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Fully correlated study of 6
��He hypernucleus including �N space-exchange correlations
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We present a fully correlated study of the six-body 6
��He hypernucleus. The wave function involves all relevant

dynamic correlations as well as the space-exchange correlation (SEC). Calculations for energy breakdown,
��-separation energy, nuclear core polarization, and point proton radius have been performed. The baryon
density profiles have also been calculated. Effect of SEC on all these physical observables is found to be
significant. The findings suggest that a study ignoring SEC would be deficient.
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I. INTRODUCTION

The strangeness degree of freedom induces subtle distor-
tions to the properties and symmetries of a bound nucleus.
A study of great importance would be to show how this
would affect the behavior of the nuclear system with different
quanta of strangeness. Besides a large number of single-�
hypernuclei, we have well-established double-� hypernuclear
species ( 6

��He, 10
��Be, and 14

��C) [1–6] to study in detail.
Fortunately, experimental data for 6

��He (S = −2) and 5
�He

(S = −1) bound with the same core nucleus 4He (S = 0) are
available with reasonable statistics for a successful theoretical
estimate. Observation of the 6

��He event in the Japanese
high energy accelerator research organization (KEK) hybrid
experiment [1] E373, called the NAGARA event, and evidence
[2] for the bound 4

��H (I = 0, J = 1+) observed through
the (K−,K+) reaction on the 9Be target in the Brookhaven
alternating-gradient synchrotron experiment E906 have given
fresh impetus to the field of hypernuclei in the S = −2 sector
on both theoretical and experimental fronts. We find fast
advancement on the theoretical front. Recent appearances
of many cluster model analyses [7–11] using the Faddeev-
Yakubovsky (FY) method have led to notable advancement of
the subject. However, while describing the experimental data,
an inconsistency linked with the de-excitation of 10

��Be∗ and
9
�Be∗ through an unobserved γ ray in the detection process
also appears, as discussed at length in the variational Monte
Carlo (VMC) study of 6

��He [12]. This study [12] itself is far
from being realistic as it involves only central potentials and
correlations. An improved VMC study [13] has also appeared,
but it ignores the �N space-exchange correlation (SEC) in the
wave function (WF). It is evident from recent work [14] on
the 5

�He that a study ignoring SEC would be misleading as it
significantly affects every physical observable. The effect is
expected to be more evident in 6

��He hypernucleus because
of the presence of a pair of � hyperons. Other studies that
include the SEC are the FY calculations of 4

�H and 4
�He by

Nogga et al. [15], yet to be extended to five- and six-body
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hypernuclei, and the variational calculations of s-shell single
hypernuclei by Nemura et al. [16], which explicitly include the
� channel at the two-body level. The SEC is naturally built
into these formalisms; therefore, its effect cannot be deduced
directly as done for 5

�He in Ref. [14] and for 6
��He in this study.

The SEC also implicates various subtle issues, such as the
physical existence of a bound 4

��H, SU(3) symmetry breaking
of baryon-baryon (BB) potential and the question whether we
can successfully reproduce the hypernuclear energy spectra
using realistic BB and three-baryon (3B) interactions without
including the underlying quantum chromodynamics (QCD).
Thus, a fully correlated study of the 6

��He hypernucleus
presented in this paper is an important contribution.

II. HAMILTONIAN AND WAVE FUNCTION

A full nonrelativistic Hamiltonian (H��) of the A-baryon
double-� hypernucleus is written as

H = HNC + H�1 + H�2 + v�1�2 , (1)

where HNC is the nonstrange nuclear core Hamiltonian

HNC = TNC +
A−2∑
i<j

vij +
A−2∑

i<j<k

Vijk, (2)

H�n
is the Hamiltonian arising due to an individual �n

H�n
= T�n

+
A−2∑

i

v�ni +
A−2∑
i<j

V�nij , (3)

and v�1�2 is the �� potential. Obviously, HNC + H�n
is

Hamiltonian for the (A − 1) baryon single-� hypernucleus.
The basic ingredients in these Hamiltonians are BB and

3B forces. For the S = −2 sector, we use phase equivalent
Nijmegen �� potentials represented by three range Gaussian
functions [8,11,17,18]

v��(r) = v1 exp

(
− r2

β2
1

)
+ γ v2 exp

(
− r2

β2
2

)

+ v3 exp

(
− r2

β2
3

)
. (4)

Here range parameters βi and strength parameters vi are taken
from Ref. [8]. The dimensionless quantity γ distinguishes
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among various Nijmegen potential models. For example,
NSC97e, ND, and NEC00 are represented by γ = 0.5463,

γ = 1.0, and γ = 1.2044, respectively. For the S = −1 sector,
we use the charge symmetric �N potential [19,20] written as

v�N (r) = v0(r)(1 − ε + εPx) + (vσ /4)T 2
π (r) σ� · σN, (5)

with

v0(r) = vc(r) − vT 2
π (r). (6)

Here,

vc(r) = Wc

1 + exp
(

r−R
ar

) (7)

is the Saxon-Woods repulsive potential, Tπ (r) is the one-pion
exchange tensor potential

Tπ (r) =
(

1 + 3

µr
+ 3

(µr)2

)
exp (−µr)

µr

[
1 − exp(−cr2)

]2
,

(8)

µ = 0.7 fm−1is the pion mass, c = 2.0 fm−2 is the cutoff
parameter, ε is the space-exchange strength, and Px is the
Majorana space-exchange operator. The v = (vs + 3vt )/4 and
vσ = vs − vt are, respectively, the spin-average and spin-
dependent strengths, with vs(t) the singlet(triplet) state depths.
The v ≈ 6.15(5) MeV is found consistent with low energy �p

scattering data [21]. For the S = 0 nonstrange sector, we use
the realistic two-nucleon (NN) Argonne v18 potential [22].

In addition to these, we use the three-nucleon (NNN)
Urbana model-IX potential [23,24] and the three-baryon
(�NN ) potential [21,25,26]. The �NN potential (V�NN ) is
represented by two terms

V�NN = V D
�NN + V 2π

�NN . (9)

Here, V D
�NN is a dispersive force, suggested by the suppression

mechanism due to �N -�N coupling [27–30], which is written
with explicit spin dependence as [21]

V D
�ij = WDT 2

π (r�i)T
2
π (r�j )[1 + σ� · (σ i + σ j )/6]. (10)

The V 2π
�NN is a sum of two terms due to p- and s-wave π − N

scatterings, which are written as

V P
�ij = −(CP /6)(τ i · τ j ){Xi�,X�j }, (11)

V S
�ij = CSZ(ri�)Z(rj�)σ i · r̂i�σ j · r̂j�τ i · τ j , (12)

with

X�i = (σ� · σ i)Yπ (r�i) + S�iTπ (r�i), (13)

and

Z(r) = µr

3
[Yπ (r) − Tπ (r)]. (14)

Here, WD,CP , and CS are strengths, S�i = 3(σ� · r̂�i)
(σ i · r̂�i) − σ� · σ i is the tensor operator, and Yπ is the
Yukawa function

Yπ (r) = exp(−µr)

µr
[1 − exp(−cr2)]. (15)

We use the fully correlated WF by Usmani [14] that includes
all relevant dynamic correlations along with the SEC. For the

A-baryon s-shell hypernucleus with l number of � hyperons
and A − l number of nucleons, it reads as

|�〉 =

1 + U 3 +

A−l∑
i<j

ULS
ij





A−l∏

j=1

(
1 + uσ

�j

)

×

S

A−l∏
i<j

(
1 + Uij

) �J + η

�p

l∑
λ=1

A−l∑
n=1

[1 + U 3]

×

S

A−l∏
i<j

(1 + Uij )


�J ux

λnPx.

Here,

U 3 = 1 +
l∑

λ=1

A−l∑
j<k

Uλjk +
A−l∑

i<j<k

(
Uijk + UT NI

ijk

)
(16)

and

�J =

 l∏

λ=1

A−l∏
j<k

f c
λjk





 l∏

λ=1

A−l∏
j=1

f c
�j





 l−1∏

λ=1

f c
�λ





 A−l∏

i<j<k

f c
ijk





A−l∏

i<j

f c
ij


χσ

��JT . (17)

Except for the �� correlation function f c
��, all other

correlation functions are defined in Ref. [14]. Implementation
of the Px operation between � and nucleon on a �N pair
is also discussed therein. The f c

�� is obtained by solving
the Schrödinger equation with phase equivalent Nijmegen
potential v�� along with an auxiliary potential involving many
asymptotic parameters originally defined in Ref. [21]. The
χσ

� = A|↓ � ↑ �〉 is the antisymmetric spin wave function
of two � hyperons coupled to total angular momentum zero.

III. ENERGY CALCULATION

The important energies that we wish to calculate are defined
as follows:
(i) the separation energy of two � hyperons from the core
nucleus of 6

��He,

B�� = 〈�A−2|HNC|�A−2〉
〈�A−2|�A−2〉 − 〈�A|H |�A〉

〈�A|�A〉 , (18)

(ii) the separation energy of a single � from the same core
nucleus of 5

�He,

B� = 〈�A−2|HNC|�A−2〉
〈�A−2|�A−2〉 − 〈�A−1|HNC + H�1 |�A−1〉

〈�A−1|�A−1〉 ,

(19)

(iii) the incremental energy

�B�� = B�� − 2B�, (20)

and (iv) the rearrangement energy ER also known as the
nuclear core polarization (NCP), which is the difference of
the internal energy of the (A − l) subsystem and the energy of
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TABLE I. �N potential strengths in units of MeV.

vs vt v = (vs + 3vt )/4 vσ = vs − vt

v1 6.33 6.09 6.15 0.24
v2 6.28 6.04 6.10 0.24
v3 6.23 5.99 6.05 0.24

an identical isolated bound nucleus, that is,

NCP = ER = Eint
NC − E4He, (21)

where

Eint
NC = T int

NC + VNC, (22)

with

T int
NC =

A−l∑
i=1

p2
i

2mN

−
(∑A−l

i=1 pi

)2

2(A − l)mN

≡ TNC − T c.m.
NC . (23)

Here, T c.m.
NC is the kinetic energy due to c.m. motion of the

subsystem around the c.m. of the hypernucleus.
The variational energy, E5

�He = 〈�A−1|HNC+H�1 |�A−1〉
〈�A−1|�A−1〉 , of 5

�He
hypernucleus and other results related to it are borrowed
from Ref. [14]. These are obtained using the Hamiltonian,
HNC + H�1 , and the WF as given by Eq. (16) but with
l = 1, thereby discluding the correlation functions that arise
because of the presence of the second � hyperon. The basic
ingredients used herein for the S = −1 sector are the two-
and three-baryon potential strengths as reported in Ref. [14].
We use three different sets of spin-average strength v and
a constant spin-dependent strength vσ , as in Table I and
referred to as v1, v2, and v3. With each set, three values of
space-exchange strength ε=0.1, 0.2, and 0.3 are chosen, which
are in the range 0.1–0.38 [27]. For the two-pion exchange
potential strengths, we take WS = 1.5 and WP = 0.75 MeV.
The repulsive strength WD is then adjusted to reproduce the
experimental �-separation energy [Bexp

� = 3.12(2) MeV]. For
the ε = 0.1 and with v1, v2, and v3, the value of WD is found
to be 0.0193, 0.0158, and 0.0115 MeV, respectively. We also
use the result, ∂WD/∂ε ≈ −0.017 MeV, as reported in the
above reference, to reproduce the B

exp
� for any value of ε.

Using these potential strengths in the S = −1 sector
along with the Nijmegen ND model �� potential in the
S = −2 sector, we perform calculations for variational energy
E 6

��He = 〈�A|H |�A〉
〈�A|�A〉 , of 6

��He. First of all, we use the full WF
including SEC. We observe that the WF needs to be retuned
afresh with any change in the potential strengths. The optimal
correlation functions so obtained are plotted in Fig. 1, where
f c

�N (r), ux
�N (r), and f c

��(r) are represented by solid, dashed,
and long-dashed lines, respectively. We then switch off SEC
in the WF, which is equivalent to ignoring the second term
in the WF, and then retune the variational parameters for an
independent energy calculation. Optimal correlation functions,
f c

�N (r) and f c
��(r), for this case as well, are reported in

Fig. 1. In the case of no SEC, unlike that for 5
�He, the WF

is not found constant for 6
��He with the variation of ε which

offsets few parameters of the WF. Thus for both the cases with
and without SEC, should a change be made in the ε, the WF
is tuned afresh.
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FIG. 1. Solid, dashed, and long-dashed lines represent
f c

�N (r), ux
�N (r), and f c

��(r) with SEC. Chain and dotted lines
represent f c

�N (r) and f c
��(r) with no SEC. Left, middle, and right

columns represent v1, v2, and v3, respectively.

IV. RESULTS AND DISCUSSION

The energy breakdowns are reported with and without SEC
in Tables II, III, and IV for the three sets of strengths v1, v2,
and v3, respectively. In each table, results for ε = 0.1, 0.2, and
0.3 are presented. Comparison of the results show a significant
SEC effect in every piece of energy breakdown. The SEC effect
on the total energy of the hypernucleus or on B�� is lowest
for the lowest value of ε. However, its effect is always found
greater than 0.5 MeV, which is not small. The energies are
found sensitive to SEC and hence to ε. They are also sensitive
to other operatorial correlations. The detailed analysis of the
energy breakdown is presented in the following paragraphs.
Discussion also follows on the SEC effects on the nuclear core
polarization, density profiles, and point proton radius.

The average value of Px, 〈Px〉 = 〈v0(r)εPx〉/〈v0(r)ε〉, may
directly be deduced from the data in Tables II–IV in the
case of no SEC, which is about 0.87(1) for all the choices
of v. With SEC, however, WF involves another Px operator,
which alters the value of 〈Px〉, but slightly. As a result, it is
always less than 1.0 for both choices of the WF, that is, with
and without SEC. Hence, the sum of the expectation values
of central and space-exchange parts of the �N potential,
〈v0(r)(1 − ε)〉 + 〈v0(r)εPx〉 (which is a negative quantity),
would decrease linearly with decreasing ε, provided WF
remains constant. This is almost all of the vλi potential, whose
spin part 〈( 1

4 )vσT 2
π (r)σ λ · σ i〉 is very weak. We observe that

in the case of no SEC and only for v1, WF is invariant with
the variation of ε. As a consequence, a linear relationship
∂vλi/∂ε ≈ 5.0 MeV is observed (Table II). However, for
all other cases, with or without SEC, WF changes with the
variation of ε. Hence, the above relationship is not seen in these
cases. The central correlation f c

�N is a solution of the potential
vλi . Therefore, the spin-averaged strength v that explicitly
appears in Eq. [(6)] plays a role. It may lead to a significant
change in the correlation function even without SEC, which
we do observe for v2 and v3. The SEC modifies the WF and
hence the density profiles. Its sensitivity with ε has already
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TABLE II. Energy breakdown of the 6
��He for v1 (v = 6.15 MeV, vσ = 0.24 MeV). Except for ε, all quantities are in units of MeV.

Subscripts i, j, and k refer to nucleons, and λ refers to � hyperons.

ε = 0.1 ε = 0.2 ε = 0.3

(SEC) (No SEC) A-B (SEC) (No SEC) C-D (SEC) (No SEC) E-F
A B C D E F

T� = T�1 + T�2 22.51(6) 21.08(6) 1.43(8) 21.73(6) 21.08(6) 0.65(8) 21.62(6) 21.08(6) 0.54(8)
v0(r)(1 − ε) −33.67(8) −32.65(8) −1.02(11) −29.31(7) −29.02(7) −0.29(10) −25.38(6) −25.39(6) 0.01(8)
v0(r)εPx −3.24(1) −3.14(1) −0.10(1) −6.37(2) −6.27(2) −0.10(3) −9.48(3) −9.41(3) −0.07(4)

( 1
4 )vσ T 2

π (r)σ λ · σ i 0.06(0) 0.046(0) 0.014(0) 0.06(0) 0.046(0) 0.014(0) 0.05(0) 0.046(0) 0.004(0)
vλi −36.84(9) −35.74(8) −1.10(12) −35.62(9) −35.25(8) −0.37(12) −34.83(9) −34.75(8) −0.08(12)
v�� = v�1�2 (γ = 1.0) −5.99(5) −4.65(5) −1.34(7) −5.51(5) −4.65(5) −0.86(7) −5.49(5) −4.65(5) −0.84(7)
V D

λij 6.08(2) 5.65(2) 0.43(3) 5.61(2) 5.15(2) 0.46(3) 4.99(2) 4.65(2) 0.34(3)

V P
λij −4.81(2) −5.71(2) 0.90(3) −4.97(2) −5.71(2) 0.74(3) −4.75(2) −5.71(2) 0.96(3)

V S
λij −0.05(0) −0.049(0) −0.001(0) −0.01(0) −0.049(0) 0.039(0) −0.05(0) −0.049(0) −0.001(0)

V 2π
λij = V P

λij + V S
λij −4.86(2) −5.75(2) 0.89(3) −4.97(2) −5.75(2) 0.78(3) −4.80(2) −5.75(2) 0.95(3)

Vλij = V D
λij + V 2π

λij 1.22(2) −0.11(1) 1.33(2) 0.64(2) −0.60(2) 1.24(3) 0.19(2) −1.10(2) 1.29(3)

V� = vλi + vλλ + Vλij −41.52(9) −40.50(8) −1.02(12) −40.50(9) −40.50(8) 0.00(12) −40.13(9) −40.50(8) 0.37(12)
E� = T� + V� −19.01(5) −19.42(5) 0.41(7) −18.77(5) −19.42(5) 0.65(7) −18.51(5) −19.42(5) 0.91(7)
TNC 121.05(16) 119.32(15) 1.73(22) 119.94(15) 119.32(15) 0.62(21) 119.91(15) 119.32(15) 0.59(21)
vNN −131.75(14) −129.43(14) −2.32(20) −130.95(14) −129.43(14) −1.52(20) −131.04(14) −129.43(14) −1.61(20)
VNNN −5.58(2) −5.18(2) −0.40(3) −5.52(2) −5.18(2) −0.34(3) −5.63(2) −5.18(2) −0.45(3)
VNC = vij + Vijk −137.33(15) −134.61(15) −2.72(21) −136.47(15) −134.61(14) −1.86(21) −136.67(15) −134.61(14) −2.06(21)
ENC = TNC + VNC −16.29(6) −15.29(4) −1.00(7) −16.53(6) −15.29(4) −1.24(7) −16.76(6) −15.29(4) −1.47(7)
E 6

��He = E� + ENC −35.30(5) −34.72(4) −0.58(6) −35.30(5) −34.72(4) −0.58(6) −35.27(5) −34.72(4) −0.55(6)

B�� 7.57(5) 6.99(4) 0.58(6) 7.57(5) 6.99(4) 0.58(6) 7.54(5) 6.99(4) 0.55(6)
�B�� 1.33(6) 0.75(4) 0.58(7) 1.33(6) 0.75(4) 0.58(7) 1.30(6) 0.75(4) 0.55(7)

TABLE III. Energy breakdown of the 6
��He for v2 (v = 6.10 MeV, vσ = 0.24 MeV). Except for ε, all quantities are in units of MeV.

Subscripts i, j, and k refer to nucleons, and λ refers to � hyperons.

ε = 0.1 ε = 0.2 ε = 0.3

(SEC) (No SEC) A-B (SEC) (No SEC) C-D (SEC) (No SEC) E-F
A B C D E F

T� = T�1 + T�2 23.38(7) 20.20(6) 3.18(9) 22.94(6) 22.01(6) 0.93(8) 22.63(6) 22.30(7) 0.33(9)
v0(r)(1 − ε) −33.87(8) −30.74(8) −3.13(11) −29.64(8) −30.32(7) 0.68(11) −26.03(7) −26.71(7) 0.68(10)
v0(r)εPx −3.28(1) −2.96(1) −0.32(1) −6.46(2) −6.58(2) 0.12(3) −9.75(3) −9.95(3) 0.20(4)

( 1
4 )vσ T 2

π (r)σ λ · σ i 0.08(0) 0.078(0) 0.002(0) 0.02(0) 0.038(0) −0.018(0) 0.03(0) 0.029(0) 0.001(0)
vλi −37.07(9) −33.62(9) −3.45(13) −36.07(9) −36.86(9) 0.79(13) −35.76(9) −36.63(9) 0.87(13)
v�� = v�1�2 (γ = 1.0) −6.01(5) −4.83(4) −1.18(6) −5.74(5) −4.49(5) −1.25(7) −5.38(5) −4.64(5) −0.74(7)
V D

λij 5.61(2) 5.09(2) 0.52(3) 5.03(2) 5.38(2) −0.35(3) 4.33(2) 4.88(2) −0.55(3)

V P
λij −5.39(2) −4.97(2) −0.42(3) −6.00(2) −6.08(2) 0.08(3) −5.68(2) −6.43(3) 0.75(4)

V S
λij −0.01(0) −0.049(0) 0.039(0) −0.01(0) −0.044(0) 0.034(0) −0.04(0) −0.007(0) −0.033(0)

V 2π
λij = V P

λij + V S
λij −5.40(2) −5.02(2) −0.38(3) −6.01(2) −6.13(2) 0.12(3) −5.72(2) −6.44(2) 0.72(3)

Vλij = V D
λij + V 2π

λij 0.21(2) 0.06(2) 0.15(3) −0.99(2) −0.75(2) −0.24(3) −1.39(2) −1.56(2) 0.17(3)

V� = vλi + vλλ + Vλij −42.88(9) −38.39(8) −4.49(12) −42.80(9) −42.09(8) −0.71(12) −42.53(9) −42.84(8) 0.31(12)
E� = T� + V� −19.05(5) −18.19(5) −0.86(7) −19.86(5) −20.09(5) 0.23(7) −19.91(5) −20.53(5) 0.62(7)
TNC 121.38(23) 119.49(15) 1.89(27) 121.31(22) 126.21(24) −4.90(33) 121.88(22) 126.83(24) −4.95(33)
vNN −131.48(19) −130.65(14) −0.83(24) −131.41(19) −134.95(20) 3.54(28) −132.06(19) −135.22(20) 3.16(28)
VNNN −5.57(2) −5.29(2) −0.28(3) −5.52(2) −5.63(2) 0.11(3) −5.61(2) −5.71(2) 0.10(3)
VNC = vij + Vijk −137.16(15) −135.95(15) −1.21(21) −136.92(15) −140.58(15) 3.66(21) −137.67(15) −140.93(15) 3.26(21)
ENC = TNC + VNC −15.67(7) −16.46(6) 0.79(9) −15.61(7) −14.45(7) −1.16(10) −15.79(7) −14.10(6) −1.69(9)
E 6

��He = E� + ENC −35.18(5) −34.65(3) −0.53(6) −35.47(5) −34.45(3) −1.02(6) −35.69(5) −34.63(3) −1.06(6)

B�� 7.45(5) 6.92(4) 0.53(6) 7.74(5) 6.72(4) 1.02(6) 7.96(5) 6.90(4) 1.06(6)
�B�� 1.21(6) 0.68(4) 0.53(7) 1.50(6) 0.48(4) 1.02(7) 1.72(6) 0.66(4) 1.06(7)
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TABLE IV. Energy breakdown of the 6
��He for v3 (v = 6.05 MeV, vσ = 0.24 MeV). Except for ε, all quantities are in units of MeV.

Subscripts i, j and k refer to nucleons, and λ refers to � hyperons.

ε = 0.1 ε = 0.2 ε = 0.3

(SEC) (No SEC) A-B (SEC) (No SEC) C-D (SEC) (No SEC) E-F
A B C D E F

T� = T�1 + T�2 23.12(7) 19.64(6) 3.48(9) 23.39(7) 23.36(6) 0.03(9) 24.32(7) 22.52(6) 1.80(9)
v0(r)(1 − ε) −31.95(8) −29.51(8) −2.44(11) −29.01(7) −30.12(8) 1.11(11) −26.16(7) −25.17(7) −0.99(10)
v0(r)εPx −3.07(1) −2.83(1) −0.24(1) −6.33(2) −6.53(2) 0.20(3) −9.73(3) −9.28(3) −0.45(4)

( 1
4 )vσ T 2

π (r)σ λ · σ i 0.05(0) 0.052(0) −0.002(0) 0.16(0) 0.027(0) 0.133(0) 0.03(0) 0.009(0) 0.021(0)
vλi −34.98(9) −32.29(9) −2.69(13) −35.33(9) −36.65(9) 1.32(13) −35.87(9) −34.44(9) −1.43(13)
v�� = v�1�2 (γ = 1.0) −6.03(5) −4.22(4) −1.81(6) −5.79(5) −4.89(5) −0.90(7) −6.97(5) −4.72(4) −2.25(6)
V D

λij 3.87(2) 3.98(1) −0.11(2) 3.40(2) 3.99(1) −0.59(2) 2.83(2) 2.90(1) −0.07(2)

V P
λij −4.98(2) −5.37(2) 0.39(3) −5.55(2) −6.88(3) 1.33(4) −6.09(2) −7.20(3) 1.11(4)

V S
λij −0.03(0) −0.042(0) 0.012(0) −0.02(0) −0.036(0) 0.016(0) −0.04(0) −0.064(0) 0.024(0)

V 2π
λij = V P

λij + V S
λij −5.00(2) −5.41(2) 0.41(3) −5.58(2) −6.92(3) 1.34(4) −6.13(2) −7.27(3) 1.14(4)

Vλij = V D
λij + V 2π

λij −1.13(2) −1.43(2) 0.30(3) −2.18(2) −2.93(2) 0.75(3) −3.31(2) −4.36(2) 1.05(3)

V� = vλi + vλλ + Vλij −42.14(9) −37.93(8) −4.21(12) −43.30(9) −41.54(8) −1.76(12) −45.14(9) −43.53(8) −1.61(12)
E� = T� + V� −19.02(5) −18.29(5) −0.73(7) −19.91(5) −21.10(5) 1.19(7) −20.83(5) −21.01(5) 0.18(7)
TNC 121.87(23) 121.87(15) 0.00(27) 121.53(22) 127.30(25) −5.77(33) 126.68(23) 128.69(24) −2.01(33)
vNN −132.28(19) −132.43(14) 0.15(24) −131.49(19) −135.09(20) 3.60(28) −135.46(19) −136.80(20) 1.34(28)
VNNN −5.62(2) −5.46(2) −0.16(3) −5.49(2) −5.61(2) 0.12(3) −5.92(2) −5.63(2) −0.29(3)
VNC = vij + Vijk −137.90(15) −137.89(15) −0.01(21) −136.98(15) −140.70(15) 3.72(21) −141.52(15) −142.43(15) 0.91(21)
ENC = TNC + VNC −16.05(6) −16.04(7) −0.01(9) −15.45(7) −13.40(7) −2.05(10) −14.84(4) −13.74(7) −1.10(8)
E 6

��He = E� + ENC −35.07(5) −34.32(2) −0.75(5) −35.36(5) −34.51(2) −0.85(5) −35.67(5) −34.75(3) −0.92(6)

B�� 7.34(5) 6.60(4) 0.74(6) 7.63(5) 6.78(4) 0.85(6) 7.94(5) 7.02(4) 0.92(6)
�B�� 1.13(6) 0.36(4) 0.77(7) 1.39(6) 0.54(4) 0.85(7) 1.70(6) 0.78(4) 0.92(7)

been noticed [14]. As a result, even the central quantities
change with the variation of ε. The Nijmegen phase equivalent
�� potential v�� is found to decrease with decreasing ε. So
also is the case with repulsive V D

λij , which has a very weak spin
dependence for the spin zero core nucleus, therefore it is almost
a central term. Though not linearly, the vλi too decreases with
decreasing ε.

As mentioned in the previous section, strength WD of V D
λij

is adjusted to reproduce the B
exp
� of 5

�He because the binding
energy of the hypernucleus is sensitive to ε, which at a fixed
WD increases with decreasing ε. Thus, a higher value of WD

is inevitably required to reproduce B
exp
� at lower ε. As a result,

the expectation value of V D
λij , which is a positive quantity, is

0 0.1 0.2 0.3 0.4
 ε

7.2

7.4

7.6

7.8

8

8.2

B
Λ

Λ
(M

eV
)

FIG. 2. B�� vs ε. Crcles, triangles, and squares represent v1, v2,
and v3, respectively.

higher at lower ε. Therefore, it resists any change in v�i and
v�� with respect to the variation in ε. The V 2π

λij is sensitive
to operatorial correlations, especially the tensor correlation
and to its self-induced correlation as it has a generalized
tensor-τ type of operatorial structure. This has already been
discussed in Ref. [14] and in references cited therein. To
check this operatorial sensitivity of V 2π

λij , we perform
independent calculations with v2 and ε = 0.2 after switching
off all the operatorial correlations in the WF. The 〈V 2π

λij 〉
turns out to be −1.04(1) MeV, whose value with full WF
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FIG. 3. Dotted and dashed lines represent � densities with and
without SEC, respectively. Chain and long-dashed lines represent p

densities with and without SEC, respectively. Filled circles show p

in 4He nucleus.
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TABLE V. Nuclear core polarization (NCP). The 5
�He results are taken from Ref. [14].

ε = 0.1 ε = 0.2 ε = 0.3

6
��He 5

�He 6
��He 5

�He 6
��He 5

�He

(SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC)
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

v1 8.39(6) 8.86(4) 3.59(4) 4.31(3) 7.83(6) 8.86(4) 3.16(4) 4.31(3) 7.57(6) 8.86(4) 2.70(4) 4.31(3)
v2 9.20(6) 7.57(4) 2.93(4) 3.22(4) 9.18(6) 10.36(4) 2.61(4) 3.22(4) 8.80(6) 11.50(4) 2.39(4) 3.22(4)
v3 8.86(6) 8.29(4) 2.19(4) 2.39(4) 9.45(6) 12.46(4) 1.91(4) 2.39(4) 11.07(6) 12.21(4) 1.69(4) 2.39(4)

is −6.01(2) MeV. There it shows a strong effect of operators.
The density effect also enters through Yπ (r) and Tπ (r) radial
functions. It offsets the tuning of the wave function and hence
affects the complete energy breakdown. Though this quantity
is attractive, it increases with decreasing ε and has the same
trend as V D

λij . The nuclear core energy, ENC = Ti + vij + Vijk ,
too increases with decreasing ε. Hence, it falls in line with V D

λij

and V 2π
λij . Therefore, both the quantities Vλij = V D

λij + V 2π
λij and

ENC together oppose v�i and v�� against any change in ε.
The constant binding energy of the hypernucleus both with

and without SEC for v1 with respect to variation in ε is almost
an accident, because a change in vλi and v�� due to it is
balanced by an opposite effect in Vλij and ENC. However, at
lower v like v2 and v3, the changes in Vλij and ENC win
over the changes in vλi and v��. Therefore, the total energy
decreases with increasing ε(B�� increases with increasing ε).
Variation of B�� with respect to ε is quite linear within the
limits of uncertainties. It may be expressed as ∂B��/∂ε =
−∂E6

��He/∂ε ≈ constant. In the case of 5
�He, a couple of

linear relationships have been observed [14]. Those are (i)
∂B�/∂ε ≈ constant and (ii) ∂V D

�ij /∂WD = ∂E5
�He/∂WD =

−∂B�/∂WD ≈ constant. This leads to another linear relation-
ship ∂WD/∂ε ≈ −0.016(1) MeV. Therefore, with decreasing
ε, strength WD is increased appropriately so that it reproduces
B

exp
� as mentioned in Sec. III. Hence, for every set of

v, ∂B�/∂ε is balanced by −∂B�/∂WD . Therefore, total
energy remains constant. However, the same strengths do
not yield a constant energy for 6

��He, except for v1. As for
v1, B�� remains constant with the variation in ε. However,
B�� increases linearly for v2 and v3 as shown in Fig. 2. Thus,

like 5
�He, similar relationships are observed for 6

��He. These
are (i) ∂B��/∂ε = c1 at a fixed v, and (ii) ∂V D

�ij /∂WD =
−∂E 6

��He/∂WD = ∂B��/∂WD = c2. (Here, c1 and c2 are
positive constants.) As a consequence, a linear relationship
between ε and WD is observed: ∂WD/∂ε ≈ c3. For 5

�He, the
slope c3 ≈ −0.016(1) MeV is observed [14]. However, for

6
��He, the slope is different and depends upon v. One of the
reasons for this difference is the stronger SEC effect in the case
of 6

��He because of the presence of two � baryons, which also
contribute to the incremental energy �B�� = B�� − 2B�.

For every set of strengths used herein, B�� falls in the range
of 7.33(5) to 7.98(5) MeV. Here, we also notice that all three
choices of v give almost the same energy (within the limits
of statistical uncertainties) of the hypernucleus for a particular
value of ε ≈ 0.16(2) as seen in Fig. 2. Therefore, B�� at
this value of ε is invariant of v, which is found to be about
7.57(5) MeV. In other words, a particular set of two- and
three-body potential strengths that reproduces B

exp
� of 5

�He also
gives a value quite close to the experimental ��-separation
energy for 6

��He, that is, B
exp
�� = 7.25(19) MeV. The small

difference between theoretical and experimental values may
well be removed through a small variation in γ used in v��.
This strengthens confidence in the fully correlated WF includ-
ing SEC. It also gives us hope for the resolution of the A = 5
anomaly [26,31,32].

We notice a large polarization of nuclear core for both
choices of the WF, with and without SEC, as reported in
Table V. These values are more than double those of 5

�He. In
the case of 5

�He, NCP is found to significantly decrease with
increasing ε. However, for 6

��He, it varies slowly, perhaps

TABLE VI. Point proton radius of nuclear core (NC). The 5
�He results are taken from Ref. [14]. The uncertainties in the values are 0.001

and 0.002 for 5
�He and 6

��He, respectively.

ε = 0.1 ε = 0.2 ε = 0.3

6
��He 5

�He 6
��He 5

�He 6
��He 5

�He

(SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC)
(fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm)

v1 1.666 1.703 1.588 1.619 1.678 1.703 1.585 1.619 1.669 1.703 1.586 1.619
v2 1.667 1.756 1.605 1.647 1.662 1.740 1.602 1.647 1.650 1.740 1.600 1.647
v3 1.661 1.785 1.624 1.676 1.653 1.766 1.621 1.676 1.618 1.740 1.620 1.676
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because the point proton radius of NC does not change to
any significant value with the variation of ε (see Table VI).
Thus, at a higher value of ε, the difference of NCP between
5
�He and 6

��He is quite large. It also has a trend of increment
with decreasing v in the case of 6

��He. However, this effect is
opposite in the case of 5

�He.
The point proton radius of NC without SEC is found to

be more than 1.70 fm. However, with SEC, it reduces to
about 1.65 fm. In the case of isolated 4He, it is 1.46(1)
fm, whereas the experimental value is 1.47 fm, which has
been obtained by subtracting a proton mean square radius of
0.743 fm2 and N/Z times a neutron mean square radius
of −0.116 fm2 from the square of the measured charge
radius. Thus, NC gets compressed with SEC and becomes
more compact. We may understand these results with the
help of Figs 1 and 3. In Fig. 3, we plot the density profiles
only for v1, as the features are similar for v2 and v3.
The repulsive correlation f c

�N pushes both the nucleons
and the � toward the periphery and at the center of the
hypernucleus. Similar effect is seen in the case of 17

�O
[33] and of 5

�He [34,35]. As in Fig. 1, SEC significantly
reduces the repulsive correlation in the interior region of the
hypernucleus in the range r ≈ 0.5–2.0 fm, thereby reducing
the outward push. As a result, both nucleons and � receive
an inward pull leading to reduction in the peripheral density
profiles and enhancement in the interior density profiles
(Fig. 3). Thus, both NC and the hypernucleus are found to be
more compact with SEC. The result is similar for 5

�He, where
a direct correlation between density profiles and reduction
in the repulsive correlation f c

�N due to SEC is noticed as
well [14]. However, features are more prominent in the case
of 6

��He. This is certainly because of the presence of two �

hyperons.

V. CONCLUSION

Conclusively we observe that SEC, being an important cor-
relation, strongly affects energy breakdown, ��-separation

energy, nuclear core polarization, point proton radius, and
density profiles. All these physical observables are found to be
sensitive to ε when SEC is invoked in the WF. Similar results
are obtained for 5

�He as in Ref. [14]. The present investigation
confirms the conclusions drawn therein. Comparison of the
results of 5

�He and 6
��He demonstrates that SEC effects are

more evident with the increasing quantum of strangeness.
We observe that the strengths that reproduce experimental
�-separation energy of 5

�He also yield a result quite close
to the experimental ��-separation energy of 6

��He with the
phase equivalent Nijmegen ND model �� potential. Though
B�� so obtained varies with ε and also with the choice of
v; it remains almost constant to a value quite close to the
experimental value at ε ≈ 0.16(2). Thus, a slight variation
in γ would reproduce B

exp
�� of 6

��He and also B
exp
� of 5

�He
with the use of same two- and three-body potential strengths.
The value of γ used in the phenomenological �� potential
would be slightly smaller with SEC in the WF than in the no
SEC case. The s-wave �NN potential though small is not a
negligible quantity. The polarization of the NC is large. The
nucleon and � density profiles are affected by SEC, especially
in the peripheral region, where � skin is also observed. The
hypernucleus and its NC are found compact with SEC.

The outcome of the investigation presented herein thus
suggests that (i) a study ignoring SEC in the WF would be
deficient, (ii) a similar study for all the s-shell double hypernu-
clei is needed, and (iii) the behavior of ��-separation energy
vis-a-vis potential strengths should be thoroughly investigated.
A detailed comparison of the various phenomenological ��

potentials would also be interesting. We aim to proceed in this
direction.
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