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Relativistic self-energy in nuclear dynamics
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It is a well-known fact that Dirac phenomenology of nuclear forces predicts the existence of large scalar
and vector mean fields in matter. To analyze the relativistic self-energy in a model independent way, modern
high-precision nucleon-nucleon (NN ) potentials are mapped on a relativistic operator basis using projection
techniques. Comparison of the various potentials at the level of covariant amplitudes produced remarkable
agreement. It allows further calculation of the relativistic self-energy in nuclear matter in the Hartree-Fock
approximation. Independent of the choice of the nucleon-nucleon interaction large scalar and vector mean fields
of several hundred MeV magnitude are generated at tree level. In the framework of chiral effective field theory,
these fields are dominantly generated by contact terms that occur at next-to-leading order in the chiral expansion.
Consistent with Dirac phenomenology the corresponding low-energy constants that generate the large fields are
closely connected to the spin-orbit interaction in NN scattering. The connection to quantum chromodynamics
sum rules is discussed as well.
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I. INTRODUCTION

A fundamental question in nuclear physics is the role
relativity plays in nuclear systems. The ratio of the Fermi
momentum over the nucleon mass is about kF /M � 0.25
and nucleons move maximally about 1/4 the velocity of
light. This implies only moderate corrections from relativistic
kinematics in finite nuclei. Nonrelativistic approaches such
as, e.g., Skyrme-Hartree-Fock and relativistic approaches,
describe finite nuclei equally well.

However, there exists a fundamental difference between
relativistic and nonrelativistic dynamics: a genuine feature
of relativistic nuclear dynamics is the appearance of large
scalar and vector mean fields, each of a magnitude of several
hundred MeV. The scalar field �s is attractive and the vector
field �µ is repulsive. In relativistic mean-field (RMF) theory,
both the sign and the size of the large scalar and vector fields
are enforced by the nuclear saturation mechanism [1]. At
nuclear saturation density ρ0 � 0.16 fm−3 the empirical fields
deduced from RMF fits to finite nuclei are of the order of �s �
−350 MeV and �0 � +300 MeV [2] (in mean-field theory
only the timelike component of �µ contributes in static
systems with time-reversal symmetry).

A problem is, however, that these scalar/vector fields are
no direct observables as, e.g., the nuclear binding energy or
the nucleon potential. The single-particle potential in which
the nucleons move originates from the cancelation of the
two contributions Ucent � �0 + �s and is of the order of
−50 MeV. Therefore one has no direct experimental access
to the interpolating scalar/vector fields. There exist, however,
several features in nuclear structure that can be explained nat-
urally within Dirac phenomenology, whereas models based on
nonrelativistic dynamics have difficulties or, at least, one has to
introduce additional model parameters. The most well-known
feature is the large spin-orbit splitting in finite nuclei. In
a relativistic framework the strong spin-orbit force appears
naturally from the coupling to the lower components of the
Dirac equation where the scalar-vector mean fields add up in

the spin-orbit potential US.O. ∝ (�0 − �s) � 750 MeV. Due
to this fact RMF theory is able to reproduce the strong spin-
orbit splitting in spherical nuclei quantitatively without the
introduction of additional parameters [2]. A second symmetry,
observed more than 30 years ago in single-particle levels of
spherical nuclei is the so-called pseudospin symmetry [3].
Although all attempts to understand this symmetry within
nonrelativistic approaches failed, it can naturally be under-
stood within RMF theory as has been shown by Ginocchio
[4] a few years ago. This symmetry, again a consequence
of the coupling to the lower components, is exact in the
limit �0 = −�s and is broken in nature by the amount
(�0 + �s)/(�0 − �s) that is less than 10%. A third example
are the moments of inertia in rotating nuclei. Relativistic
dynamics implies that in the rotating system a Coriolis term
occurs due to the spatial vector currents, however, with all
couplings already fixed through the timelike components [5].

An alternative approach for nuclear matter are ab initio
many-body calculations. Based on high precision nucleon-
nucleon (NN) interactions one treats short-range and many-
body correlations explicitly. A typical example for a suc-
cessful many-body approach is Brueckner theory [10]. In
the relativistic Brueckner approach the nucleon inside the
medium is dressed by the self-energy �. The in-medium
T matrix is obtained from the relativistic Bethe-Salpeter (BS)
equation and plays the role of an effective two-body interaction
that contains all short-range and many-body correlations of
the ladder approximation. Solving the BS equation the Pauli
principle is respected and intermediate scattering states are
projected out of the Fermi sea. The summation of the T-matrix
over the occupied states inside the Fermi sea yields finally
the self-energy in Hartree-Fock approximation [11–15,47]. In
contrast to relativistic Dirac-Brueckner-Hartree-Fock (DBHF)
calculations that came up in the late 1980s nonrelativistic
BHF theory has already half a century’s history [10]. Despite
strong efforts invested in the development of improved
solution techniques for the Bethe-Goldstone (BG) equation,
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the nonrelativistic counterpart of the BS equation, it turned
out that, although such calculations were able to describe
the nuclear saturation mechanism qualitatively, they failed
quantitatively. Systematic studies for a large number of
nucleon-nucleon interactions showed that saturation points
were always allocated on a so-called Coester-line in the
E/A − ρ plane that does not meet the empirical region of
saturation. In particular modern one-boson-exchange (OBE)
potentials lead to strong overbinding and to too large saturation
densities where relativistic calculations work much better
[13,16].

However, in relativistic approaches the nuclear interaction
is always described in some sort of a meson exchange picture.
The mesons represent effective bosonic degrees of freedom
that are either directly adjusted to the properties of nuclear
matter and finite nuclei, as in the case of RMF theory, or to
vacuum NN scattering. Hence, it is a fundamental question
to decide whether the large scalar and vector fields enforced
by Dirac phenomenology of nuclear systems are an artifact of
the meson exchange picture or whether they reflect a deeper
characteristics of nature.

A connection to quantum chromodynamics (QCD) as the
fundamental theory of strong interactions is established by
QCD sum rules [6,7]. The change of the chiral condensates
〈q̄q〉, 〈q†q〉 in matter leads to attractive scalar and repulsive
vector self-energies that are astonishingly close to the empiri-
cal values derived from RMF fits to the nuclear chart.

It is remarkable that relativistic many-body calculations
again yield scalar and vector fields that are of the same sign
and magnitude as obtained from RMF theory or, alternatively,
from QCD sum rules. Such a coincidence could not have been
expected a priori. Moreover, DBHF calculations [14] agree
even on a quantitative level surprisingly well with the QCD-
based approach of Ref. [9], where chiral fluctuations from
the long and intermediate range pion-nucleon dynamics were
considered on top of the chiral condensates.

These facts suggest that preconditions for the existence of
large fields in matter or, alternatively, the density dependence
of the QCD condensates, must already be inherent in the
vacuum NN interaction. The connection of the nucleon-
nucleon force to QCD is given by the fact that the interaction
is described by the exchange of the low-lying mesonic degrees
of freedom. The long-range part of the interaction is mediated
by one-pion exchange (OPE), whereas the scalar isoscalar
intermediate range attraction is mainly due to correlated
two-pion-exchange. The short-range part, i.e., the hard core, is
dominated by light vector meson exchange, i.e., the vector
isoscalar ω meson and the vector isovector ρ. Modern
one-boson-exchange potentials (OBEP) as, e.g., the Bonn
potentials [17] are based on the exchange of these mesons
and provide high-precision fits to nucleon-nucleon scattering
data. Meson-nucleon coupling constants and form factors are
empirically fixed from the data. Thus OBEPs are the result of
relativistic phenomenology at the level of the elementary NN
interaction. However, there also high-precision nonrelativistic
empirical potentials such as the Argonne potential [18] or the
Nijmegen potentials [20].

A more systematic and direct connection to QCD is
provided by chiral effective field theory (EFT). Up to now

the two-nucleon system has been considered at next-to-next-
to-next-to-leading order (N3LO) in chiral perturbation theory
[22–24]. In such approaches the NN potential consists of
one-, two-, and three-pion exchanges and contact interactions
that account for the short-range contributions. The advantage
of such approaches is the systematic expansion of the NN
interaction in terms of chiral power counting. The expansion
is performed in powers of (Q/�χ )ν , where Q is the generic low
momentum scale given by the nucleon three-momentum or the
four-momenta of virtual pions or a pion mass. �χ � 4πfπ �
1 GeV is the chiral symmetry breaking scale that coincides
roughly with the Borel mass �B of the sum rules. In such an
expansion the low-energy constants (LECs) related to pion-
nucleon vertices can be fixed from pion-nucleon scattering
data [24].

A better understanding of the common features and the
differences of the various approaches is essential to arrive at a
more model independent understanding of the NN interaction,
in particular since all the well established interactions fit
NN-scattering data with approximately the same precision.
A direct comparison of relativistic phenomenology based on
the meson exchange picture with chiral EFT and nonrelativistic
phenomenology is, however, difficult because the latter two ap-
proaches lack of a clear Lorentz structure. At low-momentum
scales the different potentials can be mapped on each other
using renormalization group methods [25]. This led recently
to the construction of a “model independent” low-momentum
potential Vlow k by integrating out the dynamics for momenta
above a cutoff scale of about � � 2 fm−1 [25]. It has been
argued that beyond this scale the short-range part of the
interaction, mediated by vector meson exchange or pointlike
counter terms, becomes dominant and leads to the deviations
of the various approaches.

Although a breakthrough in some sense, the renormaliza-
tion group approach does not help to clarify the relativistic
structure of the potentials which is essential, e.g., to generate
(or not to generate) large scalar/vector mean fields in nuclear
matter.

The present work tries to answer this question. We apply
projection techniques to map the various potentials on Dirac
phenomenology. The philosophy behind this approach is based
on the fact that any NN interaction, independent whether
relativistic or nonrelativistic, contains a certain spin-isospin
operator structure. By projection techniques this operator basis
is mapped on the operator basis of Dirac phenomenology that is
given by the Clifford algebra in Dirac space. This allows identi-
fication of the different Lorentz components of the interaction.
Starting from the angular-momentum representation of a given
NN potential, one transforms to plane-wave helicity states and
finally to Lorentz invariant amplitudes in Dirac space [26,27].
Such a transformation is well defined in the positive energy
sector for on-shell amplitudes and allows comparison of the
NN potentials on the basis of Lorentz invariant amplitudes. A
remarkable agreement among relativistic and nonrelativistic
OBE potentials, nonrelativistic phenomenological potentials,
and EFT potentials, respectively, was found in Ref. [46]. This
agreement is also reflected in the structure of the relativistic
self-energy when we further calculate the mean field in infinite
nuclear matter in Hartree-Fock approximation at tree level. The
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scalar and vector self-energy components are found to be large,
i.e., of the order of several hundred MeV [46]. The present
work extends the investigations of Ref. [46]. The formalism is
outlined in detail and we discuss the density dependence of the
fields as well as the implications for the nuclear equation of
state. The connection between chiral EFT and QCD sum rules
is investigated. The present formalism allows a quantitative
extraction of the scalar/vector fields that are generated by pion
dynamics and contact terms at different orders in the chiral
expansion.

The article is organized as follows: in Sec. II we discuss the
operator structure of the various potentials. The transformation
onto the covariant basis is outlined in Sec. III, where the
results of this analysis namely the Lorentz invariant amplitudes
are also shown. Section IV contains the determination of
the relativistic mean fields in nuclear matter. In Sec. V the
structure of the relativistic self-energy fields from chiral EFT
is discussed, as well as the connection to QCD sum-rule
predictions. Finally the self-consistent Hartree-Fock results for
the equation of state calculated with three different potentials
(Bonn A, Nijm93, and Nijm I) are discussed in Sec. VI.

II. OPERATOR STRUCTURE OF THE NN POTENTIALS

A. OBE potentials

As typical examples for modern high-precision OBEPs we
consider the Bonn A [37] and the high-precision, charge-
dependent Bonn potential (CD-Bonn) [28]. The Bonn poten-
tials are based on the exchange of the six nonstrange bosons
(π, η, ρ, ω, δ, σ ) with masses below 1 GeV. These are the
two scalar mesons σ (isoscalar) and δ (isovector), the two
pseudoscalar mesons π (isovector) and η (isoscalar), and
the two vector mesons ω (isoscalar) and ρ (isovector). The
potentials are derived in the no sea approximation that neglects
the coupling to antiparticles.

The Born scattering matrix is given by the sum over the
corresponding scalar, pseudoscalar, and vector mesons and
has the following structure

V̂ (q ′, q) =
∑

α=s,ps,v

F2
α(q ′, q)κ (2)

α Dα(q ′ − q)κ (1)
α . (1)

In the two-nucleon center-of-mass frame (c.m.) the four-
momenta of the incoming nucleons are q

(1/2)
µ = [E(q),±q]

and correspondingly, the four-momenta of the outgoing nucle-
ons are q

′(1/2)
µ = [E(q′),±q′]. The initial and final relative

c.m. momenta are qµ = 1
2 (q(1)

µ − q(2)
µ ) and q ′

µ = 1
2 (q ′(1)

µ −
q ′(2)

µ ), respectively. For on-shell scattering |q| = |q′| with

E(q) = E(q′) =
√

M2 + q2 the energy-transfer is zero, i.e.,
q ′

µ − qµ = (0, q′ − q). The matrices (1) factorize for each
meson α into the form factors Fα at each meson-nucleon
vertex, the meson propagator Dα , and the meson-nucleon
vertices κα themselves. In the standard Bonn potentials [37]
the phenomenological form factors have the form

Fα(q ′, q) =
[

�2
α − m2

α

�2
α + (q′ − q)2

]nα

, (2)

where mα is the corresponding meson mass and �α is a cutoff
to avoid divergences at short distances. The meson propagators
read

Ds,ps(q
′ − q) = i

1

(q ′ − q)2 − m2
s,ps

,

(3)

Dµν
v (q ′ − q) = i

−gµν + (q ′ − q)µ(q ′ − q)ν/m2
v

(q ′ − q)2 − m2
v

for scalar and pseudoscalar mesons s, ps, and vector
mesons v. The Dirac structure of the potential is contained
in the meson-nucleon vertices

κs = gs

(2π )2
1, κps = gps

(2π )2

/q ′ − /q

2M
iγ 5,

(4)

κv = 1

(2π )2

(
gvγ

µ + fv

2M
iσµν

)
.

For the pseudoscalar mesons π and η a pseudovector coupling
is used to fulfill soft pion theorems. The vertices of the
isovector bosons π, δ, ρ obtain additional τ2 · τ1 isospin
matrices that are suppressed in Eqs. (4). The ω meson has
no tensor coupling, i.e., f (ω)

v = 0.
The potential, i.e., the OBE Feynman amplitudes are ob-

tained by sandwiching V̂ between the incoming and outgoing
Dirac spinors

V (q′, q) =
∑

α=s,ps,v

F2
α(q′, q)Dα(q′ − q)

× ū2(−q′)κ (2)
α u2(−q)ū1(q′)κ (1)

α u1(q). (5)

The relativistic operator structure is thus completely deter-
mined by the matrix elements of the vertices κα . In helicity
representation the Dirac spinor basis is given by

uλ(q) =
√

E + M

2M

(
1

2λ|q|
E+M

)
χλ, (6)

where χλ denotes a two-component Pauli spinor with λ = ± 1
2 .

The normalization of the Dirac spinor is chosen such that
ūλuλ = 1.

A consequence of the Feynman amplitudes (5) is their
general nonlocal structure that distinguishes the field theo-
retical relativistic OBE approach from local nonrelativistic
potentials. This is even true for the relativistic OPE compared
to the local, nonrelativistic OPE (see, e.g., the discussion in
Ref. [29]). However, for on-shell scattering the relativistic
amplitudes acquire a local structure in the sense that they
are functions of q2 and q′ − q. In particular for forward and
backward scattering, i.e., θ = 0, π , the amplitudes are “local”
functions of q2 and q. The nonlocal structure of the relativistic
amplitudes becomes evident when going off-shell, e.g., in the
intermediate states in the Bethe-Salpeter equation [29,30].

The standard Bonn (A,B,C) potentials [37] contain 13
free parameters for coupling constants and cutoff masses and
two additional parameters if one considers the masses of the
scalar mesons as effective parameters. The matrix elements
are calculated with the OBNNS code of R. Machleidt [31] when
Bonn A is used and the corresponding CDBONN package of
R. Machleidt when CD-Bonn is used.
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In contrast to the standard Bonn potentials [37] the OPE part
of the CD-Bonn potential [28] accounts for charge symmetry
breaking in nn, pp, and np scattering due to the different pion
masses mπ0 and mπ± . The CD-Bonn potential can be referred
to as a phenomenological NN potential, because by fine-tuning
of the partial wave fits χ2 per datum is minimized to 1.02,
adding up to a total of 43 free parameters.

1. Nonrelativistic reduction

The OBE potentials as, e.g., the Bonn potentials can be
reduced to a nonrelativistic representation by expanding the
full field-theoretical OBE Feynman amplitudes into a set of
spin and isospin operators

V =
∑

i

[Vi + V ′
i τ 1 ·τ 2] Oi. (7)

The operators Oi obtained in this low-energy expansion, as-
suming identical particle scattering and charge independence,
are defined as

O1 = 1,

O2 = σ 1 ·σ 2,

O3 = (σ 1 ·k)(σ 2 ·k)

O4 = i
2 (σ 1 + σ 2) · n,

O5 = (σ 1 ·n)(σ 2 ·n),

(8)

where k = q′ − q, n = q × q′ ≡ P × k, and P = 1
2 (q + q′)

is the average momentum. The potential forms Vi are then
functions of k, P, n and the energy. To perform a nonrelativistic
reduction, usually the energy E is expanded in k2 and P2

E(q) =
(

k2

4
+ P2 + M2

) 1
2

� M + k2

8M
+ P2

2M
. (9)

and terms to leading order in k2/M2 and P2/M2 are taken
into account. The meson propagators Dα(k2) given in Eq. (3)
are approximated by their static form (−1)/(k2 + m2). The
equivalent to Eq. (7) in configuration space is given by

O1 = 1,

O2 = σ 1 · σ 2,

O3 = S12 = 3(σ 1 · r̂)(σ 2 · r̂) − σ 1 · σ 2,

O4 = L · S,

O5 = Q12 = 1
2 [(σ 1 · L)(σ 2 · L) + (σ 2 · L)(σ 1 · L)].

(10)

These operators are the well-known central, spin-spin, tensor,
spin-orbit, and quadratic spin-orbit operators, respectively. The
total angular momentum is denoted by L = r × P and the total
spin S = 1

2 (σ 1 + σ 2).

B. Nonrelativistic potentials

1. Meson-theoretical potentials

We consider the modern Nijmegen soft-core potential
Nijm93 [19] as the first example of a nonrelativistic

meson-theoretical potential. It is an updated version of the
Nijm78 [21] potential, where the low-energy NN interaction
is based on Regge-pole theory leading to the well-known
OBE forces. The contributions considered in this model are
the pseudoscalar mesons π, η, η′, the vector mesons ρ, φ, ω,
the scalar mesons δ, S∗, ε, and the Pomeron P and the
J = 0 tensor contributions, all in all 13 free parameters.
Because it is constructed from approximate OBE amplitudes
it is based on the operator structure given in Eq. (8) plus
an additional operator O6 = 1

2 (σ 1 − σ 2) · L accounting for
charge independence breaking, which is new compared to the
older version Nijm78. Exponential form factors are used. This
potential gives a χ2 per datum of 1.87, which is comparable to
similar OBE potentials such as the standard Bonn potentials.

2. Phenomenological potentials

Another class of nonrelativistic NN potentials are the
so-called high-quality potentials where χ2/Ndata ≈ 1.0. Here
we study the Nijmegen potentials Nijm I, Nijm II, and Reid93
[19]. The Nijm I and Nijm II potentials are both based on
the Nijm78 potential. In the Nijm I potential some nonlocal
terms in the central force are kept, whereas in the Nijm II
potential all nonlocal terms are removed. Although based on
the meson-theoretical Nijm78 potential these potentials are
often referred to as purely phenomenological models, because
the parameters are adjusted separately in each partial wave
leading to a total of 41 parameters. At very short distances,
both potentials are regularized by an exponential form factor.

The Nijmegen soft-core Reid93 [19] potential is a phe-
nomenological potential and is therefore based on a completely
different approach. In the meson-theoretical Nijmegen poten-
tial Nijm93 the potential forms Vi are the same for all partial
waves, whereas in the Reid93 potentials every partial wave is
parametrized separately by a convenient choice of combina-
tions of central, tensor, and spin-orbit functions (local Yukawas
of multiples of the pion mass) and the related operators, i.e.,
the operators O1 to O4 from Eq. (10). It is regularised by a
dipole form factor and has 50 phenomenological parameters
giving all in all a χ2/Ndata = 1.03. All the Nijmegen potentials
contain the proper charge-dependent OPE accounting for
charge symmetry breaking in nn, pp, and np scattering due
to different pion masses mπ0 ,mπ± .

The same holds for the Argonne potential v18 [18],
also an example for a widely used modern high-precision
phenomenological NN potential. It is given by the sum of
an electromagnetic (EM) part, the proper OPE, and a phe-
nomenological intermediate- and short-range part unrestricted
by a meson-theoretical picture:

V = V EM + V π + V R. (11)

The EM interaction is the same as that used in the Nijmegen
partial-wave analysis. Short-range terms and finite-size effects
are taken into account as well [18].

The strong interaction part V π+V R can be written in a form
such as that given in Eq. (7) in configuration space, where the
Argonne v18 potential is not constructed by approximating
the field-theoretical OBE amplitudes (except for the OPE) but
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by assuming a very general two-body potential constrained
by certain symmetries. The potential forms Vi parametrizing
the intermediate and short-range part are mostly local Woods-
Saxon functions.

The local two-body operators are the same charge indepen-
dent ones used in the Argonne v14 potential

Oi = 1, σ1 ·σ2, S12, L·S, L2, L2(σ1 ·σ2), (L·S)2. (12)

Due to isovector exchange these operators have to be multi-
plied by the isospin matrices τ1 · τ2 that than adds up to 14
operators. Additionally, four operators accounting for charge
independence breaking are introduced

Oi=15,18 = T12, (σ1 · σ2)T12, S12T12, (τz1 + τz2), (13)

where T12 = 3τz1τz2 − τ1 ·τ2, is the isotensor operator, defined
analogously to the spin tensor S12 operator.

Thus the operator structure is more general than that
imposed by a nonrelativistic, local OBE picture, in particular
for the intermediate and short distance part. In total, Argonne
v18 contains 40 adjustable parameters and gives a χ2 per datum
of 1.09 for 4301 pp and np data in the range 0–350 MeV [18].
The code used to calculate the potential matrix elements of
the Argonne v18 model in momentum space was provided by
H. Muether and T. Frick.

C. Low-energy potentials

1. EFT potentials

Following the concept originally proposed by Weinberg
[32] there has been substantial progress in recent time to derive
quantitative NN potentials from chiral effective field theory.
As already mentioned, the chiral expansion is performed in
powers of (Q/�χ )ν , where ν = 0 corresponds to leading
order (LO), ν = 2 to next-to-leading order (NLO), ν = 3 to
next-to-next-to-leading (N2LO), and finally ν = 4 to next-to-
next-to-next-to-leading order (N3LO). It turned out that for a
quantitative description of NN-scattering data one has to go up
to N3LO [22–24] in the chiral expansion for the two-nucleon
problem. N2LO contributions were still found to be very large
compared to NLO. This implies that 2π (and 3π ) contributions
have to be included up to order four. The effective chiral
Lagrangian can be written as

Leff = L(2)
ππ + L(1)

πN + L(2)
πN + L(3)

πN + · · · , (14)

where the superscript refers to the number of derivatives or
pion mass insertions (chiral dimension) and the ellipsis stands
for terms of chiral order four or higher. The corresponding
chiral NN potential is then defined by

V (q′, q) ≡
{

sum of irreducible
π + 2π contributions

}
+ contacts. (15)

The 2π exchange contributions to the NN interaction at order
four have been derived by Kaiser [33]. Recently, quantitative
NN potentials including contact terms at order four were
derived by Entem and Machleidt, the so-called Idaho potential
[22,23], and by Epelbaum, Glöckle, and Meissner [24].

For the present comparison we apply the Idaho poten-
tial [23]. The operator structure of the momentum-space

NN amplitude has the general form given in Eq. (7) with
the operators Oi from Eq. (8). The potential forms Vi (i =
C, S, T , LS, σL) can be expressed as functions of |(q′ − q)|
and |k|.

The Idaho potential is regularized by an exponential cutoff

V (q′, q) 	−→ V (q′, q) e−(q ′/�)2n

e−(q/�)2n

, (16)

where � = 0.5 GeV in all partial waves. This does not affect
the chiral order of the potential but introduces contributions
beyond that order. The total number of free model parameters
in the N3LO potential is 29 [23].

For the evaluation of the matrix elements we applied
the N3LO program package provided by D. Entem and
R. Machleidt.

2. Renormalization Group approach to NN interaction

Recently, another approach has been proposed to arrive at a
better model-independent understanding of the NN interaction
[25]. In this approach a low-momentum potential Vlow k is
derived from a given realistic NN potential by separating
the low-momentum part, i.e., by integrating out the high-
momentum modes, and using renormalization group (RG)
methods to evolve the NN potential models from the full
Hilbert space to the low-momentum subspace. At a cutoff of
� = 2.1 fm−1 all the various NN potential models were found
to collapse to a model-independent effective interaction Vlow k .

Because elastic NN-scattering data constrain the NN inter-
action only up to a momentum scale of about 400 MeV, which
corresponds to the pion threshold, modern high-precision
potentials differ essentially in the treatment of the short-range
part, as depicted in Fig. 1. The philosophy behind the RG
approach is to replace the unresolved short distance structure
by something simpler, e.g., contact terms, without distorting
low-energy observables.

III. TRANSFORMATION TO A COVARIANT OPERATOR
BASIS

A. Covariant operators in Dirac space

Any two-body amplitude can be represented covariantly by
Dirac operators and Lorentz-invariant amplitudes. A detailed
discussion of the general structure of relativistic two-body
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FIG. 1. (Color online) Diagonal matrix elements V (q, q) in the
1S0 partial wave for different high-precision NN potential models.
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amplitudes can be found in Refs. [26,34]. However, a rel-
ativistic treatment automatically invokes the excitation of
antinucleons. Nucleon-nucleon scattering, in both the nonrela-
tivistic approaches discussed above but also in the framework
of the standard OBE potentials is restricted to the positive
energy sector and neglects the coupling to antinucleons. As a
consequence one has to work in a subspace of the full Dirac
space that leads to on-shell ambiguities that require some care.

The inclusion of negative-energy excitations with 4 states
for each spinor yields altogether 44 = 256 types of two-
body matrix elements with respect to their spinor structure.
Symmetry arguments reduce these to 44 for on-shell particles
[34]. If one takes only the subspace of positive energy solutions
into account this leads to 24 = 16 two-body matrix elements.
Considering in addition only on-shell matrix elements the
number of independent matrix elements can be further reduced
by symmetry arguments down to 5. Thus, all on-shell two-
body matrix elements can be expanded into five Lorentz
invariants. These five invariants are not unique because the
Dirac matrices always involve also negative-energy states.
Therefore a decomposition of the one-body NN potential into
a Lorentz scalar and a Lorentz vector contribution depends to
some part on the choice of these five Lorentz invariants.

A natural choice of a set of five linearly independent
covariant operators to represent a 4 × 4 Dirac matrix are the
scalar, vector, tensor, axial-vector, and pseudoscalar Fermi
covariants

S = 1 ⊗ 1, V = γ µ ⊗ γµ, T = σµν ⊗ σµν,
(17)

P = γ5 ⊗ γ5, A = γ5γ
µ ⊗ γ5γµ.

Because one works with physical, i.e., antisymmetrized matrix
elements, one has to realize that the Fierz transformation
F [26] couples direct and exchange covariants that mixes the
different Lorentz structures

S̃
Ṽ
T̃
Ã
P̃

 = 1

4


1 1 1

2 −1 1
4 −2 0 −2 −4

12 0 −2 0 12
−4 −2 0 −2 4

1 −1 1
2 1 1




S
V
T
A
P

 . (18)

The covariants on the left-hand side of Eq. (18) are the
interchanged Fermi covariants defined in Ref. [26] as

S̃ = S̃S, Ṽ = S̃V, T̃ = S̃T, Ã = S̃A, P̃ = S̃P, (19)

where the operator S̃ exchanges the Dirac indices of particles
1 and 2, i.e., S̃u(1)σ u(2)τ = u(1)τ u(2)σ . Therefore the direct
covariants �m with m = {S, V, T, P, A} can be expressed in
terms of the exchange covariants �̃m with m = {S̃, Ṽ, T̃, P̃, Ã}.

In contrast to the NN potentials where the pion-nucleon
coupling is given by a pseudovector vertex, the set (17), (19)
contains the pseudoscalar covariant P. This suggests to replace
P in Eqs. (17) and (19) by the corresponding pseudovector
covariant

PV = /q ′ − /q

2M
γ5 ⊗ /q ′ − /q

2M
γ5. (20)

This leads to an on-shell equivalence because the matrix
elements of the pseudovector and the pseudoscalar matrix

operators are identical in the case of on-shell scattering
between positive-energy states:

ū(q′)
/q ′ − /q

2M
γ5u(q) = ū(q′)γ5u(q). (21)

However, the PV vertex suppresses a coupling to antiparticles
because the overlap matrix elements vanish for on-shell
scattering

v̄(q′)
/q ′ − /q

2M
γ5u(q) = 0. (22)

To identify the PV contributions clearly in the antisymmetrized
amplitudes—note that due to the Fierz transformation (18) all
operators are coupled—one can switch to a set of covariants
originally proposed by Tjon and Wallace [34]. Based on the
following operator identities

1
2 (T + T̃) = S + S̃ + P + P̃ (23)

V + Ṽ = S + S̃ − P − P̃ (24)

one finds that the following set of covariants

�m = {S, S̃, (A − Ã), PV, P̃V} (25)

provides a set of Dirac operators for the positive energy
sector [34] that completely separates the direct and exchange
pv contributions from the remaining operator structure. This
has the advantage that the OPE exchange that is dominant at
low energies is decoupled from the remaining amplitudes and
gives only a contribution to the P̃V operator. In the following
we refer to the set of covariants in Eq. (25) as the pseudovector
representation and that of Eq. (17) as the pseudoscalar
representation. Note that on-shell matrix elements of PV, P̃V
in Eq. (25) are equivalent to those where the pseudovector
covariants are replaced by P, P̃.

The on-shell equivalence does not affect physical observ-
ables that are built on complete matrix elements as, e.g., the
single-particle potential U

U (k)s.p. ∝
∑

q

〈ū(k)ū(q)|V̂ (k,q)|u(k)u(q) − u(q)u(k)〉, (26)

but it leads to uncertainties in operators which are, like the
self-energy �, based on traces over only one particle. As
discussed in Ref. [35], a pseudovector πN coupling leads
to the pseudovector representation (25) as the most natural
choice of the relativistic operator basis.

B. Projection onto the covariant operators

In this section the technique is described necessary to
project the Born amplitudes from an angular-momentum basis
onto the covariant basis, given by Eqs. (17) or (25). The
procedure is standard and runs over the following steps

|LSJ 〉 → partial wave helicity states

→ plane wave helicity states → covariant basis.

The first two transformation can be found in Refs. [36,37]. The
last step depends on the choice of the covariant operator basis;
see, e.g. [14,27]. Here we sketch the essential steps briefly.
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Independent of the various models, the amplitudes are
determined normally in the |LSJM〉 representation and can
be denoted as V JS

L′,L(q′, q). In case of on-shell scattering
(|q| = |q′|), due to time-reversal invariance and spin and
parity conservation, only 5 of 16 possible matrix elements
are linearly independent for a fixed total angular momentum
J (spin singlet and triplet states). By inversion of Eq. (3.32) in
Ref. [36] these five partial-wave amplitudes are transformed
from the |LSJM〉 representation into the partial-wave helicity
representation |JMλ1λ2〉 and are then decoupled via inversion
of Eq. (3.28) from Ref. [36]. Because we deal with two-nucleon
states that are two-fermion states, we have to evaluate the fully
antisymmetrized matrix elements by restoring the total isospin
I = 0, 1 via the standard selection rule

(−1)L+S+I = −1. (27)

The five plane-wave helicity matrix elements are then obtained
by a summation over the total angular momentum J

〈λ′
1λ

′
2 q′|V I |λ1λ2 q〉 =

∑
J

(
2J + 1

4π

)
dJ

λ λ′(θ )

×〈λ′
1λ

′
2|V J,I (q′, q)|λ1λ2〉. (28)

Here θ denotes the scattering angle between q′ and q, whereas
λ = λ1 − λ2 and λ′ = λ′

1 − λ′
2 denote the in- and outgoing

helicity states. The reduced rotation matrices dJ
λ λ′(θ ) are those

defined by Rose [38].
These plane-wave helicity matrix elements can now be

projected onto a set of five covariant amplitudes in Dirac
space. A set of five linearly independent covariants is sufficient
for such a representation because on-shell we deal with five
matrix elements independent of the chosen representation.
Using the covariants of Eq. (17) (the “pseudoscalar choice”)
the on-shell potential matrix elements for definite isospin I

can be represented covariantly as [27]

V̂ I (|q|, θ ) = F I
S (|q|, θ ) S + F I

V (|q|, θ ) V + F I
T (|q|, θ ) T

+F I
P (|q|, θ ) P + F I

A(|q|, θ ) A. (29)

The Lorentz invariant amplitudes F I
m(|q|, θ ) with m =

{S, V, T, P, A} from Eq. (29) depend only on the relative c.m.
momentum |q| and the scattering angle θ and are related to the
plane-wave helicity states defined in Eq. (28) by

〈λ′
1λ

′
2 q′|V I |λ1λ2 q〉 =

∑
m

〈λ′
1λ

′
2 q′|�m|λ1λ2 q〉F I

m(|q|, θ ).

(30)

The indices (1) and (2) refer to particles 1 and 2. Equation (30)
is a matrix relation between the five independent plane-wave
helicity amplitudes V I

i (where i = {λ′
1, λ

′
2, λ1, λ2} = 1, . . . , 5

denotes 5 of 16 possible amplitudes) and the five unknown
covariant amplitudes F I

m(|q|, θ ). For fixed values of the
variables (|q| = |q′|, θ ) this equation can be written in a more
compact form

V I
i = 1

M2

∑
m

CimF I
m. (31)

The covariant amplitudes F I
m are obtained by matrix inversion

of Eq. (31) that corresponds to Eq. (3.23) of Ref. [27].

Equation (31) has to be inverted for two scattering angles,
i.e., for θ = 0 for the direct and θ = π for the exchange part
of the interaction. These two scattering angles are required
for the Hartree-Fock potential. Details of the inversion of
Eq. (31), as well as the treatment of kinematical singularities
of the matrix Cim occurring at θ = 0 and θ = π are given
in Appendix C of Ref. [27], where Eq. (31) is explicitly
given for θ = 0 and θ = π [Eqs. (C10) and (C11)]. Following
Ref. [27] we calculate the real part of the five Lorentz
invariant amplitudes F I=0,1

m (|q|, θ = 0, π ) for the direct and
exchange case in both the isospin singlet and triplet channels.
When derived from physical partial-wave amplitudes that
are already antisymmetrized according to the selection rule
(27), the exchange amplitudes Fm(|q|, π ) contain redundant
information.

Because we are restricted to the subspace of positive energy
states, the choice of a set of five linearly independent covariants
suffers from on-shell ambiguities, as discussed above. Thus the
set of covariants (25) is a more appropriate choice [14]. In this
representation the scattering matrix reads [14,34]

V̂ I (|q|, θ ) = gI
S(|q|, θ ) S − gI

S̃
|q|, θ ) S̃ + gI

A(|q|, θ ) (A − Ã)

+ gI
PV(|q|, θ ) PV − gI

P̃V(|q|, θ )P̃V. (32)

The new amplitudes gI
m are related to the Lorentz invariant

amplitudes F I
m from Eq. (29) by the linear transformation

gI
S

gI
S̃

gI
A

gI
PV

gI

P̃V

 = 1

4


4 −2 −8 0 −2

0 −6 −16 0 2

0 −2 0 0 −2

0 2 −8 4 2

0 6 −16 0 −2




F I

S

F I
V

F I
T

F I
P

F I
A

 . (33)

As mentioned before, the representation of the potential
given in Eq. (32) has the advantage that the OPE contribution
to the amplitudes is completely decoupled from the rest of
the interaction. The OPE contributes only in the pseudovector
exchange amplitude gOPE

P̃V
and vanishes in all other amplitudes

gOPE
S = gOPE

S̃
= gOPE

A = gOPE
PV = 0. Thus one avoids that the

low-momentum behavior of these four amplitudes is to
large extent dominated by OPE exchange contributions that
are present in all five amplitudes F I

m from Eq. (29) due to the
Fierz transformation. To compare the various potentials at the
level of covariant amplitudes the pseudovector representation
is therefore the most efficient and transparent one.

C. Covariant amplitudes

To demonstrate the dependence of the relativistic ampli-
tudes on the choice of the operator basis we consider in Fig. 2
first the single OPE. The figure shows the corresponding
amplitudes Fm of the pseudoscalar representation (17) and the
gm amplitudes of pseudovector representation (25), both for
the OPE part of the Bonn A potential. Because we are dealing
with antisymmetrized amplitudes it is sufficient to consider the
direct Lorentz invariants Fm(|q|, θ = 0) and gm(|q|, θ = 0) at
scattering angle θ = 0. As the starting point the OPE is given
in the |LSJ 〉 basis and antisymmetrization is ensured by the
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FIG. 2. Covariant amplitudes for the single OPE for the different
choices of the relativistic operator basis, i.e., the pseudoscalar rep-
resentation Fm(|q|, θ = 0) (left) and the pseudovector representation
gm(|q|, θ = 0) (right).

selection rule (27). The figure shows the isospin averaged
amplitudes defined as

Fm(|q|, 0) := 1
2

[
F I=0

m (|q|, 0) + 3F I=1
m (|q|, 0)

]
(34)

and correspondingly for gm. It is evident that in the pseu-
doscalar representation all amplitudes Fm have large nonvan-
ishing contributions from OPE due to the mixing of direct and
exchange contributions described by the Fierz transformation
(18). Moreover, as discussed above the on-shell equivalence for
the pseudoscalar covariant P and the pseudovector covariant
P̃V in Eq. (29) leads to identical Lorentz invariant amplitudes
FPS = FPV ≡ FP [14]. The pseudovector representation (25),
however, has the advantage that it decouples the OPE con-
tribution from the remaining amplitudes, i.e., the OPE gives
a nonzero contribution only in the gP̃V amplitude, whereas
the others are zero. For the single pion exchange gP̃V is now
easy to interpret: it is just the pion propagator (3) times the
pion-nucleon form factor (2).

When the various NN potentials are compared, this is
done most efficiently in the pseudovector representation. All
potentials contain an OPE of similar strength that dominates
at small momenta. The pseudovector representation decouples
the OPE contribution from the remaining amplitudes gm �= gP̃V
and allows thus a more transparent investigation of the short
and intermediate range parts of the potentials that are actually
the interesting ones. Figure 3 shows the isospin-averaged
amplitudes gD

m (|p|, θ = 0) for Bonn A, CD-Bonn, Argonne
v18, Nijm93, Nijmegen I and II, Reid93, the effective low-
momentum interaction Vlow k and the chiral Idaho potential.
The amplitudes are obtained going through the transforma-
tion scheme discussed above. Partial waves are taken into
account up to J = 90 (Bonn A, CD-Bonn, Idaho), J = 9
(Argonne v18, Nijmegen I/II, Nijm93, Reid93) and J = 6
(Vlow k).

The amplitudes determined from the complete NN poten-
tials are no more easy to interpret as for a single meson
exchange, where they represent essentially the propagators
times the form factors. This is also true for the full OBE
because the contributions from the various mesons are coupled
through their exchange parts. Because these amplitudes are not
very transparent quantities, Fig. 3 includes as a reference in
addition the contributions from only OPE and from only σ and
ω exchange, both taken from Bonn A.

Several features can now be seen from Fig. 3: First, the four
amplitudes gS, gS̃, gA and gP̃V are very close for the OBEPs
Bonn A, CD-Bonn, and Nijm93 and the phenomenological
nonrelativistic Argonne v18 and Nijmegen I/II potentials. Only
at very small |q| Argonne v18 shows a deviating structure.
The direct pseudovector amplitude gPV falls somewhat out of
systematics. This amplitude is, however, of minor importance
because it does not contribute to the Hartree-Fock self-energy
(41)–(43) and to the single-particle potential.

The dominance of the OPE at low |q| is reflected in
the pseudovector exchange amplitude gP̃V, which is at small
|q| almost two orders of magnitude larger than the other
amplitudes. In the OBEPs the high-momentum part of the
interaction, however, is dominated by heavy meson exchange
and the corresponding amplitudes gS, gS̃, gA approach the
σ+ω exchange result. Deviations from the σ+ω amplitudes,
e.g., due to exchange of isovector mesons ρ and δ in the
OBEPs are moderate at large |q|. These deviations are more
pronounced at small |q|.

The remarkable agreement between the OBE amplitudes
and those derived from the nonrelativistic Argonne v18 poten-
tial demonstrates two things: first, it means that for on-shell
scattering the Argonne v18 can be mapped on the relativistic
operator structure where the local phenomenological functions
Vi , Eq. (7), play the same role as the meson propagators plus
corresponding form factors in the meson exchange picture.
Second, the effective treatment of the short-distance physics
in Argonne v18 is very similar to that in the OBE potentials
Bonn A, CD-Bonn, and Nijm93. This fact can be estimated
from Fig. 1, where the 1S0 partial-wave amplitudes are close as
well. However, the softer character of the Reid93 and also the
Nijmegen I and II potentials is reflected clearly in the stronger
deviation from the σ+ω amplitudes at large |q|.

Finally we are turning to the effective low-momentum
potentials Vlow k and the chiral Idaho N3LO potential. Vlow k

is only shown up to the intrinsic cutoff of 400 MeV. In this
momentum range the amplitudes fall practically on top of those
from the Idaho N3LO potential. At low |q| the amplitudes
derived from Idaho N3LO and Vlow k behave qualitatively and
quantitatively like the previous ones, i.e., they are very close
to Bonn A, CD-Bonn, and Argonne v18. We conclude that also
the effective low-momentum potentials can be mapped on a
relativistic operator structure. For the Idaho N3LO potential,
which is also based on the operator structure given in Eq. (8),
the functions Vi and V ′

i in combination with the corresponding
operators, derived from fourth-order 2π exchange plus contact
terms, lead to a structure that is similar to that imposed by the
OBE picture. However, clear deviations appear in the cutoff
region between 400 and 500 MeV. The short-range interactions
are strongly suppressed by the exponential cutoff form factors
and as a consequence the Idaho rapidly approaches the OPE
result for momenta above 400 MeV.

IV. SELF-ENERGY IN NUCLEAR MATTER

With the covariant amplitudes at hand, one is able to
determine the relativistic mean field in nuclear matter with
its scalar and vector components. To do so, we calculate
the relativistic self-energy � in Hartree-Fock approximation

034325-8



RELATIVISTIC SELF-ENERGY IN NUCLEAR DYNAMICS PHYSICAL REVIEW C 74, 034325 (2006)

-0.1

0

[f
m

2 ]

-0.1

0

0

0.02

0.04

-0.1

0

-0.1

0

[f
m

2 ]

0

0.02

0.04

[f
m

2 ]

g
S

g
S
~

g
A

g
S

g
S
~

g
A

-0.2

-0.1

0

0.1

0.2

Reid93
Nijm93
CD-Bonn
Bonn A

0 200 400 600
q [MeV]

0

0.25

OPE
σ + ω

-0.2

-0.1

0

0.1

0.2

[f
m

2 ]

V
low k

Idaho
Nijmegen I
Argonne v

18

Nijmegen II

0 200 400 600
q [MeV]

0

0.25

[f
m

2 ]

g
PV

g
PV

g
PV~ g

PV~

FIG. 3. (Color online) Isospin-averaged
Lorentz invariant amplitudes gD

m (|q|, θ = 0) for
the different NN potentials after projection on
the Dirac operator structure. The pseudovector
representation of the relativistic operator basis is
used. As a reference the amplitudes from solely
OPE and from σ+ω exchange, both with Bonn
A parameters, are shown.

at tree level. We are thereby not aiming for a realistic
description of nuclear matter saturation properties that would
require a self-consistent scheme. Moreover, short-range cor-
relations require to base such calculations on the in-medium
T matrix rather than the bare potential V . This leads to the
relativistic Dirac-Brueckner-Hartree-Fock scheme, which has
been proven to describe nuclear saturation with quantitatively
satisfying accuracy [13–15,47]. The self-consistent iteration
of the self-energy in combination with the Dyson equation
for the in-medium nucleon propagator and the Bethe-Salpeter
equation for the in-medium T matrix leads to self-energy
components that are qualitatively of similar magnitude than
the tree level results, as will be seen later on.

The self-energy is determined by the summation of the
interaction of a nucleon with four-momentum k with all

nucleons inside the Fermi sea in Hartree-Fock approximation

�αβ(k, kF ) = −i

∫
d4q

(2π )4
GD

τσ (q)

× [V (|p|, 0)ασ ;βτ − V (|p|, π )ασ ;τβ]. (35)

Because we work with fully antisymmetrized matrix elements
that contain already the direct (Hartree) and exchange (Fock)
contributions, it is sufficient to evaluate the Hartree integral
for the self-energy

�αβ(k, kF ) = −i

∫
d4q

(2π )4
GD

τσ (q)[V A(|p|, 0)ασ ;βτ ]. (36)

GD(q) is the Dirac propagator describing the on-shell propa-
gation of a nucleon with momentum q inside the Fermi sea in
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the nuclear matter rest frame

GD(q) = [/q + M]2πiδ(q2 − M2)�(q0)�(kF − |q|). (37)

The � functions account for the fact that only positive
energies are considered. Here, k, taken along the z axis, is
the single-particle momentum of the incoming nucleon in the
nuclear matter rest frame. The relative momentum in the two-
nucleon c.m. frame where the matrix elements V are evaluated
is given by |p| =

√
s/4 − M2, where s = [E(k) + E(q)]2 −

(k + q)2 is the total energy of the two nucleons.
Using the pseudovector representation for the on-shell

matrix elements V , Eq. (32), the self-energy operator reads

�αβ(k, kF ) =
∫

d3q
(2π )3

�(kF − |q|)
4E(q)

×
{

(/kαβ − /qαβ)
2qµ(kµ − qµ)

4M2
gP̃V

+m1αβ

[
4gS − gS̃ + 4gA − (kµ − qµ)2

4M2
gP̃V

]

+ /qαβ

[
−gS̃ + 2gA − (kµ − qµ)2

4M2
gP̃V

]}
. (38)

Translational and rotational invariance, hermiticity, parity
conservation, and time-reversal invariance determine the Dirac
structure of the self-energy [27]. In the nuclear matter rest
frame the self-energy can be written as

�(k, kF ) = �s(k, kF ) − γ0�0(k, kF ) + γ · k �v(k, kF ). (39)

Note that the sign convention for the vector field � = �s −
γµ�µ with �µ = (�0, k�v) in Eq. (39) is that used standardly
in DBHF [12,14,16]. It differs from that used standardly
in QHD (� = �s + γµ�µ) and also that of Eqs. (49) and
(51). The self-energy components are Lorentz scalar functions
depending on the Lorentz invariants k2, k · j , and j 2, where jµ

denotes the four-vector baryon current. In nuclear matter at rest
the timelike component is just the baryon density and spatial
components of the current vanish, i.e., jµ = (ρB, 0). Hence,
the Lorentz invariants can be expressed in terms of k0, |k|, and
kF , where kF denotes the Fermi momentum. The components
of the self-energy are computed by taking the respective traces
in the Dirac space [27,39]

�s = 1
4 tr [�] , �0 = −1

4 tr [γ0�] ,
(40)

�v = −1

4|k|2 tr [γ · k�] .

In doing so, the Lorentz components of the self-energy
operator (38) are given by

�s(k, kF ) = 1

4

∫
d3q

(2π )3
�(kF − |q|) M

E(q)

×
[

4gS − gS̃ + 4gA − (kµ − qµ)2

4M2
gP̃V

]
, (41)
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FIG. 4. (Color online) Tree-level scalar and vector self-energy
components in nuclear matter at kF = 1.35 fm−1 obtained with
different NN interaction models.

�0(k, kF ) = 1

4

∫
d3q

(2π )3
�(kF − |q|)

×
[
gS̃ − 2gA + E(k)

E(q)

(kµ − qµ)2

4M2
gP̃V

]
(42)

and

�v(k, kF ) = 1

4

∫
d3q

(2π )3
�(kF − |q|) k · q

|k|2E(q)

×
[
gS̃ − 2gA + kz

qz

(kµ − qµ)2

4M2
gP̃V

]
. (43)

In Fig. 4 the tree-level scalar and vector self-energy com-
ponents in nuclear matter are shown obtained with the
various NN potentials at nuclear saturation density with Fermi
momentum kF = 1.35 fm−1, which corresponds to a density
of ρ = 0.166 fm−3. As a remarkable result, all potentials yield
scalar and vector mean fields �s and �0 of comparable
strength: a large and attractive scalar field �s � −(450 ÷
400) MeV and a repulsive vector field of −�0 � +(350 ÷
400) MeV. These values are comparable to those derived from
RMF phenomenologically and also from QCD sum rules.
Also the explicit momentum dependence of the self-energy
is similar for the various potentials. The Idaho mean fields
follow the other approaches at low k but show a stronger
decrease above k � 2 fm−1, which reflects again the influence
of the cutoff parameter. Figure 5 shows the spatial component
of the vector self-energy k�v , Eq. (43). Also here the various
potentials agree quite well. As known from self-consistent
DBHF calculations [12,14], the spatial vector self-energy is
a moderate correction to the large scalar and timelike vector
components �s and �0. This is found to be also the case at tree
level where k�v is about one order of magnitude smaller than
the other two components. The spatial self-energy originates
exclusively from exchange contributions, i.e., the Fock term,
and vanishes, e.g., in the mean-field approximation of RMF
theory.
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FIG. 5. (Color online) Tree-level spatial vector self-energy com-
ponent k�v in nuclear matter at kF = 1.35 fm−1 for the various
potentials.

Figure 6 displays the density dependence of the fields,
evaluated at momentum k = kF . At moderate densities the
different potentials yield scalar and vector fields that are
rather close in magnitude. At higher densities the results start
to split up, which reflects again the different treatment of
short distance physics in the various interactions. Only the
two low-momentum interactions Idaho N3LO and Vlow k lie
practically on top of each other. In this context we want to stress
again that these results are obtained in lowest order in density.
Hence, the results are “realistic” only in the low-density limit
but not at higher densities because short-range correlations are
missing.

To estimate the influence of short-range correlations and
self-consistency, in Fig. 7 the tree-level result from Fig. 4
for Bonn A to a corresponding full DBHF calculation are
compared at kF = 1.35 fm−1. For DBHF the approach of
Ref. [14] is used (subtracted T matrix in pv representation).
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FIG. 6. (Color online) Density dependence of the tree-level scalar
and vector self-energy components in nuclear matter obtained with
the various potentials.
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FIG. 7. (Color online) Tree-level scalar and vector self-energy
components in nuclear matter at kF = 1.35 fm−1 are compared to
corresponding values from a full self-consistent relativistic Brueckner
(DBHF) calculation. In both cases the Bonn A potential is used.

The DBHF calculation yields reasonable saturation properties
with a binding energy of Ebind = −15.72 MeV and a saturation
density of ρ = 0.181 fm−3 [14]. It is no doubt that higher-order
correlations are essential for saturation of nuclear matter.
The correlations lead to a general reduction of the vector
self-energy by a shift of about 70 MeV. Self-consistency
and correlations also weakens the momentum dependence,
in particular for �s . However, except of the 70 MeV shift of
�0, the absolute magnitude of the self-energies is not strongly
modified in the realistic calculation. This means that one can
expect that the large attractive scalar and repulsive vector
mean fields will also persist for the other interactions when
short-range correlations are accounted for in a full relativistic
many-body calculation.

Figure 8 shows finally the single-particle potential in
nuclear matter at kF = 1.35 fm−1, determined from the
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FIG. 8. (Color online) Single-particle potential in nuclear matter
at kF = 1.35 fm−1, determined from the tree-level Born amplitudes
of the various potentials. The single-particle potential determined
from the relativistic self-energy components after projection onto the
covariant operator basis is compared to a nonrelativistic calculation
(stars) where partial-wave amplitudes are summed up directly.

034325-11



O. PLOHL AND C. FUCHS PHYSICAL REVIEW C 74, 034325 (2006)

relativistic self-energy components. The single-particle poten-
tial is defined as the expectation value of the self-energy

Us.p.(k, kF ) = 〈u(k)|γ 0�|u(k)〉
〈u(k)|u(k)〉

= M

E(k)
〈ū(k)|�|u(k)〉 (44)

and reads

Us.p.(k, kF ) = M

E
�s − kµ�µ

E

= M�s√
k2 + M2

− �0 + �vk2

√
k2 + M2

. (45)

Equation (45) represents the single particle potential at tree
level, i.e., the expectation value of � with the bare spinor
basis. The next step towards a self-consistent treatment would
be to use an in-medium spinor basis which includes the scalar
and vector self-energy components via effective masses and
effective four-momenta

M∗(k, kF ) = M + �s(k, kF ), k∗
µ = kµ + �µ(k, kF ). (46)

This would, however, involve higher-order corrections in the
baryon density and is not intended in the present investigations
that are restricted to leading oder.

The single-particle potential reflects the well-known fact
that phase-shift equivalent two-body potentials that describe
NN-scattering data with about the same accuracy [30] can be
rather different [30]. This can already be seen from Fig. 1
where the 1S0 matrix elements of the various potentials are
shown. The differences are mainly due to a different treatment
of the short-range part of the nuclear interaction, i.e., the
hard core that is not well constrained by scattering data.
Thus the various potentials lead to about the same T matrices
when iterated in the Lippmann-Schwinger or Bethe-Salpeter
equation. However, at tree level the hard core contributes fully
to Us.p., which explains the shift of the various results in
Fig. 8. Integrating out the high-momentum components, e.g.,
by renormalization group methods, one arrives at equivalent
low-momentum potentials Vlow k [25]. Because Vlow k contains
no significant contributions from the hard core it gives already
at tree level a realistic single-particle potential. The situation
is similar for the chiral EFT N3LO Idaho potential. As can be
seen from Fig. 1 Idaho is rather close to Vlow k , not only in the
1S0 partial wave, and correspondingly both lead to comparable
potentials. However, the slight shift of about 10 MeV between
Vlow k and Idaho reflects again the subtle cancellation effects
between the large scalar/vector fields, because at the scale of
the fields, Fig. 6, both lie practically on top of each other.

In the present context the single-particle potential serves
as an important check of the whole procedure. In Fig. 8
the single-particle potential Us.p. is shown, calculated from
Eq. (45), i.e., after projecting the NN potentials from the
partial-wave basis onto the covariant operator basis, deter-
mining then the relativistic self-energy components and finally
Us.p.. Figure 8 includes also the results from a “nonrelativistic”
calculation of Us.p. where the partial-wave amplitudes are
directly summed up. To do so we used a nonrelativistic
Brueckner-Hartree-Fock program [40] and determined the

single-particle potential in Born approximation. The non-
relativistic results are represented by stars in Fig. 8 and
shown to a momentum of 400 MeV. This avoids distortions
from nonrelativistic kinematics that occur at higher momenta.
At moderate momenta the nonrelativistic and the relativistic
calculations show an excellent agreement that demonstrates
the accuracy of the applied projection techniques. One has
thereby to keep in mind that Us.p. originates in the relativistic
approach from the cancelation of the two scalar and vector
fields that are both of the order of about 400 MeV.

V. THE STRUCTURE OF THE SELF-ENERGY FROM
CHIRAL EFT

With the projection formalism at hand one is now able
to investigate the connection between the appearance of the
matter fields and chiral dynamics in more detail. It allows
in particular a straightforward and transparent discussion of
the contributions that arise at different orders in the chiral
expansion of the NN interaction, see Eqs. (14) and (15).
Such an investigation allows also the building of the bridge
to the reduction of the in-medium quark condensates, which
is usually interpreted as a signature for a partial restoration of
chiral symmetry.

A. Role of contact terms

We are now in the situation to calculate the relativistic scalar
and vector self-energies from a chiral EFT nucleon-nucleon
potential order by order. For this purpose we apply again the
chiral Idaho potential [44]. This allows a separation of the
contributions from different orders in the chiral expansion of
the NN interaction and provides a connection to the low-energy
constants (LECs) that appear at the different orders.

Figure 9 shows the tree-level results for the scalar and vector
self-energy components in nuclear matter at kF = 1.35 fm−1

obtained in leading order (LO) up to next-to-next-to-next-to-
leading order (N3LO).
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FIG. 9. (Color online) Tree-level scalar and vector self-energy
components in nuclear matter at kF = 1.35 fm−1 obtained with the
chiral EFT NN interaction [23]. The fields obtained in leading order
(LO) up to next-to-next-to-next-to-leading order (N3LO) are shown.
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TABLE I. Contributions from pion dynamics and contact terms to the scalar
and vector self-energy components (in MeV) that appear at different orders in
the chiral expansion. The evaluation is performed at nuclear saturation density
kF = 1.35 fm−1.

�s �(π )
s �(cont)

s −�0 −�
(π )
0 −�

(cont)
0

LO −64.76 17.14 −81.9 4.49 19.02 −14.53
NLO −344.22 4.4 −348.62 376.47 5.16 371.31
N2LO 2.06 2.06 0 −41.92 −41.92 0
N3LO 56.82 −89.34 146.16 −43.27 79.06 −122.33

Sum −350.1 −65.74 −284.36 295.77 61.32 234.45

To leading order the chiral NN interaction does not generate
significant mean fields. The scalar self-energy �s is of the order
of about −70 MeV and the vector self-energy is practically
zero. At LO only the static OPE and contact terms without
derivatives appear that involve the operators O1 and O2

from the operator basis (8). Hence at LO no pieces from
vector exchange occur that would involve all operators Oi, i =
1 . . . 5. The small scalar field means, however, that the nucleon
mass M∗, Eq. (46), does not change significantly in matter to
leading order in chiral EFT. The dominant contributions arise
at next-to-leading order (NLO). NLO involves leading two-
pion exchange (2PE) and contact terms with two derivatives.
The NLO contact terms contain the full operator structure Oi .
At this level both, scalar and vector self-energy components
of about ∓400 MeV magnitude are generated. Also the signs,
i.e., the attractive scalar and the repulsive vector mean field,
are fixed at NLO. The higher orders, N2LO and N3LO, provide
corrections that tend to reduce the NLO result, are, however,
moderate. N2LO contains subleading 2PE and no contact terms
at all, whereas N3LO contains subsubleading 2PE, leading
three-pion exchange, corrections to OPE and 2PE and contact
terms with four derivatives [24].

To investigate the role of pion dynamics and that of contact
terms in more detail, Table I contains the contributions that
arise from pion dynamics �(π), i.e., OPE, 2PE, 3PE, and
corrections, and those from the contact terms �(cont) separately.
The contributions to the self-energy at a particular order is
given by the sum �(π) + �(cont), the full self-energy at a certain
order ν is obtained by adding the contributions from the lower
orders �(ν) = ∑ν

λ=0 �(λ). From Table I it becomes evident that
the dominant contributions to the scalar and vector self-energy
are generated by the contact terms that arise at next-to-leading
order. At N2LO no contact terms occur in the chiral expansion.
The N3LO contacts provide sizable corrections to both scalar
and vector self-energy components and are of opposite sign
than the NLO contributions. The contribution from pion
dynamics to the self-energy components are found to be
generally moderate. The largest contributions appear at N3LO
and are of opposite sign than those from corresponding contact
terms.

Hence the reduction of the nucleon mass M∗ = M + �s is
driven by short-distance physics, dominantly by contact terms
that occur at NLO. These are four-nucleon contacts with two
derivatives. At this order the short-range spin-orbit interaction

[proportional to O4 in Eq. (8)]

iC5(σ 1 + σ 2) · (q × q′) (47)

is generated. The appearance of large scalar/vector fields at
NLO is therefore in perfect agreement with Dirac phenomenol-
ogy where the large spin-orbit force is intimately connected to
the appearance of the scalar/vector fields that are generated
by short-range isoscalar scalar (σ ) and vector meson (ω)
exchange [14,47]. In EFT the strength of the short-range
spin-orbit interaction is determined by the C5 parameter that
is given by a linear combination of the 3P -wave low-energy
constants (LECs) [23,24]

C5 = 1

16π
[2C3P 0 + 3C3P 1 − 5C3P 2] . (48)

Hence the short-range spin-orbit interaction is dictated by
P -wave NN scattering. As shown by Kaiser [52] the large
values of the C5 parameter is in good agreement with
corresponding values extracted from high-precision OBE-type
potentials (Bonn, CD-Bonn, Nijm93, Nijmegen I,II) and from
Argonne v18, which are all in the range of 3C5/8 ∼ 80 ÷
90 MeVfm5. In Ref. [52] these values were also compared
to purely phenomenological Skyrme-type density functionals
designed for nuclear structure calculations [53,54]. The values
of the corresponding spin-orbit strength parameter W0 in
Skyrme models are also very close in magnitude, i.e., 3W0/4 ∼
75 ÷ 97 MeV fm5. The contribution from chiral OPE to the
spin-orbit terms in the density functional were found to be
almost negligible (less than 1%). The lowest-order irreducible
2PE that occurs at NLO in the chiral expansion provides mod-
erate corrections to the isoscalar spin-orbit strength function,
whereas the isovector strength is more strongly affected (2PE
contributions lead to a ∼30% reduction) [52]. Thus the analysis
of Kaiser is fully consistent with the small fields �(π)

s and
�

(π)
0 of ∼ ∓5 MeV generated by pion dynamics at NLO, as

observed within the framework of the present analysis.
Figure 10 shows the dependence of the fields on the value

of the C5 low-energy constant in more detail. As already
mentioned, at LO two contact terms (C1 and C2) appear and at
NLO, respectively, five contacts (C3 to C7). The figure contains
the full NLO result, including contributions from LO and NLO
pion dynamics and contacts and compares this to the case
where all contacts that appear up to NLO were switched off
except of the C5 contribution. It contains in addition results
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FIG. 10. (Color online) Influence of the C5 low energy constant.
The figure compares the self-energies at NLO to those where all
contacts except of C5 are switched off and those results where the
strength of the C5 parameter is varied.

with again all contributions, scaling the value of C5 down to
50, 10, and 0.1%. It becomes evident that the large scalar and
vector mean fields are a direct consequence of the large value
of C5. Chiral EFT is therefore not only in qualitative but also
quantitative agreement with the picture known from meson
exchange. In both cases the fields are related to short distance
physics and their strength is dictated by P -wave NN-scattering
data where the spin-orbit forces occur.

B. Connection to QCD sum rules

In finite-density QCD sum rules scalar and vector fields
arise naturally from the structure of the quark propagator
that is proportional to the corresponding condensates. As
shown by Cohen et al. [6] the quark correlation function
can be expressed to leading order in terms of the scalar
condensate 〈ρ|q̄q|ρ〉 already present in vacuum, and the vector
condensate 〈ρ|q†q|ρ〉 that is introduced by the breaking of
Lorentz invariance due to the presence of the medium. The
identification of the correlation function with the in-medium
nucleon propagator of a dressed quasiparticle leads to scalar
and vector self-energies �s and �0 that are of the same order
in the condensates [6]

�s = −8π2

�2
B

[〈ρ|q̄q|ρ〉 − 〈q̄q〉] = −8π2

�2
B

σN

mu + md

ρS (49)

−�0 = −64π2

3�2
B

〈ρ|q̄γ0q|ρ〉 = −32π2

�2
B

ρ. (50)

These expression are of leading order in density. ρS in
Eq. (49) is the scalar nucleon density, fπ = 93 MeV the
weak pion decay constant, and mu,d are the current quark
masses of about 5 ÷ 10 MeV. The pion-nucleon σ term
σN = 〈N |muūu + mdd̄d|N〉 is determined by the u- and
d-quark content of the nucleon and represents the contribution
from explicit chiral symmetry breaking to the nucleon mass
through the small but nonvanishing current quark masses. It
has an empirical value of about σN � 50 MeV. The Borel mass
scale �B � 4πfπ � 1 GeV is the generic low-energy scale of

QCD that separates the nonperturbative from the perturbative
regime. It coincides with the chiral symmetry breaking scale
�χ of ChPT. Applying Ioffe’s formula [8] for the nucleon
mass M � −8π2/�2

B〈q̄q〉 one finally obtains the fields in the
form [9]

�s(ρ) = − σNM

m2
πf 2

π

ρS, (51)

−�0(ρ) = 4(mu + md )M

m2
πf 2

π

ρ. (52)

However, the dependence of the nucleon mass in matter on the
quark condensate is not as straightforward as Eq. (51) suggests.
Concerning the in-medium condensate one has carefully to
distinguish between contributions from the pion cloud and
those of nonpionic origin [41,42].

As pointed out by Birse [41] a naive direct dependence
of the nucleon mass on the quark condensate through
Eq. (51) leads to contradictions with chiral power counting.
The contributions from low-momentum virtual pions that
enter the in-medium condensate should not contribute by
the same amount to the change of the nucleon properties
in matter. They can therefore not as easily be associated
with a partial restoration of chiral symmetry as the mean-
field approximation, Eqs. (51) and (52), would suggest. This
problem has also been investigated by Chanfray et al. [42] in
the framework of the linear σ model. In their studies the authors
were able to reconcile the phenomenology of quantum hadron
dynamics with chiral theory, in that case the linear σ model.
Their conclusion was that, in contrast to the scalar condensate
〈ρ|q̄q|ρ〉 that is driven by the σ field, i.e., the chiral partner
of the pion, the lowering of the nucleon mass M∗ is driven by
a chiral invariant scalar field that corresponds to fluctuation
along the chiral circle. With other words, the condensate is,
to a large extent, reduced by the pion cloud surrounding the
nucleons, whereas the nucleon mass is not.

To set up the context for the following discussion, we
briefly outline the argumentation of Birse [41]: From Eq. (51)
it follows that the effective nucleon mass M∗ = M + �s(ρ) is
directly proportional to the nucleon sigma term

M∗ = M

(
1 − σN

m2
πf 2

π

ρS

)
. (53)

The chiral expansion of the σ term leads to [43]

σN = Am2
π − 9

16π

(gπNN

2M

)2
m3

π + · · · (54)

In the chiral limit the pion-nucleon coupling is connected to
the axial vector coupling by the Goldberger-Treiman relation
gπNN = gAM/fπ . The coefficient A involves counter terms
related to short-distance physics, whereas the nonanalytic
O(m3

π ) term arises purely from long-distance physics of
the pion cloud. Inserting Eq. (54) into Eq. (53) implies a
dependence of the effective nucleon mass M∗ on the pion
mass that is of order O(mπ ).

At the mean-field level, i.e., in T − ρ approximation, the
scalar self-energy (41) is given by the scalar forward-scattering
amplitude Ts(q = 0) [Ts(q = 0) in Eq. (55) corresponds to the
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FIG. 11. (Color online) Density dependence of the tree-level
scalar and vector self-energy components in nuclear matter obtained
with the chiral EFT NN interaction [23]. The fields obtained in leading
order (LO) up to next-to-next-to-next-to-leading order (N3LO) are
shown. The results from leading order QCD sum rules are shown as
well.

direct amplitudes FS and gS in Eq. (29) and [(32), respectively]

�s(kF ) = Ts(q = 0)ρ. (55)

A comparison of Eq. (55) with Eqs. (53) and (54) would
imply that the scalar part of the forward-scattering amplitude
contains a constant and a term of order mπ . Such a dependence
contradicts, however, chiral power counting. In chiral EFT the
leading term in the pion mass in the NN interaction originates
from the low-energy expansion of the OPE and is of order
O(m2

π ) [22–24]. Hence the NN interaction cannot contain a
term directly proportional to σN/f 2

π .
For the comparison of the sum-rule predictions we turn to

the density dependence of the self-energy. Figure 11 shows
the density dependence of the fields from the various orders.
As in Fig. 6, the scalar �s , timelike vector �0 and spatial
vector �v self-energies are determined at momentum k = kF .
The density dependence is shown up to kF = 1.8 fm−1 that
corresponds to about 2.5 times nuclear saturation density.
As can be seen from Fig. 11 the relative contributions from
the various orders remain the same over the entire density
range considered. For comparison the figure contains also the
corresponding fields as predicted by leading order QCD sum
rules, i.e., Eqs. (51) and (52). For the evaluation of Eq. (51)
the empirical value of σN = 50 MeV has been chosen for the
nucleon σ term, fπ = 93 MeV and (mu + md ) = 12 MeV. For
the evaluation of the scalar field in Eq. (51) we have set the
scalar density equal to the vector density, i.e., ρs � ρ.

Both the QCD sum rule and the chiral EFT fields are very
comparable in terms of a density expansion because both are

obtained to leading order in density. In the case of the sum rules
this corresponds to a Fermi gas of noninteracting nucleons.
To go beyond the Fermi gas approximation would require
including higher-order terms in the operator product expansion
and the density expansion of the condensates [6,7,45]. In the
EFT case higher orders in density can be introduced by a
self-consistent dressing of the interaction (see discussion in
Sec. VI) and of course by higher order terms in perturbation
series that would finally end up in a full resummation of the
Brueckner ladder diagrams.

At moderate nuclear densities the agreement between the
QCD sum rules and N3LO is quite remarkable. At higher
densities the results from the sum rules tend to overshoot the
N3LO values which is, however, not too astonishing because
the relations (51) are valid in the low-density limit.

In view of the fact that in chiral NN dynamics the fields
are dominantly generated by NLO contact terms, one could
be tempted to interpret the present results in the way that
the reduction of the quark condensates occurs at NLO in
the chiral expansion. However, as discussed above such an
interpretation is not straightforward. A closer inspection of the
terms that drive the sum-rule result reveals the following: the
coefficient A in Eq. (54) is related to the unknown coupling C1

in the effective ChPT pion-nucleon Lagrangian [48]. Becher
and Leutwyler extracted a value of A = 3.7 GeV−1 fitting the
elastic πN -scattering amplitude at threshold [49]. Inserting
this value into the sum-rule expression (53) corresponds to a
scalar self-energy (at kF = 1, 35 fm−1) of �s = −513 MeV
at order m0

π . At order mπ , i.e., when the O(m3
π ) term in

the expansion (54) is included, the σ term of 46.7 MeV is
already close to its empirical value and a self-energy of �s =
−340 MeV is obtained. Although this value for �s is aston-
ishingly close to the NLO result from chiral NN scattering,
one has to keep in mind that already the LO result is of order
m2

π in the pion mass. In contrast to the sum-rule approach
there appears no significant repulsive contribution from pion
dynamics that would correspond to the O(m3

π ) term in
Eq. (54).

The present results are therefore in qualitative agreement
with the findings of Refs. [41,42], namely that long-distance
physics related to pion dynamics plays only a minor role for
the reduction of the nucleon mass in matter. When relating the
in-medium nucleon mass to the in-medium scalar condensate
through expression (53) one should be very careful. Although
the sum-rule mean fields, Eqs. (49) and (50), provide a
reasonable approximation to the mean fields from chiral EFT,
both approaches do not reflect the same physical concepts.
The sum-rule approach assumes that the nucleon properties are
determined by the interaction with the in-medium condensates,
whereas conventional many-body approaches assume that
the in-medium properties are determined by the interaction
between the nucleons.

VI. EQUATION OF STATE

Until now all calculations in this article have been per-
formed at tree level. It is, however, a well-known fact that a
realistic description of nuclear dynamics requires correlations
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beyond Hartree-Fock. Short-range correlations are known to
be essential for nuclear binding whenever realistic interactions
are used. This leads in lowest order of the Brueckner hole-line
expansion to the ladder approximation of the Bethe-Goldstone
equation for the in-medium G matrix [10], or the Bethe-
Salpeter equation in the relativistic case [11]. In contrast to
nonrelativistic BHF where the saturation points of isospin
saturated matter are allocated on the so-called Coester line,
the relativistic Dirac-Brueckner-Hartree-Fock approach leads
to rather reasonable saturation properties [12–14]. For a review
see Ref. [55].

In Hartree-Fock the matter turns out to be unbound, in
particular when high-precision potentials with a relatively
strong repulsive hard core are applied, e.g., OBE-type po-
tentials or Argonne v18. The situation is qualitatively different
for low-momentum interactions (Vlow k , Idaho N3LO) where
the hard core is strongly suppressed by the high-momentum
cutoffs. For these interactions isospin saturated nuclear matter
collapses and Brueckner ladder correlations do not improve
on this situation [50]. Here the matter has to be stabilized
by the inclusion of repulsive three-body forces [51]. Doing
so, there appears a strong cutoff dependence at tree level
that can be removed when the second-order term of the
Brueckner perturbation series is added. Vlow k in combination
with three-body forces does not require a full resummation
of the ladder diagrams but can already be treated within
second-order perturbation theory [51].

In the present work we do not aim for a fully realistic
description of the nuclear many-body problem but restrict
the investigations to the Hartree-Fock level. The tree-level
results discussed until now are of leading order in density ρ.
Higher-order corrections in density can be taken into account
when the bare potential matrix elements are replaced by in-
medium matrix elements V 	→ V ∗. In the relativistic approach
such a treatment is well defined. It means evaluating the
corresponding Feynman amplitudes (5) through an in-medium
spinor basis u∗

λ(k) where the nucleons are dressed by the self-
energy. Such a treatment requires, however, a definite structure
of the interaction that allows evaluating corresponding in-
medium amplitudes. It is therefore at present restricted to
OBE-type potentials.

The dressing of the interaction through the self-energy leads
automatically to a self-consistency problem that is, e.g., solved
within DBHF. The higher-order density dependences which
are introduced by such a procedure are considered to be one
of the essential reasons for the improved saturation behavior
of relativistic DBHF compared to nonrelativistic BHF. In the
following we study the role of self-consistency at the Hartree-
Fock level.

As already mentioned, in a relativistic framework one uses
an in-medium spinor basis where the scalar and vector self-
energy components from Sec. IV enter via effective masses and
momenta, see Eq. (46). Furthermore the spatial vector self-
energy component is usually absorbed introducing reduced
effective masses and momenta

M̃∗ = M∗

1 + �v

, k̃∗
µ = k∗

µ

1 + �v

. (56)

Hence the kinetic energy can be written as

k̃∗
0 = Ẽ∗ = E∗

1 + �v

=
√

k2 + M̃∗2 (57)

and the in-medium spinors of helicity λ are given by

u∗
λ(k) =

√
Ẽ∗ + M̃∗

2M̃∗

(
1

2λ|k|
Ẽ∗+M̃∗

)
χλ. (58)

Thus the effective mass M̃∗ introduces a density dependence
into the interaction. The effective mass is, however, in general
not only density but also momentum dependent. Based on
the observation that this explicit momentum dependence is
moderate, it is usually neglected and M̃∗ is fixed at the
reference point |k| = kF . In the so-called reference spectrum
approximation the reduced effective mass M̃∗

F = M̃∗(|k| =
kF , kF ) serves as an iteration parameter. M̃∗ is then the solution
of the nonlinear equation

M̃∗ = M + �s(kF , M̃∗) − M̃∗�v(kF , M̃∗), (59)

which follows from the formulas above. Self-consistency
is now achieved by determining for a given start value of
M̃∗ the in-medium matrix elements V JS

L′,L(q′, q). Therefore
the Lorentz invariant amplitudes F I

m(|q|, θ ) and gI
m(|q|, θ ),

Eqs. (29) and (32), as well as the transformation matrix Cim

of Eq. (31) depend on M̃∗ and the Fermi momentum kF

because the plane-wave helicity states |λ1λ2 q〉 of Eq. (30)
are now medium dependent (58). The next step is to compute
the self-energy components �s,�0, and k�v . Because the
Dirac propagator (36) describes dressed quasi particles now, in
Eqs. (41), (42), and (43) the mass M and energy E have to be
replaced by the effective quantities M̃∗, Ẽ∗. Finally the new
M̃∗ is determined. This iteration procedure is repeated until
convergence is reached.

In Fig. 12 the results for the self-consistently calculated
self-energy components �s and �0 for Bonn A, Nijm 93, and
Nijmegen I are shown as a function of the Fermi momentum
and compared to the tree-level results from Fig. 6. For
the Bonn A case the result of a full self-consistent DBHF
calculation is shown as well [14]. From this figure two features
can be observed: the higher-order density dependences that
are introduced by the dressing of the potential affect mainly
the scalar part of the self-energy. The modifications of �0 are
moderate, whereas �s is significantly reduced. The short-range
ladder correlations included in the full DBHF calculation
(Bonn A) influence the self-energy in an opposite way. The
deviations of �s from the self-consistent HF result are rather
small, however, the vector component gets now strongly
suppressed. This fact is understandable because the ladder
correlations prevent the two-nucleon wave functions from
overlapping too strongly with the hard core. In OBE potentials
the hard core is mainly mediated by vector ω exchange and
thus determines the vector self-energy component.

With the self-consistent Hartree-Fock self-energies at hand
one can now determine the equation of state (EOS). As in
DBHF the EOS, i.e., the energy per particle, is defined as the
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FIG. 12. (Color online) Comparison of the
tree-level scalar and vector self-energy compo-
nents (dashed line) with self-consistent results
(solid line). Additionally a full self-consistent
DBHF calculation is shown in the first graph
denoted by dots.

kinetic plus half of the potential energy

E/A = 1

ρ

∑
k,λ

〈u∗
λ(k)|γ · k + M + 1

2
�(k)|u∗

λ(k)〉M̃
∗

Ẽ∗ − M

(60)

= 1

ρ

∫
F

d3k
2π3

{
[1 + �v(|k|)]Ẽ∗ − �0(|k|)

− 1

2Ẽ∗ [�s(|k|)M̃∗ − �µ(|k|)k̃∗µ]

}
− M (61)

with the self-consistent spinors u∗
λ from Eq. (58).

In Fig. 13, we present the self-consistent Hartree-Fock
results for the energy per particle in symmetric nuclear matter
calculated from the Bonn A, Nijm93, Nijmegen I potentials as
a function of the Fermi momentum kF , which is a measure for
the density ρ = 2/(3π2)k3

F .
Also a non-self-consistent calculation is shown (dashed

line) where the energy per particle is given by

E/A = 1

ρ

∫
F

d3k
2π3

[
k2

2M
+ 1

2
Us.p.(k, kF )

]
, (62)

with Us.p.(k, kF ) as defined in Eq. (45). In this case one obtains
the same result as in a nonrelativistic Hartree-Fock calculation
(denoted by stars in Fig. 13). The latter demonstrates again the
numerical accuracy of the procedures.

For the Bonn A case again the equation of state from the
full DBHF calculations is shown as a Ref. [14]. It is clear that
ladder correlations and other in-medium effects such as Pauli
blocking of intermediate states in the Bethe-Salpeter equation
are responsible for nuclear saturation. The relatively moderate
deviations from self-consistent Hartree-Fock at the scale of
the self-energies in Fig. 12 are essential at the scale of the
binding energy. Like in relativistic mean-field theory of QHD
subtle cancelation effects in the large scalar and vector fields
are responsible for nuclear binding.

The higher-order density dependences introduced via the
dressing of the bare interaction V lead to significantly more
repulsion at the level of the equation of state. This is a
direct consequence of the reduced attractive scalar field (see
Fig. 12). Thus Fig. 13 serves also as a demonstration for
the success of DBHF compared to BHF what concerns the
quantitative description of nuclear saturation: In particular for
modern high-precision potentials such as Bonn, Nijmegen, or
Argonne v18 the BHF approach leads to strong over-binding
and too high saturation densities. The additional repulsion
introduced by higher-order terms in density through the
dressed potentials shifts the corresponding saturation points
toward the empirical region [13,16,55]. We want to stress that
the density dependence of the dressed potential V ∗ should not
be mixed up with the density dependence of the G matrix. The
latter originates from the dressed two-nucleon propagator and
the Pauli operator in the Bethe-Goldstone (or Bethe-Salpeter)
equations, whereas V ∗ enters into the Bethe-Salpeter for
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FIG. 13. (Color online) Hartree-Fock cal-
culation of the nuclear equation of state, i.e.,
energy per particle E/A as a function of
the Fermi momentum kF for three different
potentials. The dashed line indicates a tree-
level calculation and the solid line represents
a self-consistent Hartree-Fock calculation, i.e.,
higher-order corrections in density are included.
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iteration. In non-relativistic BHF or variational calculations
[56,57] a nonlinear density dependence that improves the
saturation behavior is usually introduced through net repulsive
three-body forces. In such a treatment the dependence on the
third particle is integrated out such that one is left with an
additional effective density-dependent two-body force that acts
in a similar way as a dressing of the two-body interaction. In
this context one should mention that a dressing of the
interaction has also more subtle consequences when iterated
in the Bethe-Salpeter equation. It leads, e.g., to a quenching
of the second-order OPE exchange [58] that plays an essential
role for saturation in nonrelativistic approaches.

In summary, one could expect that a dressing of the
interaction would allow to comply with weaker three-body
forces which may in particular be of interest concerning the
application of low momentum EFT potentials to the nuclear
many-body problem. As the studies of Bogner et al. [51] have
demonstrated, Vlow k requires rather strong three-body forces
to stabilize nuclear matter. There the strength of the three-body
contributions has already been pushed to its limits. Although
a dressing of the interaction will probably not be possible for
Vlow k due to the partially nonanalytic structure of the potential,
it may be a promising perspective for the application of other
EFT potentials, e.g., the chiral N3LO.

VII. SUMMARY

The appearance of large scalar and vector fields is a
well-established feature of relativistic nuclear dynamics. The
saturation mechanism of nuclear matter or the single particle
potential in finite nuclei are obtained by subtle cancelation
effects between large attractive scalar and repulsive vector
fields. These fields occur already at tree level and do not
change too much when realistic many-body calculations are
performed. Full self-consistent Brueckner calculations that
account for short-range ladder correlations lead to mean fields
of similar size, i.e., of several hundred MeV in magnitude.
The size of the scalar-vector fields coincides with the values
derived from relativistic mean-field phenomenology by fits to
finite nuclei. Alternatively, QCD sum rules come to the same
results.

The present work addresses the question about the origin of
these fields. When the nucleon-nucleon interaction is described
within the framework of a meson exchange picture, the
situation is rather clear. The Lorentz character of the mesons
determines automatically the Lorentz character of the inter-
action at the corresponding scale: the short-range repulsion
is due to vector exchange (ω, ρ), whereas the intermediate
range attraction originates from scalar exchange (σ ). As a
direct consequence this leads to the existence of large scalar
and vector mean fields in nuclear matter. However, these fields
are not observables. It is therefore a fundamental questions of
nuclear physics whether the appearance of large scalar/vector
fields is intimately connected to the meson-exchange picture
or if it is a general consequence of the vacuum NN interaction.

To address the question in a model-independent way, we
based the present study on a broad set of modern high-precision
NN potentials: Bonn, CD-Bonn, Nijmegen, Argonne v18,
Reid93, Idaho N3LO, and Vlow k . Except the fact that all

these potentials fit NN-scattering data with high accuracy
they are based partially on quite different theoretical concepts,
i.e., the traditional meson-exchange picture (Bonn, CD-Bonn,
Nijmegen), a purely phenomenological philosophy (Argonne
v18, Reid93) or QCD-inspired EFT approaches (Idaho N3LO,
Vlow k).

For this purpose the potentials were projected on a rel-
ativistic operator basis in Dirac space. This was achieved
using standard projection techniques that transform from a
partial wave basis, i.e., the basis where the potentials are
originally given, to the basis of covariant amplitudes in Dirac
space. The idea behind this approach is that both relativistic
and nonrelativistic descriptions of the NN interaction have
common features, i.e., they are based on a certain operator
structure in spin-isospin space and invoke certain scales: the
long-range part of scale mπ , essentially given by one-pion
exchange, the intermediate range attraction and the short-range
repulsion. In the meson exchange picture the various scales are
associated with the meson masses that mediate the interaction.
The various approaches can now be compared at the level of
these covariant amplitudes where we observe a remarkable
agreement between the meson exchange potentials (Bonn,
CD-Bonn, Nijmegen), the phenomenological nonrelativistic
potentials (Argonne v18, Reid93), and the EFT potentials
(Idaho N3LO, Vlow k).

Moreover, this procedure now allows the calculation of
the relativistic self-energy operator in nuclear matter. The
key result of the present investigations is the tree-level self-
energy in nuclear matter. The structure of the nucleon-nucleon
interaction enforces the existence of large scalar and vector
fields. This is found to be a model-independent fact, true for
all types of interactions that have been considered. The scale
of these fields is set at tree level. Although essential for nuclear
binding and saturation, higher-order correlations, in particular
short-range correlations, change the size of the fields by less
than 25%. The magnitude of the tree-level fields is very similar
to that predicted by relativistic mean-field phenomenology and
relativistic many-body calculations.

The connection to QCD as the underlying theory of strong
interactions is established by chiral effective theory. EFT
nucleon-nucleon potentials are derived from a systematic
expansion of an effective Lagrangian that respects the basic
symmetries of QCD. Chiral EFT is considered as the exact
mapping of QCD on effective hadronic degrees of freedom in
the nonperturbative regime. Subjecting the chiral N3LO Idaho
potential to the present projection scheme we can make the
following statements: In nuclear matter scalar and vector mean
fields of the same sign and magnitude are generated as by the
meson exchange or phenomenological potentials. These fields
are generated by contact terms that occur at next-to-leading
order in the chiral expansion. These are four-nucleon contact
terms with two derivatives that generate the short-range spin-
orbit interaction. The strength of the corresponding low energy
constants, in particular those connected to the spin-orbit force,
is dictated by P -wave NN-scattering data. Pion dynamics as
well as LO and N3LO contacts provide only corrections to the
fields generated by the NLO contact terms. EFT is therefore
in perfect agreement with Dirac phenomenology where it
has long been known that the large scalar/vector fields are
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generated by the short-range vector (ω) and scalar (σ ) mesons
that are connected intimately to the large spin-orbit interaction.
We conclude that this is a direct consequence of P -wave NN
scattering.

As in OBE models and RMF theory, in EFT the reduction of
the nucleon mass M∗ = M + �s is driven by short-distance
physics. Long-distance physics from virtual pions, i.e., the
nonanalytic term in the expansion of σN , gives a sizable
contribution to the modification of the in-medium quark
condensate. Such contributions are, however, found to play
only a minor role for the reduction of the nucleon mass.
Nevertheless, at moderate nuclear densities the N3LO scalar
and vector fields agree almost perfectly with the prediction
from leading-order QCD sum rules. For future perspectives
chiral EFT in combination with projection techniques may
allow a determination of the relativistic antiproton potential
in matter in a model-independent way. Here the meson-
exchange picture predicts a change in sign of the vector
field due to g parity and hence an extremely deep attractive
potential. Such investigations in particular will be interesting

in view of the forthcoming antiproton facilities, e.g., Panda at
FAIR [59].

Finally we investigated implications of higher-order cor-
rections in density on the nuclear equation of state. A dressing
of the potential through self-consistently determined self-
energies leads to significantly more repulsion in the equation
of state as early as the Hartree-Fock level. At present these
investigations were restricted to OBE-type potentials. But
to include such higher-order terms in density might open a
promising perspective also for EFT potentials when applied to
the nuclear many-body problem.
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[50] J. Kuckei, F. Montani, H. Müther, and A. Sedrakian, Nucl. Phys.

A723, 32 (2003).
[51] S. K. Bogner, A. Schwenk, R. J. Furnstahl, and A. Nogga, Nucl.

Phys. A763, 59 (2005).
[52] N. Kaiser, Phys. Rev. C 70, 034307 (2004).

[53] P.-G. Reinhard and M. Bender, Lect. Notes Phys. 641, 249
(2004).

[54] B. Cochet, K. Bennaceur, J. Meyer, P. Bonche, and T. Duguet,
Int. J. Mod. Phys. E 13, 187 (2004).

[55] C. Fuchs and H. H. Wolter, nucl-th/0511070, to appear in Eur.
Phys. J. A.

[56] X. R. Zhou, G. F. Burgio, U. Lombardo, H.-J. Schulze, and
W. Zuo, Phys. Rev. C 69, 018801 (2004).

[57] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev.
C 58, 1804 (1998).

[58] M. K. Banerjee and J. A. Tjon, Phys. Rev. C 58, 2120 (1998);
Nucl. Phys. A708, 303 (2002).

[59] K. Peters, Nucl. Phys. B (Proc. Suppl.) 154, 35 (2006).

034325-20


