# Possible alternative parity bands in the heaviest nuclei

T. M. Shneidman,<sup>1</sup> G. G. Adamian,<sup>1,2</sup> N. V. Antonenko,<sup>1,3</sup> and R. V. Jolos<sup>1</sup>

<sup>1</sup>Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

<sup>2</sup>Institute of Nuclear Physics, Tashkent 702132, Uzbekistan

<sup>3</sup>Institut für Theoretische Physik der Justus-Liebig-Universität, D-35392 Giessen, Germany

(Received 30 March 2006; revised manuscript received 4 May 2006; published 14 September 2006)

The low-lying alternative parity bands in heaviest nuclei are predicted for the first time. The parity splitting and electric dipole, quadrupole, and octupole transition moments of heavy nuclei are calculated within a cluster model. The model is based on the assumption that reflection asymmetric shapes are produced by the motion of the nuclear system in the mass asymmetry coordinate.

DOI: 10.1103/PhysRevC.74.034316

PACS number(s): 21.10.Re, 21.60.Ev, 21.60.Gx, 27.90.+b

# I. INTRODUCTION

Lately the low-lying collective states,  $\alpha$  decay, and *K* isomers are attracting much attention in the study of the structure of transfermium nuclei [1–13]. New spectroscopic data have been obtained for the heaviest nuclei with charge numbers  $Z \ge 96$ . For instance, in inbeam experiments, the rotational bands of nuclei  $^{252,254}$ No have been identified up to spins of 20–22 [1]. The  $\gamma$  transitions in the rotational yrast and nonyrast bands, weakly populated isomeric levels, and  $\alpha$ -decay fine structure are hard to observe because of low production cross sections and large backgrounds. However, the improved sensitivity of modern setups at the ANL (Argonne), GSI (Darmstadt), JYFL (Yyväskylä), GANIL (Caen), and FLNR (Dubna) laboratories allows us to measure the  $\alpha$ - $\gamma$  or  $\alpha$  conversion-electron coincidence [1–13].

Knowledge of the structure of very heavy elements is essential to testing and developing mean-field theories that predict nuclear properties. The spectroscopic studies of nuclei in the transfermium region may help determine the order of single-particle orbitals and the appearance of shell gaps, i.e., to shed light on the next doubly magic nucleus beyond <sup>208</sup>Pb. Such investigations give information on the moments of inertia needed to extract the values of deformation parameters [1–3] which can be compared with the predicted values [14,15]. From the study of nuclear stability versus angular momentum, one can determine the maximal angular momentum [1,10] which contributes to the complete fusion and formation of superheavies [13]. Therefore, understanding the structure and properties of the heaviest nuclei would stimulate progress in the synthesis of new superheavy nuclei.

The observation of low-lying alternative parity states in the light and heavy actinides has shown that these nuclei have reflection-asymmetric shapes or are very soft with respect to reflection-asymmetric vibrations around the equilibrium shape [16,17]. It turns out that the actinides have  $\alpha$ -clustering behavior, which is the origin of the appearance of low-lying alternative parity states [18,19]. It is natural to assume that the transactinides may have the same properties because they are good  $\alpha$  emitters and, therefore, the  $\alpha$ -cluster component is presented in the wave function of the ground state. The aim of the present paper is to predict the possible low-lying alternative parity states of superheavy nuclei and to

explore their main collective characteristics. We apply the cluster model developed in Refs. [18,19] for the quantitative description of such states. The main idea of the model is that the dynamics of a mirror asymmetric deformation can be treated as a collective motion of nucleons between the two clusters or as the motion in the mass asymmetry coordinate. Such collective motion simultaneously creates the deformations with even and odd multipolarities. Among different cluster configurations, only the  $\alpha$ -cluster system  ${}^{A}Z \rightarrow {}^{A-4}(Z-2) + {}^{4}He$  gives a significant contribution to the formation of low-energy nuclear states. Within our approach, the existing experimental data on the angular momentum dependence of parity splitting and multipole transition moments (E1, E2, E3) of the low-lying alternating parity states in the odd and even actinides  $^{220-228}$ Ra,  $^{223,225,227}$ Ac,  $^{222-224,226,228-232}$ Th,  $^{231}$ Pa,  $^{232-234,236,238}$ U, and  $^{240,242}$ Pu and the medium-mass nuclei  $^{144,146,148}$ Ba,  $^{151,153}$ Pm,  $^{146,148}$ Ce,  $^{153,155}$ Eu, and  $^{146,148}$ Nd are well described [18,19]. The perfect agreement between the calculated and experimental data supplies the elegant proof of the cluster features of reflection asymmetric states. The predictive power of the suggested model seems when be quite high when exploring the rotational bands in the heaviest nuclei.

#### **II. CLUSTER MODEL**

#### A. Hamiltonian in mass asymmetry coordinate

Instead of the parametrization of nuclear shapes in terms of quadrupole  $(\beta_2)$ , octupole  $(\beta_3)$ , and higher multipole deformations, the mass (charge) asymmetry coordinate  $\eta =$  $(A_1 - A_2)/(A_1 + A_2)$  [ $\eta_Z = (Z_1 - Z_2)/(Z_1 + Z_2)$ ], which describes a partition of nucleons between the dinuclear system (DNS) nuclei, is used as the relevant collective variable. Here,  $A_1$  ( $Z_1$ ) and  $A_2$  ( $Z_2$ ) are the mass (charge) numbers of the heavy and light nuclei of the DNS formed by two touching nuclei or clusters. The dynamic coordinate  $\eta$  ( $\eta_Z$ ) is assumed to be a continuous variable [18,19]. The wave function in  $\eta$  can be thought of as a superposition of the mononucleus configuration with  $|\eta| = 1$  and different cluster-type configurations including the  $\alpha$ -cluster configuration with  $|\eta| =$  $|\eta^{\alpha}| = (A - 2A_1)/A = 1 - 8/A \ (A_1 = 4) \ [18,19]$ . Since the potential energies of configurations with a light cluster heavier than an  $\alpha$  particle increase rapidly with decreasing  $|\eta|$ , for small nuclear excitations only the oscillations in  $\eta$  in the vicinity of  $|\eta| = 1$  are of interest, i.e., only clusterizations up to Li have to be considered. The relative weight of each cluster component to the total wave function is determined by solving the stationary Schrödinger equation [18,19]

$$\left[-\frac{\hbar^2}{2B_\eta}\frac{d^2}{d\eta^2} + U(\eta, I, K)\right]\Psi_K(\eta, I) = E(I, K)\Psi_K(\eta, I),$$
(1)

where  $B_{\eta}$  and  $U(\eta, I, K)$  are the inertia coefficient and potential energy of collective Hamiltonian, respectively. Here, I and K are the total spin and its projection on the symmetry axis. Since the potential energy is invariant under the inversion (the reflection)  $\eta \rightarrow -\eta$ , every nondegenerate eigenfunction  $\Psi_K$  of collective Hamiltonian has a definite parity. For example, the ground state is symmetric, the first excited state is antisymmetric [18,19].

The rotational states are built on the vibrational states in  $\eta$ . The total wave function  $\Phi_{pIMK}$  describing a nucleus with definite parity p is written as

$$\Phi_{pIMK} = \left(\frac{2I+1}{16\pi^2}\right)^{1/2} \left[\Psi_K(\eta, I)D_{MK}^I + p(-1)^{I+K}\Psi_{\overline{K}}(\eta, I)D_{M-K}^I\right].$$
(2)

In the case of the even-even nuclei (K = 0) we have a set of states with  $I^p = 0^+$ ,  $1^-$ ,  $2^+$ ,  $3^-$ ,  $4^+$ , ...; i.e., the positive and negative rotational bands are built on the lowest even and odd states in  $\eta$ , respectively. For odd-mass nuclei, the rotational bands are built on the intrinsic state with  $K \neq 0$ , and all combinations  $I^p = K^{\pm}$ ,  $(K + 1)^{\pm}$ ,  $(K + 2)^{\pm}$ ... are possible, which gives rise to the parity doublet structure of the rotational band. With increasing spin, the barrier between the  $\alpha$ -cluster DNS and its mirror image becomes higher, the penetration probability of this barrier goes to zero, and, thus, we approach almost ideal alternative parity rotational bands [18,19].

#### **B.** Mass parameter

A method of calculating of  $B_{\eta}$  is described in Ref. [20]. Since  $B_{\eta}$  is a smooth function of A, it is possible to use the same value of  $B_{\eta}$  for the nuclei under consideration. We neglect the dependence of the mass parameter on  $\eta$  and for the mononucleus and  $\alpha$ - and Li-cluster configurations of all nuclei considered, we set  $B_{\eta} = (25 \times 10^4)m_0$  fm<sup>2</sup>, where  $m_0$  is the nucleon mass.

The mass  $B_{\eta}$  can be estimated by relating the mass asymmetry coordinate  $\eta$  to the octupole deformation coordinate  $\beta_3$ . Such a relation between  $\eta$ ,  $R_m$ , and  $\beta_3$  was derived in [21]:

$$\beta_3 = \sqrt{\frac{7}{4\pi}} \frac{\pi}{3} \eta (1 - \eta^2) \frac{R_m^3}{R_0^3},\tag{3}$$

where  $R_0$  is the spherical equivalent radius of the corresponding compound nucleus. If we take the value of  $B_{\beta_3} \approx 200\hbar^2 \text{ MeV}^{-1}$  known from the literature, then we obtain  $B_\eta \approx (d\beta_3/d\eta)^2 B_{\beta_3} = (9.3 \times 10^4) m_0 \text{ fm}^2$ , which is compatible with the value used in the calculations.

### C. Potential energy

The potential  $U(\eta, I, K)$  of cluster systems  $(|\eta| < 1)$  is taken as

$$U(\eta, I, K) = V(R_m, \eta, I, K) - B_1(\eta) - B_2(\eta) + B,$$

$$V(R_m, \eta, I, K) = V_{\text{Coul}}(R_m, \eta) + V_N(R_m, \eta) + V_{\text{rot}}(R_m, \eta, I, K),$$
(4)

where  $B_1$  and  $B_2$  are the binding energies of the clusters forming the DNS at a given  $\eta$ , and B is the binding energy of the mother nucleus. The experimental ground-state masses [22], if available, are used in the calculations. If not, the predictions of Ref. [15] are used. Because of the normalization by B in Eq. (2), E(I = K, K) = 0 for the ground state. The DNS is localized in the minimum of the pocket of the nucleus-nucleus interaction potential V at  $R = R_m$  corresponding to the touching configuration. The deformations of heavy clusters, are taken from Refs. [15,23]. The polarization effects can be neglected in the very asymmetric DNS considered. One can disregard the change of the deformation of the heavy cluster under the influence of the  $\alpha$  particle. The polarization effects are more important at the stronger Coulomb interaction. The pole-to-pole orientation of the deformed nuclei in the DNS gives the minimum of the potential energy. Since the mode responsible for the N/Z equilibrium in the DNS is quite fast, the potential energy U is minimized with respect to  $\eta_Z$  for each  $\eta$ . The nucleus-nucleus interaction potential V contains the Coulomb  $V_{\text{Coul}}$ , nuclear interaction  $V_N$ , and centrifugal

$$V_{\rm rot} = \hbar^2 [I(I+1) - K(K+1)] / (2\Im(R_m, \eta))$$
(5)

potentials [18,19,24]. To calculate the nuclear and Coulomb interactions, we applied the exact double folding procedure [18,19,24]. The potential  $V_N$  is obtained with the densitydependent nucleon-nucleon forces [24,25]. The parameters of the nucleon-nucleon interaction are fixed in nuclear structure calculations [25]. For the touching configuration, the assumption on the frozen density profiles plays no role. At  $R > R_m$ , almost all methods of calculating the nuclear interaction lead to close results if the values and positions of the Coulomb barriers are well described with these methods. In calculations, the nuclear density distribution is approximated by the Fermi distribution with a radius parameter 1.15 fm for the transactinides region. While for <sup>4</sup>He and <sup>7</sup>Li the diffuseness parameter a of this distribution is taken as 0.48 fm, we set  $a = a_0 \sqrt{B_n^{(0)}/B_n}$  fm for the heavy clusters where  $B_n$  and  $B_n^{(0)}$  are the neutron binding energies of the studied nucleus and of the heaviest isotope considered for the same element, respectively. For even and odd nuclei,  $a_0 = 0.56$ and 0.58 fm [18,19], respectively. If this expression gives a < 0.52 fm for some isotopes, we set a = 0.52 fm. The uncertainty of the potential energy is mainly created by the uncertainty in the definition of the diffuseness of the clusters. In our calculations, we use for all nuclei the same procedure described above to define the values of a. The details of the calculations of U as well as the solution of Eq. (1) are presented in Refs. [18,19,24].

The expression (4) cannot be used to calculate the potential energy of a mononucleus ( $|\eta| = 1$ ); instead we use

$$U(|\eta| = 1, I, K) = U(|\eta| = 1, I = K, K) + \hbar^{2}[I(I+1) - K(K+1)]/[2\Im_{m}(|\eta| = 1)].$$
(6)

The value of potential energy  $U(|\eta| = 1, I = K, K)$  was chosen to obtain the correct value of energy E(I = K, K) of the ground state for given  $B_{\eta}$  [18,19].

The potential energy U and, correspondingly, the moment of inertia are calculated for special cluster configurations only, namely, for the mononucleus ( $|\eta| = 1$ ) and for the two cluster configurations with the  $\alpha$  and Li clusters as light clusters. These calculated points are used later to smoothly interpolate the potential by a polynomial. The energies of the Li and heavier cluster configurations are much larger than the binding energies of the nuclei considered. For example, the difference between the energy of the Li cluster configuration and the binding energy of the nucleus is about 15 MeV. Therefore, we restrict our investigation to configurations with light clusters not heavier than Li.

#### D. Moments of inertia

To calculate the potential energy for  $I \neq K$ , we need the moment of inertia for the mononucleus  $(|\eta| = 1)$  and for the two cluster configurations with <sup>4</sup>He  $(\eta = \eta^{\alpha})$  and <sup>7</sup>Li  $(\eta = \eta^{\text{Li}})$  [18,19]. The moment of inertia of the cluster configurations  $(|\eta| \neq 1)$  is expressed as

$$\Im(R_m,\eta) = c_1 \left( \Im_1^r + \Im_2^r + m_0 \frac{A_1 A_2}{A} R_m^2 \right), \tag{7}$$

where  $\Im_i^r (i = 1, 2)$  are the rigid body moments of inertia for the DNS clusters, and  $c_1 = 0.85$  [18,19] for all considered nuclei. For the mononucleus ( $|\eta| = 1$ ), the value of the moment of inertia is not known from the data because the experimental moment of inertia is a mean value between the moment of inertia of the mononucleus and those of the cluster configurations arising as a result of the oscillations in  $\eta$ . We assume that

$$\Im(|\eta| = 1) = c_2 \Im^r(|\eta| = 1),$$
(8)

where  $\Im^r$  is the rigid body moment of inertia of the mononucleus with A nucleons calculated with deformation parameters from Refs. [15,23]. The free scaling parameter  $c_2$  is fixed by the energy of one of the known lowest states of the same parity as the parity of the ground state. Since in the isotone chain, the energy of the first excited collective state weakly depends on the charge number of the nucleus,  $c_2$  for an unknown nucleus is adopted from the closest neighboring nucleus in the isotone chain for which the energy of one of the lowest states of the same parity as the parity of the ground state is experimentally known. The chosen values of  $c_2$  vary within narrow intervals 0.42-0.48 and 0.5-0.8 for even-even and odd nuclei, respectively. Taking  $c_2$  from these intervals, one can hope for reasonable predictions for nuclei whose states have not yet been measured. Uncertainty in the definition of  $c_2$ creates the uncertainty of about 30 keV in the calculations of the energies of rotational states. The value of  $c_2$  determines an

angular momentum dependence of the  $\alpha$ -cluster spectroscopic factor and decay width [26]. So, in our calculations there is a free parameter  $c_2$  which models the gross behavior of the states with the same parity. However, this parameter is not responsible for describing the parity splitting studied in paper.

As we mentioned above, the moment of inertia of nucleus is a mean value between the moment of inertia of the mononucleus and those of the cluster configurations. Since the relative weights of each cluster component and mononucleus to the total wave function depend on spin, the moment of inertia  $\Im(I)_{\text{eff}}$  of a nucleus is a function of spin as well in our approach. The moment of inertia  $\Im_{\text{eff}}$  increases with spin because of the transition from the structure close to mononucleus at low *I* to the  $\alpha$ -cluster structure at high *I*. At relatively large spins, the  $\alpha$ -cluster configuration becomes energetically more favorable than the mononucleus configuration because  $\Im(|\eta| = 1) <$  $\Im(R_m, |\eta| < 1)$ . For example, the calculated energies of the positive parity levels of the ground-state rotational bands of even-even nuclei can be described with a good accuracy by the following expression [18]:

$$E(I, K = 0) = \hbar I (I + 1) / [2 \mathfrak{I}_{eff}(I)],$$
  

$$\mathfrak{I}_{eff}(I) = [1 - w_{\alpha}(I)] \mathfrak{I}(|\eta| = 1) + w_{\alpha}(I) \mathfrak{I}(R_m, \eta = \eta^{\alpha}),$$

where  $w_{\alpha}(I) = \int_{\eta^{\alpha}}^{\eta^{\text{Li}}} d\eta |\Psi_K(\eta, I)|^2$  and  $1 - w_{\alpha}(I)$  are the weights of <sup>4</sup>He-cluster and mononucleus configurations, respectively. The contributions to the wave function in  $\eta$  of other cluster configurations are very small.

### **III. RESULTS OF CALCULATIONS AND DISCUSSION**

## A. Calculation procedure

It is convenient to substitute the coordinate  $\eta$  by the following coordinate

$$x = \eta - 1$$
 if  $\eta > 0$ ,  $x = \eta + 1$  if  $\eta < 0$ 

Then the Schrödinger equation (1) can be rewritten as

$$\left[-\frac{\hbar^2}{2B_x}\frac{d^2}{dx^2} + U(x, I, K)\right]\Psi_K(x, I) = E(I, K)\Psi_K(x, I),$$
(9)

where  $B_x = B_\eta$  is the effective mass. The smooth parametrization

$$U(x, I, K) = \sum_{k=0}^{4} a_{2k}(I, K) x^{2k}$$
(10)

of the potential U(x, I, K) is chosen. The potential energy is symmetric with respect to x = 0 ( $|\eta| = 1$ ). The parameters  $a_{2k}(I)$  are determined by the calculated potential values for x = 0 ( $|\eta| = 1$ ),  $x = x_{\alpha}$  ( $\eta = \pm \eta^{\alpha}$ ) and  $x = x_{\text{Li}}$  ( $\eta = \pm \eta^{\text{Li}}$ ). The value  $a_0(I = K)$  is taken so that the ground-state energy E(I = K, K) is zero after the solution of the Schrödinger equation. The calculations with other parametrizations show almost no difference in the description of parity splitting in the considered nuclei.

The solution of Eq. (9) has a well-defined parity. The lower and first excited states are the symmetric and asymmetric functions of *x*, respectively. For even-even nuclei, the positive (negative) parity states are built on the lowest (first excited) state in *x*. For odd-mass nuclei, the two lowest states obtained by solving Eq. (9) correspond to the members of a parity doublet for given spin *I*. The parity of the lower member of the doublet is equal to the parity  $p_0$  of the ground state, and the higher member of the doublet has the opposite parity  $-p_0$ . The quantum numbers *K* and  $p_0$  of the ground state of the nucleus are taken from the experiment or from theoretical predictions [27].

## **B.** Parity splitting

With Eq. (1), we calculate the alternative parity states of ground-state rotational bands for several isotopes of U, Pu, Cm, Cf, Fm, No, Rf, and Sg. The results of these calculations are presented in Figs. 1 and 2, and Tables I–VI. They agree well with the available experimental data [27] for nuclei <sup>239</sup>U, <sup>241,242,244</sup>Pu, <sup>245,248</sup>Cm, and <sup>247</sup>Cf (positive and negative parity states) and for <sup>243</sup>Pu, <sup>243,244,246,247</sup>Cm, <sup>248–250</sup>Cf, <sup>249,251</sup>Fm, and <sup>252,254</sup>No [positive or negative (for odd nuclei) parity states]. One can see in the rotational bands of <sup>241,242,244</sup>Pu, <sup>245,248</sup>Cm, and <sup>247</sup>Cf an appreciable shift (parity splitting) of the negative parity states with respect to the positive parity states. A good description of the experimental data, especially of the variation of the parity splitting with *A* at low *I* and of the value of the critical angular momentum at which the parity splitting disappears, means that the dependence of the potential



FIG. 1. Calculated level schemes in <sup>254</sup>No.



FIG. 2. Same as Fig. 1, but for <sup>253</sup>No.

energy on  $\eta$  and *I* for the nuclei of <sup>241,242,244</sup>Pu, <sup>245,248</sup>Cm, and <sup>247</sup>Cf is correctly described with our cluster model.

The alternative parity states are predicted in nuclei <sup>239,240</sup>U, <sup>243</sup>Pu, <sup>243,244,246,247</sup>Cm, <sup>245,246,248–250</sup>Cf, <sup>247–252</sup>Fm, <sup>249–254</sup>No, <sup>253–256</sup>Rf, and <sup>258</sup>Sg. In these nuclei there is also an appreciable shift of the negative parity states with respect to the positive parity states. The model parameters do not vary much from one nucleus to another. Therefore, the unknown nucleus can be predicted with high accuracy. For example, our predictions for the positive and negative parity states of <sup>240</sup>U are in good agreement with recent new experimental data [28].

One should note that the alternative parity states in the yrast rotational band of heaviest nuclei ( $Z \ge 100$ ) have not yet been found in the experiments. However, there is known 3<sup>-</sup> state of nonyrast structure at the excitation energy of 987 keV in <sup>254</sup>No [10] which is close to our predicted 3<sup>-</sup> yrast state. Perhaps the lack of other negative parity states in the present experimental yrast rotational bands can be explained by the difficulties in detecting these states because of the small production cross sections, large background, strong competition between the channels of  $\gamma$  decay and emission of conversion electrons, and appreciable shift of the states with different parities. Further experimental and theoretical investigation of the predicted negative and positive parity partners is necessary.

### C. Intrinsic electric multipole moments

With the wave functions obtained from Eq. (1), we calculate the electric multipole moments  $Q_1 = 2D_0$ ,  $Q_2$  and  $Q_3$  defined in Refs. [18,19,21]. The effective charge for E1 transitions is

| $I^p$    | <sup>248</sup> Cm |               | 250  | <sup>250</sup> Cf |      | <sup>252</sup> Fm |      | <sup>254</sup> No |      | <sup>256</sup> Rf |      | <sup>258</sup> Sg |  |
|----------|-------------------|---------------|------|-------------------|------|-------------------|------|-------------------|------|-------------------|------|-------------------|--|
|          | E                 | $E_{\rm exp}$ | E    | Eexp              | E    | $E_{exp}$         | Е    | $E_{\rm exp}$     | E    | $E_{\rm exp}$     | E    | Eexp              |  |
| $0^+$    | 0                 | 0             | 0    | 0                 | 0    | 0                 | 0    | 0                 | 0    |                   | 0    |                   |  |
| 1-       | 865               | 1049          | 823  |                   | 811  |                   | 773  |                   | 726  |                   | 661  |                   |  |
| $2^{+}$  | 43                | 43            | 43   | 43                | 47   | 47                | 44   | 44                | 44   |                   | 42   |                   |  |
| 3-       | 930               | 1094          | 888  |                   | 881  |                   | 838  |                   | 790  |                   | 723  |                   |  |
| 4+       | 143               | 144           | 143  | 142               | 155  |                   | 146  | 145               | 145  |                   | 140  |                   |  |
| 5-       | 1046              | 1172          | 1003 |                   | 1003 |                   | 954  |                   | 905  |                   | 832  |                   |  |
| $6^{+}$  | 298               | 298           | 297  | 296               | 322  |                   | 304  | 304               | 303  |                   | 293  |                   |  |
| 7-       | 1211              |               | 1167 |                   | 1177 |                   | 1119 |                   | 1068 |                   | 987  |                   |  |
| $8^{+}$  | 504               | 505           | 503  | 500               | 544  |                   | 516  | 518               | 514  |                   | 497  |                   |  |
| 9-       | 1423              |               | 1375 |                   | 1398 |                   | 1330 |                   | 1276 |                   | 1185 |                   |  |
| $10^{+}$ | 760               | 761           | 757  |                   | 818  |                   | 780  | 786               | 776  |                   | 750  |                   |  |
| 11-      | 1677              | 1680          | 1625 |                   | 1661 |                   | 1583 |                   | 1526 |                   | 1422 |                   |  |
| $12^{+}$ | 1061              | 1061          | 1056 |                   | 1138 |                   | 1091 | 1104              | 1085 |                   | 1048 |                   |  |
| 13-      | 1970              | 1938          | 1912 |                   | 1963 |                   | 1876 |                   | 1815 |                   | 1695 |                   |  |
| $14^{+}$ | 1404              | 1403          | 1394 |                   | 1500 |                   | 1445 | 1470              | 1437 |                   | 1387 |                   |  |
| 15-      | 2299              | 2238          | 2233 |                   | 2297 |                   | 2203 |                   | 2136 |                   | 1999 |                   |  |
| $16^{+}$ | 1784              | 1780          | 1767 |                   | 1899 |                   | 1838 | 1884              | 1827 |                   | 1762 |                   |  |
| 17-      | 2658              | 2574          | 2583 |                   | 2659 |                   | 2560 |                   | 2486 |                   | 2328 |                   |  |
| $18^{+}$ | 2197              | 2188          | 2175 |                   | 2330 |                   | 2267 | 2340              | 2251 |                   | 2167 |                   |  |
| 19-      | 3045              | 2944          | 2957 |                   | 3044 |                   | 2942 |                   | 2858 |                   | 2677 |                   |  |
| $20^{+}$ | 2641              | 2622          | 2609 |                   | 2787 |                   | 2725 | 2839              | 2702 |                   | 2667 |                   |  |
| 21-      | 3456              | 3344          | 3353 |                   | 3445 |                   |      |                   | 3248 |                   | 3103 |                   |  |

TABLE I. Calculated (*E*) and experimental ( $E_{exp}$ ) energies (in keV) of the levels of ground-state rotational band ( $K^p = 0^+$ ) in N = 152 isotones. Experimental data are taken from Ref. [27].

TABLE II. Calculated (*E*) and experimental ( $E_{exp}$ ) energies (in keV) of the levels of ground-state rotational band ( $K^p = 0^+$ ) in N = 150 isotones. Experimental data are taken from Ref. [9,27].

| $I^p$    | 244  | Pu            | 246  | Cm   | 248  | Cf   | 250] | Fm   | 252  | No   | <sup>254</sup> F | Rf   |
|----------|------|---------------|------|------|------|------|------|------|------|------|------------------|------|
|          | E    | $E_{\rm exp}$ | E    | Eexp | E    | Eexp | E    | Eexp | E    | Eexp | E                | Eexp |
| $0^+$    | 0    | 0             | 0    | 0    | 0    | 0    | 0    |      | 0    | 0    | 0                |      |
| 1-       | 804  |               | 797  |      | 797  |      | 782  |      | 692  |      | 596              |      |
| $2^{+}$  | 44   | 44            | 43   | 43   | 42   | 42   | 42   |      | 46   | 46   | 45               |      |
| 3-       | 870  | 957           | 862  |      | 861  |      | 845  |      | 760  |      | 660              |      |
| $4^{+}$  | 145  | 155           | 143  | 142  | 141  | 138  | 139  |      | 154  | 154  | 150              |      |
| 5-       | 989  | 1068          | 978  |      | 976  |      | 957  |      | 880  |      | 775              |      |
| $6^{+}$  | 303  | 318           | 298  | 295  | 294  | 285  | 290  |      | 321  | 321  | 313              |      |
| 7-       | 1157 | 1206          | 1144 |      | 1139 |      | 1117 |      | 1050 |      | 937              |      |
| $8^{+}$  | 515  | 535           | 507  | 500  | 500  |      | 492  |      | 545  | 545  | 530              |      |
| 9-       | 1373 | 1395          | 1356 |      | 1348 |      | 1322 |      | 1268 |      | 1143             |      |
| $10^{+}$ | 779  | 802           | 765  |      | 755  |      | 743  |      | 822  | 822  | 799              |      |
| 11-      | 1634 | 1628          | 1612 |      | 1600 |      | 1569 |      | 1589 |      | 1390             |      |
| $12^{+}$ | 1090 | 1116          | 1071 |      | 1057 |      | 1041 |      | 1148 | 1150 | 1115             |      |
| 13-      | 1936 | 1904          | 1908 |      | 1893 |      | 1855 |      | 1827 |      | 1671             |      |
| $14^{+}$ | 1445 | 1471          | 1421 |      | 1402 |      | 1381 |      | 1520 | 1526 | 1472             |      |
| 15-      | 2275 | 2220          | 2241 |      | 2221 |      | 2177 |      | 2159 |      | 1980             |      |
| $16^{+}$ | 1841 | 1864          | 1811 |      | 1787 |      | 1760 |      | 1930 | 1942 | 1862             |      |
| 17-      | 2647 | 2573          | 2606 |      | 2583 |      | 2530 |      | 2517 |      | 2384             |      |
| $18^{+}$ | 2273 | 2289          | 2236 |      | 2208 |      | 2174 |      | 2372 | 2396 | 2332             |      |
| 19-      | 3049 | 2958          | 3001 |      | 2972 |      | 2911 |      | 2894 |      | 2705             |      |
| $20^{+}$ | 2738 | 2742          | 2694 |      | 2660 |      | 2619 |      | 2907 | 2879 | 2731             |      |
| 21-      | 3475 | 3365          | 3419 |      | 3386 |      | 3315 |      | 3343 |      | 3045             |      |

| I <sup>p</sup> | 240  | U             | 242  | Pu            | <sup>244</sup> ( | Cm            | 246  | Cf   | 248] | Fm            | <sup>250</sup> N | 0                |
|----------------|------|---------------|------|---------------|------------------|---------------|------|------|------|---------------|------------------|------------------|
|                | E    | $E_{\rm exp}$ | E    | $E_{\rm exp}$ | Ε                | $E_{\rm exp}$ | E    | Eexp | E    | $E_{\rm exp}$ | E                | E <sub>exp</sub> |
| $0^+$          | 0    |               | 0    | 0             | 0                | 0             | 0    | 0    | 0    | 0             | 0                |                  |
| $1^{-}$        | 838  |               | 754  | 781           | 770              |               | 768  |      | 707  |               | 592              |                  |
| $2^{+}$        | 45   |               | 45   | 45            | 43               | 43            | 44   | 44   | 44   | 44            | 43               |                  |
| 3-             | 907  |               | 822  | 832           | 835              |               | 834  |      | 772  |               | 654              |                  |
| $4^+$          | 151  |               | 150  | 147           | 143              | 142           | 145  |      | 145  |               | 142              |                  |
| 5-             | 1035 |               | 943  | 927           | 951              |               | 951  |      | 887  |               | 764              |                  |
| $6^{+}$        | 314  |               | 311  | 306           | 298              | 296           | 302  |      | 302  |               | 295              |                  |
| 7-             | 1205 |               | 1114 |               | 1115             |               | 1116 |      | 1050 |               | 920              |                  |
| $8^{+}$        | 532  |               | 527  | 518           | 504              | 502           | 511  |      | 512  |               | 498              |                  |
| 9-             | 1428 |               | 1331 |               | 1325             |               | 1327 |      | 1258 |               | 1117             |                  |
| $10^{+}$       | 801  |               | 793  | 779           | 759              |               | 770  |      | 770  |               | 749              |                  |
| 11-            | 1696 |               | 1592 |               | 1576             |               | 1580 |      | 1507 |               | 1353             |                  |
| $12^{+}$       | 1116 |               | 1105 | 1084          | 1059             |               | 1073 |      | 1073 |               | 1043             |                  |
| 13-            | 2003 |               | 1890 |               | 1865             |               | 1870 |      | 1791 |               | 1622             |                  |
| $14^{+}$       | 1473 |               | 1458 | 1432          | 1398             |               | 1416 |      | 1415 |               | 1374             |                  |
| 15-            | 2346 |               | 2223 |               | 2188             |               | 2194 |      | 2107 |               | 1919             |                  |
| 16+            | 1868 |               | 1847 | 1817          | 1774             |               | 1796 |      | 1792 |               | 1736             |                  |
| 17-            | 2720 |               | 2585 |               | 2540             |               | 2546 |      | 2450 |               | 2239             |                  |
| $18^{+}$       | 2296 |               | 2269 | 2236          | 2188             |               | 2207 |      | 2200 |               | 2125             |                  |
| 19-            | 3120 |               | 2971 |               | 2917             |               | 2922 |      | 2815 |               | 2656             |                  |
| $20^{+}$       | 2753 |               | 2718 | 2686          | 2616             |               | 2645 |      | 2632 |               | 2596             |                  |
| 21-            | 3544 |               | 3377 |               | 3315             |               | 3318 |      | 3196 |               | 2984             |                  |

TABLE III. Calculated (*E*) and experimental ( $E_{exp}$ ) energies (in keV) of the levels of ground-state rotational band ( $K^p = 0^+$ ) in N = 148 isotones. Experimental data are taken from Ref. [27].

TABLE IV. Calculated (*E*) and experimental ( $E_{exp}$ ) energies (in keV) of the levels of ground-state rotational band ( $K^p = 9/2^-$ ) in N = 151 isotones. Experimental data are taken from Ref. [27].

| I <sup>p</sup> | 245  | Pu   | <sup>247</sup> ( | Cm            | 249  | Cf            | 251  | Fm            | 253  | No            | <sup>255</sup> F | Rf   |
|----------------|------|------|------------------|---------------|------|---------------|------|---------------|------|---------------|------------------|------|
|                | E    | Eexp | Ε                | $E_{\rm exp}$ | E                | Eexp |
| K <sup>-</sup> | 0    | 0    | 0                | 0             | 0    | 0             | 0    | 0             | 0    |               | 0                |      |
| $K^+$          | 608  |      | 572              |               | 545  |               | 555  |               | 542  |               | 552              |      |
| $(K + 1)^{-}$  | 61   |      | 62               | 62            | 63   | 63            | 47   | 47            | 47   |               | 46               |      |
| $(K + 1)^+$    | 665  |      | 630              |               | 602  |               | 601  |               | 588  |               | 597              |      |
| $(K + 2)^{-}$  | 134  |      | 135              | 135           | 137  | 136           | 103  |               | 102  |               | 100              |      |
| $(K + 2)^+$    | 732  |      | 697              |               | 670  |               | 656  |               | 641  |               | 650              |      |
| $(K + 3)^{-}$  | 217  | 217  | 220              | 219           | 223  | 220           | 168  |               | 165  |               | 163              |      |
| $(K + 3)^+$    | 810  |      | 775              |               | 748  |               | 718  |               | 703  |               | 711              |      |
| $(K + 4)^{-}$  | 311  |      | 315              |               | 320  | 315           | 241  |               | 237  |               | 234              |      |
| $(K + 4)^+$    | 897  |      | 862              |               | 836  |               | 790  |               | 774  |               | 780              |      |
| $(K + 5)^{-}$  | 417  |      | 422              |               | 428  | 425           | 322  |               | 318  |               | 314              |      |
| $(K + 5)^+$    | 995  |      | 961              |               | 934  |               | 869  |               | 852  |               | 857              |      |
| $(K + 6)^{-}$  | 534  |      | 540              |               | 547  |               | 412  |               | 407  |               | 401              |      |
| $(K + 6)^+$    | 1104 |      | 1069             |               | 1042 |               | 957  |               | 939  |               | 943              |      |
| $(K + 7)^{-}$  | 661  |      | 669              |               | 678  |               | 511  |               | 504  |               | 497              |      |
| $(K + 7)^+$    | 1222 |      | 1187             |               | 1160 |               | 1053 |               | 1034 |               | 1037             |      |
| $(K + 8)^{-}$  | 800  |      | 809              |               | 820  |               | 618  |               | 610  |               | 602              |      |
| $(K + 8)^+$    | 1350 |      | 1315             |               | 1288 |               | 1158 |               | 1137 |               | 1138             |      |
| $(K + 9)^{-}$  | 949  |      | 961              |               | 973  |               | 734  |               | 724  |               | 715              |      |
| $(K + 9)^+$    | 1488 |      | 1453             |               | 1426 |               | 1271 |               | 1248 |               | 1248             |      |
| $(K + 10)^{-}$ | 1110 |      | 1123             |               | 1137 |               | 858  |               | 847  |               | 836              |      |
| $(K + 10)^+$   | 1637 |      | 1601             |               | 1573 |               | 1392 |               | 1368 |               | 1366             |      |

 $(K + 8)^+$ 

 $(K + 8)^{-}$ 

 $(K + 9)^+$ 

 $(K + 9)^{-}$ 

 $(K + 10)^+$ 

 $(K + 10)^{-}$ 

| $I^p$         | 243  | Pu        | 245  | Cm        | <sup>247</sup> Cf |               | 249] | <sup>249</sup> Fm |      | <sup>251</sup> No |      | <sup>253</sup> Rf |  |
|---------------|------|-----------|------|-----------|-------------------|---------------|------|-------------------|------|-------------------|------|-------------------|--|
|               | Ε    | $E_{exp}$ | E    | $E_{exp}$ | Ε                 | $E_{\rm exp}$ | Ε    | $E_{\rm exp}$     | E    | $E_{\rm exp}$     | Ε    | Eexp              |  |
| $K^+$         | 0    | 0         | 0    | 0         | 0                 | 0             | 0    | 0                 | 0    | 0                 | 0    |                   |  |
| $K^{-}$       | 589  |           | 594  | 643       | 640               | 678           | 535  |                   | 478  |                   | 449  |                   |  |
| $(K + 1)^+$   | 58   | 58        | 55   | 55        | 55                | 55            | 58   | 58                | 61   | 61                | 59   |                   |  |
| $(K + 1)^{-}$ | 641  |           | 644  | 702       | 691               | 738           | 586  |                   | 530  |                   | 500  |                   |  |
| $(K + 2)^+$   | 128  | 125       | 122  | 122       | 123               | 122           | 128  | 128               | 134  | 117               | 132  |                   |  |
| $(K + 2)^{-}$ | 705  |           | 705  | 773       | 752               |               | 648  |                   | 594  |                   | 562  |                   |  |
| $(K + 3)^+$   | 211  | 207       | 201  | 197       | 202               | 201           | 211  |                   | 222  |                   | 217  |                   |  |
| $(K + 3)^{-}$ | 780  |           | 777  | 866       | 825               |               | 722  |                   | 669  |                   | 635  |                   |  |
| $(K + 4)^+$   | 307  | 299       | 292  |           | 294               |               | 307  |                   | 322  |                   | 315  |                   |  |
| $(K + 4)^{-}$ | 867  |           | 860  |           | 908               |               | 806  |                   | 755  |                   | 718  |                   |  |
| $(K + 5)^+$   | 416  | 404       | 396  |           | 398               |               | 415  |                   | 435  |                   | 426  |                   |  |
| $(K + 5)^{-}$ | 965  |           | 954  |           | 1003              |               | 901  |                   | 852  |                   | 812  |                   |  |
| $(K + 6)^+$   | 537  | 519       | 511  |           | 514               |               | 536  |                   | 561  |                   | 550  |                   |  |
| $(K + 6)^{-}$ | 1074 |           | 1059 |           | 1108              |               | 1008 |                   | 959  |                   | 917  |                   |  |
| $(K + 7)^+$   | 670  | 647       | 638  |           | 642               |               | 669  |                   | 700  |                   | 685  |                   |  |
| $(K + 7)^{-}$ | 1194 |           | 1174 |           | 1225              |               | 1124 |                   | 1077 |                   | 1031 |                   |  |

TABLE V. Calculated (*E*) and experimental ( $E_{exp}$ ) energies (in keV) of the levels of ground-state rotational band ( $K^p = 7/2^+$ ) in N = 149 isotones. Experimental data are taken from Ref. [27].

TABLE VI. Calculated (*E*) and experimental ( $E_{exp}$ ) energies (in keV) for the ground-state rotational band levels ( $K^p = 5/2^+$ ) in N = 147 isotopes. Experimental data are taken from Ref. [27].

| $I^p$          | 239  | U    | 241  | Pu   | 243  | Cm        | 245  | Cf            | 247  | Fm            | <sup>249</sup> N | ю    |
|----------------|------|------|------|------|------|-----------|------|---------------|------|---------------|------------------|------|
|                | E    | Eexp | E    | Eexp | E    | $E_{exp}$ | E    | $E_{\rm exp}$ | E    | $E_{\rm exp}$ | E                | Eexp |
| $K^+$          | 0    | 0    | 0    | 0    | 0    | 0         | 0    | 0             | 0    |               | 0                |      |
| $K^{-}$        | 592  | 539  | 569  | 519  | 490  |           | 462  |               | 433  |               | 307              |      |
| $(K + 1)^+$    | 43   | 43   | 42   | 42   | 42   | 42        | 50   | 50            | 49   |               | 47               |      |
| $(K + 1)^{-}$  | 632  |      | 608  | 561  | 527  |           | 505  |               | 475  |               | 346              |      |
| $(K + 2)^+$    | 99   | 99   | 96   | 96   | 95   | 94        | 114  |               | 112  |               | 106              |      |
| $(K + 2)^{-}$  | 683  |      | 658  | 615  | 576  |           | 560  |               | 529  |               | 396              |      |
| $(K + 3)^+$    | 167  |      | 162  | 161  | 160  |           | 193  |               | 189  |               | 179              |      |
| $(K + 3)^{-}$  | 746  |      | 719  |      | 635  |           | 628  |               | 594  |               | 456              |      |
| $(K + 4)^+$    | 247  |      | 241  | 235  | 237  |           | 285  |               | 279  |               | 264              |      |
| $(K + 4)^{-}$  | 820  |      | 791  |      | 705  |           | 707  |               | 671  |               | 527              |      |
| $(K + 5)^+$    | 340  |      | 331  |      | 326  |           | 391  |               | 383  |               | 440              |      |
| $(K + 5)^{-}$  | 905  |      | 873  |      | 785  |           | 798  |               | 759  |               | 693              |      |
| $(K + 6)^+$    | 445  |      | 433  |      | 427  |           | 512  |               | 500  |               | 543              |      |
| $(K + 6)^{-}$  | 1001 |      | 967  |      | 876  |           | 900  |               | 858  |               | 776              |      |
| $(K + 7)^+$    | 562  |      | 547  |      | 539  |           | 645  |               | 631  |               | 657              |      |
| $(K + 7)^{-}$  | 1101 |      | 1071 |      | 977  |           | 1013 |               | 968  |               | 868              |      |
| $(K + 8)^+$    | 691  |      | 673  |      | 663  |           | 792  |               | 774  |               | 781              |      |
| $(K + 8)^{-}$  | 1227 |      | 1186 |      | 1089 |           | 1137 |               | 1088 |               | 969              |      |
| $(K + 9)^+$    | 833  |      | 810  |      | 798  |           | 951  |               | 929  |               | 913              |      |
| $(K + 9)^{-}$  | 1356 |      | 1312 |      | 1211 |           | 1271 |               | 1217 |               | 1079             |      |
| $(K + 10)^+$   | 987  |      | 960  |      | 945  |           | 1123 |               | 1096 |               | 1055             |      |
| $(K + 10)^{-}$ | 1497 |      | 1448 |      | 1343 |           | 1415 |               | 1356 |               | 1198             |      |

TABLE VII. Transitional electric dipole  $D_0$ , quadrupole  $Q_2$ , and octupole  $Q_3$  moments for the transitions from the ground state to the states of alternating parity band.

| Nucleus           | $D_0 (e \text{ fm})$<br>$(0^+ \to 1^-)$ | $\begin{array}{c} Q_2 \ (e \ \mathrm{fm}^2) \\ (0^+ \rightarrow 2^+) \end{array}$ | $Q_3 \ (e \ { m fm}^3)$<br>$(0^+ 	o 3^-)$ |
|-------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|
| <sup>240</sup> U  | 0.0017                                  | 823                                                                               | 1292                                      |
| <sup>242</sup> Pu | 0.0030                                  | 875                                                                               | 1432                                      |
| <sup>244</sup> Cm | 0.0029                                  | 894                                                                               | 1464                                      |
| <sup>246</sup> Cf | 0.0030                                  | 982                                                                               | 1538                                      |
| <sup>248</sup> Fm | 0.0046                                  | 1012                                                                              | 1672                                      |
| <sup>250</sup> No | 0.0092                                  | 1046                                                                              | 1920                                      |
| <sup>244</sup> Pu | 0.0025                                  | 877                                                                               | 1385                                      |
| <sup>246</sup> Cm | 0.0027                                  | 901                                                                               | 1441                                      |
| <sup>248</sup> Cf | 0.0027                                  | 963                                                                               | 1497                                      |
| <sup>250</sup> Fm | 0.0032                                  | 989                                                                               | 1573                                      |
| <sup>252</sup> No | 0.0057                                  | 1019                                                                              | 1750                                      |
| <sup>254</sup> Rf | 0.0100                                  | 1053                                                                              | 1978                                      |
| <sup>248</sup> Cm | 0.0020                                  | 976                                                                               | 1380                                      |
| <sup>250</sup> Cf | 0.0026                                  | 1045                                                                              | 1481                                      |
| <sup>252</sup> Fm | 0.0030                                  | 1077                                                                              | 1548                                      |
| <sup>254</sup> No | 0.0039                                  | 1109                                                                              | 1646                                      |
| <sup>256</sup> Rf | 0.0050                                  | 1146                                                                              | 1758                                      |
| <sup>258</sup> Sg | 0.0077                                  | 1183                                                                              | 1927                                      |

taken to be equal to  $e_1^{\text{eff}} = e(1 + \chi)$  with an average stateindependent value of *E*1 polarizability coefficient  $\chi = -0.7$ [29,30]. This renormalization considers a coupling of the massasymmetry mode to the giant dipole resonance in the DNS. In the case of the quadrupole transitions, we do not renormalize

TABLE VIII. Transitional electric dipole  $D_0$ , quadrupole  $Q_2$ , and octupole  $Q_3$  moments for the transitions from the ground state to the states of parity doublet band.

|                   |                          | $O(f^2)$                 |                          |
|-------------------|--------------------------|--------------------------|--------------------------|
| Nucleus           | $D_0 (e \text{ fm})$     | $Q_2 (e \text{ fm}^2)$   | $Q_3 (e \text{ Im}^3)$   |
|                   | $[K^{\perp} \rightarrow$ | $[K^{\perp} \rightarrow$ | $[K^{\perp} \rightarrow$ |
|                   | $(K + 1)^+$ ]            | $(K+2)^{\pm}$ ]          | $(K+3)^{+}$ ]            |
| <sup>239</sup> U  | 0.0075                   | 826                      | 1562                     |
| <sup>241</sup> Pu | 0.0088                   | 851                      | 1656                     |
| <sup>243</sup> Cm | 0.015                    | 911                      | 1888                     |
| <sup>245</sup> Cf | 0.018                    | 939                      | 2024                     |
| <sup>247</sup> Fm | 0.021                    | 1010                     | 2193                     |
| <sup>249</sup> No | 0.043                    | 1061                     | 2754                     |
| <sup>243</sup> Pu | 0.0086                   | 883                      | 1643                     |
| <sup>245</sup> Cm | 0.0085                   | 910                      | 1694                     |
| <sup>247</sup> Cf | 0.0066                   | 969                      | 1690                     |
| <sup>229</sup> Fm | 0.0126                   | 1004                     | 1945                     |
| <sup>251</sup> No | 0.0177                   | 1036                     | 2149                     |
| <sup>253</sup> Rf | 0.0207                   | 1065                     | 2300                     |
| <sup>245</sup> Cm | 0.0084                   | 890                      | 1621                     |
| <sup>247</sup> Cf | 0.011                    | 917                      | 1739                     |
| <sup>249</sup> Fm | 0.0128                   | 983                      | 1868                     |
| <sup>251</sup> No | 0.0121                   | 1007                     | 1908                     |
| <sup>253</sup> Rf | 0.0130                   | 1037                     | 1993                     |
| <sup>255</sup> Sg | 0.0125                   | 1066                     | 2048                     |



FIG. 3. Calculated spin dependences of the reduced matrix elements of the electric dipole, quadrupole, and octupole operators in  $^{252}$ No.

the charge  $e_2^{\text{eff}} = e$ . Taking into account the coupling of the mass-asymmetry mode with the higher-lying isovector and isoscalar octupole excitations [29,30], we set for octupole moments the effective charge  $e_{3,\text{proton}}^{\text{eff}} = 1.2e$  for protons and  $e_{3,\text{neutron}}^{\text{eff}} = 0.8e$  for neutrons. The results of our calculations are listed in Tables VII and VIII, and shown in Fig. 3. The predicted multipole moments have the common properties of nuclei exhibiting the features of reflection asymmetry. Our predicted values for  $Q_2$  are in satisfactory agreement with those following from the theoretical predictions of Refs. [14,15]. The predicted *E*1 transitions between the yrast positive and negative parity states of transactinides are more than one order of magnitude weaker than those for the isotopes of the lighter actinides Rn, Ra and Th. This fact creates an additional difficulty in observing the alternative parity bands in the heaviest nuclei.

The spin dependence of the reduced matrix elements of the intrinsic electric multipole operators is shown in Fig. 3 for the nucleus  $^{252}$ No. The increase of the multipole moments with spin is similar to that observed for the reduced matrix elements in the actinides. In Fig. 3, one can see almost constant staggering of the calculated intrinsic transition quadrupole moment with the change of the parity of spin. The larger weight of the  $\alpha$ -cluster component in the wave functions at odd *I* and quite large quadrupole and octupole deformations

corresponding to the  $\alpha$ -cluster configuration explain the staggering in  $Q_2$  and  $Q_3$ .

# **IV. SUMMARY**

The cluster interpretation of collective low-lying alternative parity states of the nuclei with  $Z \ge 96$  is suggested. Within the cluster approach, the  $\alpha$ -cluster configuration gives a significant contribution to the wave function of a low-energy nuclear state. The energies of the low-lying states of the even-even and odd heaviest nuclei whose parity is opposite to the parity of the ground state are predicted. The maximal uncertainty of calculated energies of these states is about 100 keV and mainly related to the uncertainty in the calculation of the potential energy of the  $\alpha$ -cluster configuration. The lowest energies of these states are about 600–900 keV and 300–600 keV for the even-even and odd nuclei, respectively. The observation of these states would be a crucial test of the correctness of the suggested approach. Our predictions of the spectra and intrinsic transition multipole moments will be

- [1] P. Reiter et al., Phys. Rev. Lett. 82, 509 (1999); 84, 3542 (2000).
- [2] M. Leino et al., Eur. Phys. J. A 6, 1 (1999).
- [3] F. P. Hessberger, Acta Phys. Slovaca 49, 43 (1999);
  F. P. Hessberger *et al.*, Eur. Phys. J. A 3, 521 (2000); S. Hofmann *et al.*, *ibid.* 10, 5 (2001); F. P. Hessberger *et al.*, *ibid.* 12, 57 (2001).
- [4] R. D. Herzberg et al., Phys. Rev. C 65, 014303 (2001).
- [5] P. A. Butler et al., Phys. Rev. Lett. 89, 202501 (2002).
- [6] M. Leino and F. P. Hessberger, Annu. Rev. Nucl. Part. Sci. 54 175 (2004).
- [7] R. D. Humphreys et al., Phys. Rev. C 69, 064324 (2004).
- [8] D. Ackermann, Eur. Phys. J. A 25, 577 (2005).
- [9] P. T. Greenlees et al., Eur. Phys. J. A 25, 599 (2005).
- [10] S. Eeckhaudt et al., Eur. Phys. J. A 25, 605 (2005).
- [11] P. Reiter et al., Phys. Rev. Lett. 95, 032501 (2005).
- [12] J. E. Bastin et al., Phys. Rev. C 73, 024308 (2006).
- [13] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. **72**, 733 (2000).
- [14] A. Sobiczewski, I. Muntian, and Z. Patyk, Phys. Rev. C 63, 034306 (2001).
- [15] P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).
- [16] I. Ahmad and P. A. Butler, Annu. Rev. Nucl. Part. Sci. 43, 71 (1993).
- [17] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).
- [18] T. M. Shneidman, G. G. Adamian, N. V. Antonenko, R. V. Jolos, and W. Scheid, Phys. Lett. B526, 322 (2002); Phys. Rev. C 67,

helpful for current and future experimental works regarding the spectroscopy of superheavy nuclei.

In the future, we will treat the  $\alpha$ -particle emission under the assumption that this cluster is formed by a collective motion of the nuclear system in  $\eta$  with further penetration of the  $\alpha$  particle through the Coulomb barrier. The study of  $\alpha$  decay widths,  $\alpha$  fine structures and branching ratios between the  $\alpha$  decay of a nucleus to the first rotational state and to the ground state of the daughter nucleus is important for the identification of low-lying alternative parity states.

## ACKNOWLEDGMENTS

This work was supported in part by DFG (Bonn), Volkswagen-Stiftung (Hannover), and RFBR (Moscow). Support by the IN2P3-JINR (Dubna) and Polish-JINR (Dubna) Cooperation Programmes is also gratefully acknowledged. We thank professors D. Ackermann, F. P. Hessberger, A. Korichi, D. Lacroix, W. Scheid, and Ch. Thiesen for fruitful discussions and suggestions.

014313 (2003); G. G. Adamian, N. V. Antonenko, R. V. Jolos, Yu.V. Palchikov, and W. Scheid, *ibid.* **67**, 054303 (2003); G. G. Adamian *et al.*, Acta Phys. Pol. B **34**, 2147 (2003).

- [19] G. G. Adamian, N. V. Antonenko, R. V. Jolos, and T. M. Shneidman, Phys. Rev. C 70, 064318 (2004);
   G. G. Adamian, N. V. Antonenko, R. V. Jolos, Yu. V. Palchikov, W. Scheid, and T. M. Shneidman, *ibid.* 69, 054310 (2004).
- [20] G. G. Adamian, N. V. Antonenko, and R. V. Jolos, Nucl. Phys. A584, 205 (1995).
- [21] T. M. Shneidman, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, Nucl. Phys. A671, 119 (2000).
- [22] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra, Nucl. Phys. A729, 3 (2003).
- [23] S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables **78**, 1 (2001).
- [24] G. G. Adamian et al., Int. J. Mod. Phys. E 5, 191 (1996).
- [25] A. B. Migdal, *Theory of Finite Fermi Systems and Applications to Atomic Nuclei* (Wiley, New York, 1967).
- [26] S. N. Kuklin *et al.*, in preparation.
- [27] http://www.nndc.bnl.gov/nndc/ensdf/
- [28] T. Ishii *et al.*, presented at the International Conference on nuclear Structure and Relative Topics, Dubna, Russia, 13–17 June, 2006.
- [29] A. Bohr and B. R. Mottelson, *Nuclear Structure* (Benjamin, New York, 1975), Vol. II.
- [30] I. Hamamoto, Nucl. Phys. A557, 515c (1992).