different from the exact expression (68) for
E(T). Indeed, the leading orders of the last term at the rhs of
Eq. (All) are O[(X})*] and O[X,Y)], while the exact
expression (68), apart from these terms, also contains the terms
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of order O[(Y,’,‘ )21, which are not small when G is close to
GRPA " As the approach of the present work solves the full
single-particle Dyson equation starting from the equation of
motion (38) for the double-time Green’s functions without
any perturbative treatment of the mass operator, it is free
from such additional consistency condition. Moreover, when
the temperature is sufficiently high, higher orders in the
perturbative expansion become important, which invalidate
the applicability of the first-order theory including the above-
mentioned additional consistency condition. Therefore, as it
is often done within the SCRPA to calculate the ground-state
energy, we prefer to use the exact expression (68) to calculate
the energy £(T') because not only is it simple but also it yields
better results within a larger temperature region.
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