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Possible alternative parity bands in the heaviest nuclei
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The low-lying alternative parity bands in heaviest nuclei are predicted for the first time. The parity splitting
and electric dipole, quadrupole, and octupole transition moments of heavy nuclei are calculated within a cluster
model. The model is based on the assumption that reflection asymmetric shapes are produced by the motion of
the nuclear system in the mass asymmetry coordinate.

DOI: 10.1103/PhysRevC.74.034316 PACS number(s): 21.10.Re, 21.60.Ev, 21.60.Gx, 27.90.+b

I. INTRODUCTION

Lately the low-lying collective states, α decay, and K

isomers are attracting much attention in the study of the
structure of transfermium nuclei [1–13]. New spectroscopic
data have been obtained for the heaviest nuclei with charge
numbers Z � 96. For instance, in inbeam experiments, the
rotational bands of nuclei 252,254No have been identified up
to spins of 20–22 [1]. The γ transitions in the rotational yrast
and nonyrast bands, weakly populated isomeric levels, and
α-decay fine structure are hard to observe because of low
production cross sections and large backgrounds. However, the
improved sensitivity of modern setups at the ANL (Argonne),
GSI (Darmstadt), JYFL (Yyväskylä), GANIL (Caen), and
FLNR (Dubna) laboratories allows us to measure the α-γ or
α conversion-electron coincidence [1–13].

Knowledge of the structure of very heavy elements is
essential to testing and developing mean-field theories that
predict nuclear properties. The spectroscopic studies of nuclei
in the transfermium region may help determine the order of
single-particle orbitals and the appearance of shell gaps, i.e.,
to shed light on the next doubly magic nucleus beyond 208Pb.
Such investigations give information on the moments of inertia
needed to extract the values of deformation parameters [1–3]
which can be compared with the predicted values [14,15].
From the study of nuclear stability versus angular momentum,
one can determine the maximal angular momentum [1,10]
which contributes to the complete fusion and formation of
superheavies [13]. Therefore, understanding the structure and
properties of the heaviest nuclei would stimulate progress in
the synthesis of new superheavy nuclei.

The observation of low-lying alternative parity states in the
light and heavy actinides has shown that these nuclei have
reflection-asymmetric shapes or are very soft with respect
to reflection-asymmetric vibrations around the equilibrium
shape [16,17]. It turns out that the actinides have α-clustering
behavior, which is the origin of the appearance of low-lying
alternative parity states [18,19]. It is natural to assume that
the transactinides may have the same properties because they
are good α emitters and, therefore, the α-cluster component
is presented in the wave function of the ground state. The
aim of the present paper is to predict the possible low-
lying alternative parity states of superheavy nuclei and to

explore their main collective characteristics. We apply the
cluster model developed in Refs. [18,19] for the quantitative
description of such states. The main idea of the model is that the
dynamics of a mirror asymmetric deformation can be treated as
a collective motion of nucleons between the two clusters or as
the motion in the mass asymmetry coordinate. Such collective
motion simultaneously creates the deformations with even and
odd multipolarities. Among different cluster configurations,
only the α-cluster system AZ → A−4(Z − 2)+4He gives a
significant contribution to the formation of low-energy nuclear
states. Within our approach, the existing experimental data
on the angular momentum dependence of parity splitting and
multipole transition moments (E1, E2, E3) of the low-lying
alternating parity states in the odd and even actinides 220−228Ra,
223,225,227Ac, 222−224,226,228−232Th, 231Pa, 232−234,236,238U, and
240,242Pu and the medium-mass nuclei 144,146,148Ba, 151,153Pm,
146,148Ce, 153,155Eu, and 146,148Nd are well described [18,19].
The perfect agreement between the calculated and experi-
mental data supplies the elegant proof of the cluster features
of reflection asymmetric states. The predictive power of the
suggested model seems when be quite high when exploring
the rotational bands in the heaviest nuclei.

II. CLUSTER MODEL

A. Hamiltonian in mass asymmetry coordinate

Instead of the parametrization of nuclear shapes in terms
of quadrupole (β2), octupole (β3), and higher multipole
deformations, the mass (charge) asymmetry coordinate η =
(A1 − A2)/(A1 + A2) [ηZ = (Z1 − Z2)/(Z1 + Z2)], which
describes a partition of nucleons between the dinuclear system
(DNS) nuclei, is used as the relevant collective variable. Here,
A1 (Z1) and A2 (Z2) are the mass (charge) numbers of the
heavy and light nuclei of the DNS formed by two touching
nuclei or clusters. The dynamic coordinate η (ηZ) is assumed
to be a continuous variable [18,19]. The wave function in
η can be thought of as a superposition of the mononucleus
configuration with |η| = 1 and different cluster-type con-
figurations including the α-cluster configuration with |η| =
|ηα| = (A − 2A1)/A = 1 − 8/A (A1 = 4) [18,19]. Since the
potential energies of configurations with a light cluster heavier
than an α particle increase rapidly with decreasing |η|, for
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small nuclear excitations only the oscillations in η in the
vicinity of |η| = 1 are of interest, i.e., only clusterizations
up to Li have to be considered. The relative weight of each
cluster component to the total wave function is determined by
solving the stationary Schrödinger equation [18,19][

− h̄2

2Bη

d2

dη2
+ U (η, I,K)

]
�K (η, I ) = E(I,K)�K (η, I ),

(1)

where Bη and U (η, I,K) are the inertia coefficient and
potential energy of collective Hamiltonian, respectively. Here,
I and K are the total spin and its projection on the symmetry
axis. Since the potential energy is invariant under the inversion
(the reflection) η → −η, every nondegenerate eigenfunction
�K of collective Hamiltonian has a definite parity. For
example, the ground state is symmetric, the first excited state
is antisymmetric [18,19].

The rotational states are built on the vibrational states in
η. The total wave function �pIMK describing a nucleus with
definite parity p is written as

�pIMK =
(

2I + 1

16π2

)1/2 [
�K (η, I )DI

MK

+p(−1)I+K�K (η, I )DI
M−K

]
. (2)

In the case of the even-even nuclei (K = 0) we have a set
of states with Ip = 0+, 1−, 2+, 3−, 4+, . . .; i.e., the positive
and negative rotational bands are built on the lowest even
and odd states in η, respectively. For odd-mass nuclei, the
rotational bands are built on the intrinsic state with K �= 0,
and all combinations Ip = K±, (K + 1)±, (K + 2)± . . . are
possible, which gives rise to the parity doublet structure of
the rotational band. With increasing spin, the barrier between
the α-cluster DNS and its mirror image becomes higher, the
penetration probability of this barrier goes to zero, and, thus,
we approach almost ideal alternative parity rotational bands
[18,19].

B. Mass parameter

A method of calculating of Bη is described in Ref. [20].
Since Bη is a smooth function of A, it is possible to use
the same value of Bη for the nuclei under consideration. We
neglect the dependence of the mass parameter on η and for the
mononucleus and α- and Li-cluster configurations of all nuclei
considered, we set Bη = (25 × 104)m0 fm2, where m0 is the
nucleon mass.

The mass Bη can be estimated by relating the mass asym-
metry coordinate η to the octupole deformation coordinate β3.
Such a relation between η,Rm, and β3 was derived in [21]:

β3 =
√

7

4π

π

3
η(1 − η2)

R3
m

R3
0

, (3)

where R0 is the spherical equivalent radius of the corre-
sponding compound nucleus. If we take the value of Bβ3 ≈
200h̄2 MeV−1 known from the literature, then we obtain Bη ≈
(dβ3/dη)2Bβ3 = (9.3 × 104)m0 fm2, which is compatible with
the value used in the calculations.

C. Potential energy

The potential U (η, I,K) of cluster systems (|η| < 1) is
taken as

U (η, I,K) = V (Rm, η, I,K) − B1(η) − B2(η) + B,
(4)

V (Rm, η, I,K) = VCoul(Rm, η) + VN (Rm, η)

+Vrot(Rm, η, I,K),

where B1 and B2 are the binding energies of the clusters
forming the DNS at a given η, and B is the binding energy of the
mother nucleus. The experimental ground-state masses [22],
if available, are used in the calculations. If not, the predictions
of Ref. [15] are used. Because of the normalization by B in
Eq. (2), E(I = K,K) = 0 for the ground state. The DNS is
localized in the minimum of the pocket of the nucleus-nucleus
interaction potential V at R = Rm corresponding to the
touching configuration. The deformations of heavy clusters,
are taken from Refs. [15,23]. The polarization effects can be
neglected in the very asymmetric DNS considered. One can
disregard the change of the deformation of the heavy cluster
under the influence of the α particle. The polarization effects
are more important at the stronger Coulomb interaction. The
pole-to-pole orientation of the deformed nuclei in the DNS
gives the minimum of the potential energy. Since the mode
responsible for the N/Z equilibrium in the DNS is quite fast,
the potential energy U is minimized with respect to ηZ for
each η. The nucleus-nucleus interaction potential V contains
the Coulomb VCoul, nuclear interaction VN , and centrifugal

Vrot = h̄2[I (I + 1) − K(K + 1)]/(2�(Rm, η)) (5)

potentials [18,19,24]. To calculate the nuclear and Coulomb
interactions, we applied the exact double folding procedure
[18,19,24]. The potential VN is obtained with the density-
dependent nucleon-nucleon forces [24,25]. The parameters of
the nucleon-nucleon interaction are fixed in nuclear struc-
ture calculations [25]. For the touching configuration, the
assumption on the frozen density profiles plays no role.
At R > Rm, almost all methods of calculating the nuclear
interaction lead to close results if the values and positions of
the Coulomb barriers are well described with these methods. In
calculations, the nuclear density distribution is approximated
by the Fermi distribution with a radius parameter 1.15
fm for the transactinides region. While for 4He and 7Li
the diffuseness parameter a of this distribution is taken as
0.48 fm, we set a = a0

√
B(0)

n /Bn fm for the heavy clusters
where Bn and B(0)

n are the neutron binding energies of the
studied nucleus and of the heaviest isotope considered for the
same element, respectively. For even and odd nuclei, a0 = 0.56
and 0.58 fm [18,19], respectively. If this expression gives
a < 0.52 fm for some isotopes, we set a = 0.52 fm. The
uncertainty of the potential energy is mainly created by the
uncertainty in the definition of the diffuseness of the clusters.
In our calculations, we use for all nuclei the same procedure
described above to define the values of a. The details of the
calculations of U as well as the solution of Eq. (1) are presented
in Refs. [18,19,24].
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The expression (4) cannot be used to calculate the potential
energy of a mononucleus (|η| = 1); instead we use

U (|η| = 1, I,K) = U (|η| = 1, I = K,K) + h̄2[I (I + 1)

−K(K + 1)]/[2�m(|η| = 1)]. (6)

The value of potential energy U (|η| = 1, I = K,K) was
chosen to obtain the correct value of energy E(I = K,K)
of the ground state for given Bη [18,19].

The potential energy U and, correspondingly, the moment
of inertia are calculated for special cluster configurations only,
namely, for the mononucleus (|η| = 1) and for the two cluster
configurations with the α and Li clusters as light clusters.
These calculated points are used later to smoothly interpolate
the potential by a polynomial. The energies of the Li and
heavier cluster configurations are much larger than the binding
energies of the nuclei considered. For example, the difference
between the energy of the Li cluster configuration and the
binding energy of the nucleus is about 15 MeV. Therefore, we
restrict our investigation to configurations with light clusters
not heavier than Li.

D. Moments of inertia

To calculate the potential energy for I �= K , we need the
moment of inertia for the mononucleus (|η| = 1) and for the
two cluster configurations with 4He (η = ηα) and 7Li (η = ηLi)
[18,19]. The moment of inertia of the cluster configurations
(|η| �= 1) is expressed as

�(Rm, η) = c1

(
�r

1 + �r
2 + m0

A1A2

A
R2

m

)
, (7)

where �r
i (i = 1, 2) are the rigid body moments of inertia for

the DNS clusters, and c1 = 0.85 [18,19] for all considered
nuclei. For the mononucleus (|η| = 1), the value of the
moment of inertia is not known from the data because the
experimental moment of inertia is a mean value between the
moment of inertia of the mononucleus and those of the cluster
configurations arising as a result of the oscillations in η. We
assume that

�(|η| = 1) = c2�r (|η| = 1), (8)

where �r is the rigid body moment of inertia of the mononu-
cleus with A nucleons calculated with deformation parameters
from Refs. [15,23]. The free scaling parameter c2 is fixed by
the energy of one of the known lowest states of the same parity
as the parity of the ground state. Since in the isotone chain,
the energy of the first excited collective state weakly depends
on the charge number of the nucleus, c2 for an unknown
nucleus is adopted from the closest neighboring nucleus in
the isotone chain for which the energy of one of the lowest
states of the same parity as the parity of the ground state is
experimentally known. The chosen values of c2 vary within
narrow intervals 0.42–0.48 and 0.5–0.8 for even-even and odd
nuclei, respectively. Taking c2 from these intervals, one can
hope for reasonable predictions for nuclei whose states have
not yet been measured. Uncertainty in the definition of c2

creates the uncertainty of about 30 keV in the calculations of
the energies of rotational states. The value of c2 determines an

angular momentum dependence of the α-cluster spectroscopic
factor and decay width [26]. So, in our calculations there is
a free parameter c2 which models the gross behavior of the
states with the same parity. However, this parameter is not
responsible for describing the parity splitting studied in paper.

As we mentioned above, the moment of inertia of nucleus
is a mean value between the moment of inertia of the
mononucleus and those of the cluster configurations. Since the
relative weights of each cluster component and mononucleus
to the total wave function depend on spin, the moment of inertia
�(I )eff of a nucleus is a function of spin as well in our approach.
The moment of inertia �eff increases with spin because of the
transition from the structure close to mononucleus at low I to
the α-cluster structure at high I . At relatively large spins, the
α-cluster configuration becomes energetically more favorable
than the mononucleus configuration because �(|η| = 1) <

�(Rm, |η| < 1). For example, the calculated energies of the
positive parity levels of the ground-state rotational bands of
even-even nuclei can be described with a good accuracy by the
following expression [18]:

E(I,K = 0) = h̄I (I + 1)/[2�eff(I )],

�eff(I ) = [1 − wα(I )]�(|η| = 1) + wα(I )�(Rm, η = ηα),

where wα(I ) = ∫ ηLi

ηα dη|�K (η, I )|2 and 1 − wα(I ) are the

weights of 4He-cluster and mononucleus configurations, re-
spectively. The contributions to the wave function in η of other
cluster configurations are very small.

III. RESULTS OF CALCULATIONS AND DISCUSSION

A. Calculation procedure

It is convenient to substitute the coordinate η by the
following coordinate

x = η − 1 if η > 0, x = η + 1 if η < 0.

Then the Schrödinger equation (1) can be rewritten as[
− h̄2

2Bx

d2

dx2
+ U (x, I,K)

]
�K (x, I ) = E(I,K)�K (x, I ),

(9)

where Bx = Bη is the effective mass. The smooth parametriza-
tion

U (x, I,K) =
4∑

k=0

a2k(I,K)x2k (10)

of the potential U (x, I,K) is chosen. The potential energy is
symmetric with respect to x = 0 (|η| = 1). The parameters
a2k(I ) are determined by the calculated potential values for
x = 0 (|η| = 1), x = xα (η = ±ηα) and x = xLi (η = ±ηLi).
The value a0(I = K) is taken so that the ground-state energy
E(I = K,K) is zero after the solution of the Schrödinger
equation. The calculations with other parametrizations show
almost no difference in the description of parity splitting in the
considered nuclei.

The solution of Eq. (9) has a well-defined parity. The lower
and first excited states are the symmetric and asymmetric
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functions of x, respectively. For even-even nuclei, the positive
(negative) parity states are built on the lowest (first excited)
state in x. For odd-mass nuclei, the two lowest states obtained
by solving Eq. (9) correspond to the members of a parity
doublet for given spin I . The parity of the lower member
of the doublet is equal to the parity p0 of the ground state,
and the higher member of the doublet has the opposite parity
−p0. The quantum numbers K and p0 of the ground state of
the nucleus are taken from the experiment or from theoretical
predictions [27].

B. Parity splitting

With Eq. (1), we calculate the alternative parity states of
ground-state rotational bands for several isotopes of U, Pu,
Cm, Cf, Fm, No, Rf, and Sg. The results of these calculations
are presented in Figs. 1 and 2, and Tables I–VI. They agree
well with the available experimental data [27] for nuclei 239U,
241,242,244Pu, 245,248Cm, and 247Cf (positive and negative parity
states) and for 243Pu, 243,244,246,247Cm, 248−250Cf, 249,251Fm,
and 252,254No [positive or negative (for odd nuclei) parity
states]. One can see in the rotational bands of 241,242,244Pu,
245,248Cm, and 247Cf an appreciable shift (parity splitting) of
the negative parity states with respect to the positive parity
states. A good description of the experimental data, especially
of the variation of the parity splitting with A at low I and of
the value of the critical angular momentum at which the parity
splitting disappears, means that the dependence of the potential
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FIG. 1. Calculated level schemes in 254No.
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FIG. 2. Same as Fig. 1, but for 253No.

energy on η and I for the nuclei of 241,242,244Pu, 245,248Cm, and
247Cf is correctly described with our cluster model.

The alternative parity states are predicted in nuclei
239,240U, 243Pu, 243,244,246,247Cm, 245,246,248−250Cf, 247−252Fm,
249−254No, 253−256Rf, and 258Sg. In these nuclei there is also
an appreciable shift of the negative parity states with respect
to the positive parity states. The model parameters do not vary
much from one nucleus to another. Therefore, the unknown
nucleus can be predicted with high accuracy. For example,
our predictions for the positive and negative parity states of
240U are in good agreement with recent new experimental
data [28].

One should note that the alternative parity states in the yrast
rotational band of heaviest nuclei (Z � 100) have not yet been
found in the experiments. However, there is known 3− state of
nonyrast structure at the excitation energy of 987 keV in 254No
[10] which is close to our predicted 3− yrast state. Perhaps the
lack of other negative parity states in the present experimental
yrast rotational bands can be explained by the difficulties in
detecting these states because of the small production cross
sections, large background, strong competition between the
channels of γ decay and emission of conversion electrons, and
appreciable shift of the states with different parities. Further
experimental and theoretical investigation of the predicted
negative and positive parity partners is necessary.

C. Intrinsic electric multipole moments

With the wave functions obtained from Eq. (1), we calculate
the electric multipole moments Q1 = 2D0,Q2 and Q3 defined
in Refs. [18,19,21]. The effective charge for E1 transitions is
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TABLE I. Calculated (E) and experimental (Eexp) energies (in keV) of the levels of ground-state rotational band (Kp = 0+)
in N = 152 isotones. Experimental data are taken from Ref. [27].

Ip 248Cm 250Cf 252Fm 254No 256Rf 258Sg

E Eexp E Eexp E Eexp E Eexp E Eexp E Eexp

0+ 0 0 0 0 0 0 0 0 0 0
1− 865 1049 823 811 773 726 661
2+ 43 43 43 43 47 47 44 44 44 42
3− 930 1094 888 881 838 790 723
4+ 143 144 143 142 155 146 145 145 140
5− 1046 1172 1003 1003 954 905 832
6+ 298 298 297 296 322 304 304 303 293
7− 1211 1167 1177 1119 1068 987
8+ 504 505 503 500 544 516 518 514 497
9− 1423 1375 1398 1330 1276 1185

10+ 760 761 757 818 780 786 776 750
11− 1677 1680 1625 1661 1583 1526 1422
12+ 1061 1061 1056 1138 1091 1104 1085 1048
13− 1970 1938 1912 1963 1876 1815 1695
14+ 1404 1403 1394 1500 1445 1470 1437 1387
15− 2299 2238 2233 2297 2203 2136 1999
16+ 1784 1780 1767 1899 1838 1884 1827 1762
17− 2658 2574 2583 2659 2560 2486 2328
18+ 2197 2188 2175 2330 2267 2340 2251 2167
19− 3045 2944 2957 3044 2942 2858 2677
20+ 2641 2622 2609 2787 2725 2839 2702 2667
21− 3456 3344 3353 3445 3248 3103

TABLE II. Calculated (E) and experimental (Eexp) energies (in keV) of the levels of ground-state rotational band
(Kp = 0+) in N = 150 isotones. Experimental data are taken from Ref. [9,27].

Ip 244Pu 246Cm 248Cf 250Fm 252No 254Rf

E Eexp E Eexp E Eexp E Eexp E Eexp E Eexp

0+ 0 0 0 0 0 0 0 0 0 0
1− 804 797 797 782 692 596
2+ 44 44 43 43 42 42 42 46 46 45
3− 870 957 862 861 845 760 660
4+ 145 155 143 142 141 138 139 154 154 150
5− 989 1068 978 976 957 880 775
6+ 303 318 298 295 294 285 290 321 321 313
7− 1157 1206 1144 1139 1117 1050 937
8+ 515 535 507 500 500 492 545 545 530
9− 1373 1395 1356 1348 1322 1268 1143

10+ 779 802 765 755 743 822 822 799
11− 1634 1628 1612 1600 1569 1589 1390
12+ 1090 1116 1071 1057 1041 1148 1150 1115
13− 1936 1904 1908 1893 1855 1827 1671
14+ 1445 1471 1421 1402 1381 1520 1526 1472
15− 2275 2220 2241 2221 2177 2159 1980
16+ 1841 1864 1811 1787 1760 1930 1942 1862
17− 2647 2573 2606 2583 2530 2517 2384
18+ 2273 2289 2236 2208 2174 2372 2396 2332
19− 3049 2958 3001 2972 2911 2894 2705
20+ 2738 2742 2694 2660 2619 2907 2879 2731
21− 3475 3365 3419 3386 3315 3343 3045
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TABLE III. Calculated (E) and experimental (Eexp) energies (in keV) of the levels of ground-state rotational band
(Kp = 0+) in N = 148 isotones. Experimental data are taken from Ref. [27].

Ip 240U 242Pu 244Cm 246Cf 248Fm 250No

E Eexp E Eexp E Eexp E Eexp E Eexp E Eexp

0+ 0 0 0 0 0 0 0 0 0 0
1− 838 754 781 770 768 707 592
2+ 45 45 45 43 43 44 44 44 44 43
3− 907 822 832 835 834 772 654
4+ 151 150 147 143 142 145 145 142
5− 1035 943 927 951 951 887 764
6+ 314 311 306 298 296 302 302 295
7− 1205 1114 1115 1116 1050 920
8+ 532 527 518 504 502 511 512 498
9− 1428 1331 1325 1327 1258 1117

10+ 801 793 779 759 770 770 749
11− 1696 1592 1576 1580 1507 1353
12+ 1116 1105 1084 1059 1073 1073 1043
13− 2003 1890 1865 1870 1791 1622
14+ 1473 1458 1432 1398 1416 1415 1374
15− 2346 2223 2188 2194 2107 1919
16+ 1868 1847 1817 1774 1796 1792 1736
17− 2720 2585 2540 2546 2450 2239
18+ 2296 2269 2236 2188 2207 2200 2125
19− 3120 2971 2917 2922 2815 2656
20+ 2753 2718 2686 2616 2645 2632 2596
21− 3544 3377 3315 3318 3196 2984

TABLE IV. Calculated (E) and experimental (Eexp) energies (in keV) of the levels of ground-state rotational band (Kp = 9/2−)
in N = 151 isotones. Experimental data are taken from Ref. [27].

Ip 245Pu 247Cm 249Cf 251Fm 253No 255Rf

E Eexp E Eexp E Eexp E Eexp E Eexp E Eexp

K− 0 0 0 0 0 0 0 0 0 0
K+ 608 572 545 555 542 552
(K + 1)− 61 62 62 63 63 47 47 47 46
(K + 1)+ 665 630 602 601 588 597
(K + 2)− 134 135 135 137 136 103 102 100
(K + 2)+ 732 697 670 656 641 650
(K + 3)− 217 217 220 219 223 220 168 165 163
(K + 3)+ 810 775 748 718 703 711
(K + 4)− 311 315 320 315 241 237 234
(K + 4)+ 897 862 836 790 774 780
(K + 5)− 417 422 428 425 322 318 314
(K + 5)+ 995 961 934 869 852 857
(K + 6)− 534 540 547 412 407 401
(K + 6)+ 1104 1069 1042 957 939 943
(K + 7)− 661 669 678 511 504 497
(K + 7)+ 1222 1187 1160 1053 1034 1037
(K + 8)− 800 809 820 618 610 602
(K + 8)+ 1350 1315 1288 1158 1137 1138
(K + 9)− 949 961 973 734 724 715
(K + 9)+ 1488 1453 1426 1271 1248 1248
(K + 10)− 1110 1123 1137 858 847 836
(K + 10)+ 1637 1601 1573 1392 1368 1366

034316-6



POSSIBLE ALTERNATIVE PARITY BANDS IN THE . . . PHYSICAL REVIEW C 74, 034316 (2006)

TABLE V. Calculated (E) and experimental (Eexp) energies (in keV) of the levels of ground-state rotational band (Kp = 7/2+)
in N = 149 isotones. Experimental data are taken from Ref. [27].

Ip 243Pu 245Cm 247Cf 249Fm 251No 253Rf

E Eexp E Eexp E Eexp E Eexp E Eexp E Eexp

K+ 0 0 0 0 0 0 0 0 0 0 0
K− 589 594 643 640 678 535 478 449
(K + 1)+ 58 58 55 55 55 55 58 58 61 61 59
(K + 1)− 641 644 702 691 738 586 530 500
(K + 2)+ 128 125 122 122 123 122 128 128 134 117 132
(K + 2)− 705 705 773 752 648 594 562
(K + 3)+ 211 207 201 197 202 201 211 222 217
(K + 3)− 780 777 866 825 722 669 635
(K + 4)+ 307 299 292 294 307 322 315
(K + 4)− 867 860 908 806 755 718
(K + 5)+ 416 404 396 398 415 435 426
(K + 5)− 965 954 1003 901 852 812
(K + 6)+ 537 519 511 514 536 561 550
(K + 6)− 1074 1059 1108 1008 959 917
(K + 7)+ 670 647 638 642 669 700 685
(K + 7)− 1194 1174 1225 1124 1077 1031
(K + 8)+ 816 784 778 782 814 851 833
(K + 8)− 1325 1300 1352 1251 1205 1155
(K + 9)+ 975 933 929 934 972 1014 991
(K + 9)− 1467 1437 1489 1389 1342 1288
(K + 10)+ 1146 1092 1092 1098 1141 1188 1161
(K + 10)− 1620 1584 1637 1536 1488 1430

TABLE VI. Calculated (E) and experimental (Eexp) energies (in keV) for the ground-state rotational band levels (Kp = 5/2+)
in N = 147 isotopes. Experimental data are taken from Ref. [27].

Ip 239U 241Pu 243Cm 245Cf 247Fm 249No

E Eexp E Eexp E Eexp E Eexp E Eexp E Eexp

K+ 0 0 0 0 0 0 0 0 0 0
K− 592 539 569 519 490 462 433 307
(K + 1)+ 43 43 42 42 42 42 50 50 49 47
(K + 1)− 632 608 561 527 505 475 346
(K + 2)+ 99 99 96 96 95 94 114 112 106
(K + 2)− 683 658 615 576 560 529 396
(K + 3)+ 167 162 161 160 193 189 179
(K + 3)− 746 719 635 628 594 456
(K + 4)+ 247 241 235 237 285 279 264
(K + 4)− 820 791 705 707 671 527
(K + 5)+ 340 331 326 391 383 440
(K + 5)− 905 873 785 798 759 693
(K + 6)+ 445 433 427 512 500 543
(K + 6)− 1001 967 876 900 858 776
(K + 7)+ 562 547 539 645 631 657
(K + 7)− 1101 1071 977 1013 968 868
(K + 8)+ 691 673 663 792 774 781
(K + 8)− 1227 1186 1089 1137 1088 969
(K + 9)+ 833 810 798 951 929 913
(K + 9)− 1356 1312 1211 1271 1217 1079
(K + 10)+ 987 960 945 1123 1096 1055
(K + 10)− 1497 1448 1343 1415 1356 1198
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TABLE VII. Transitional electric dipole D0, quadrupole Q2, and
octupole Q3 moments for the transitions from the ground state to the
states of alternating parity band.

Nucleus D0 (e fm) Q2 (e fm2) Q3 (e fm3)
(0+ → 1−) (0+ → 2+) (0+ → 3−)

240U 0.0017 823 1292
242Pu 0.0030 875 1432
244Cm 0.0029 894 1464
246Cf 0.0030 982 1538
248Fm 0.0046 1012 1672
250No 0.0092 1046 1920
244Pu 0.0025 877 1385
246Cm 0.0027 901 1441
248Cf 0.0027 963 1497
250Fm 0.0032 989 1573
252No 0.0057 1019 1750
254Rf 0.0100 1053 1978
248Cm 0.0020 976 1380
250Cf 0.0026 1045 1481
252Fm 0.0030 1077 1548
254No 0.0039 1109 1646
256Rf 0.0050 1146 1758
258Sg 0.0077 1183 1927

taken to be equal to eeff
1 = e(1 + χ ) with an average state-

independent value of E1 polarizability coefficient χ = −0.7
[29,30]. This renormalization considers a coupling of the mass-
asymmetry mode to the giant dipole resonance in the DNS. In
the case of the quadrupole transitions, we do not renormalize

TABLE VIII. Transitional electric dipole D0, quadrupole Q2, and
octupole Q3 moments for the transitions from the ground state to the
states of parity doublet band.

Nucleus D0 (e fm) Q2 (e fm2) Q3 (e fm3)
[K± →

(K + 1)∓]
[K± →

(K + 2)±]
[K± →

(K + 3)∓]

239U 0.0075 826 1562
241Pu 0.0088 851 1656
243Cm 0.015 911 1888
245Cf 0.018 939 2024
247Fm 0.021 1010 2193
249No 0.043 1061 2754
243Pu 0.0086 883 1643
245Cm 0.0085 910 1694
247Cf 0.0066 969 1690
229Fm 0.0126 1004 1945
251No 0.0177 1036 2149
253Rf 0.0207 1065 2300
245Cm 0.0084 890 1621
247Cf 0.011 917 1739
249Fm 0.0128 983 1868
251No 0.0121 1007 1908
253Rf 0.0130 1037 1993
255Sg 0.0125 1066 2048
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FIG. 3. Calculated spin dependences of the reduced matrix
elements of the electric dipole, quadrupole, and octupole operators in
252No.

the charge eeff
2 = e. Taking into account the coupling of the

mass-asymmetry mode with the higher-lying isovector and
isoscalar octupole excitations [29,30], we set for octupole
moments the effective charge eeff

3,proton = 1.2e for protons and
eeff

3,neutron = 0.8e for neutrons. The results of our calculations
are listed in Tables VII and VIII, and shown in Fig. 3. The
predicted multipole moments have the common properties
of nuclei exhibiting the features of reflection asymmetry.
Our predicted values for Q2 are in satisfactory agreement
with those following from the theoretical predictions of
Refs. [14,15]. The predicted E1 transitions between the yrast
positive and negative parity states of transactinides are more
than one order of magnitude weaker than those for the isotopes
of the lighter actinides Rn, Ra and Th. This fact creates an
additional difficulty in observing the alternative parity bands
in the heaviest nuclei.

The spin dependence of the reduced matrix elements of
the intrinsic electric multipole operators is shown in Fig. 3
for the nucleus 252No. The increase of the multipole moments
with spin is similar to that observed for the reduced matrix
elements in the actinides. In Fig. 3, one can see almost constant
staggering of the calculated intrinsic transition quadrupole
moment with the change of the parity of spin. The larger
weight of the α-cluster component in the wave functions at
odd I and quite large quadrupole and octupole deformations
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corresponding to the α-cluster configuration explain the
staggering in Q2 and Q3.

IV. SUMMARY

The cluster interpretation of collective low-lying alternative
parity states of the nuclei with Z � 96 is suggested. Within
the cluster approach, the α-cluster configuration gives a
significant contribution to the wave function of a low-energy
nuclear state. The energies of the low-lying states of the
even-even and odd heaviest nuclei whose parity is opposite
to the parity of the ground state are predicted. The maximal
uncertainty of calculated energies of these states is about 100
keV and mainly related to the uncertainty in the calculation
of the potential energy of the α-cluster configuration. The
lowest energies of these states are about 600–900 keV and
300–600 keV for the even-even and odd nuclei, respectively.
The observation of these states would be a crucial test of
the correctness of the suggested approach. Our predictions of
the spectra and intrinsic transition multipole moments will be

helpful for current and future experimental works regarding
the spectroscopy of superheavy nuclei.

In the future, we will treat the α-particle emission under the
assumption that this cluster is formed by a collective motion
of the nuclear system in η with further penetration of the
α particle through the Coulomb barrier. The study of α decay
widths, α fine structures and branching ratios between the
α decay of a nucleus to the first rotational state and to the
ground state of the daughter nucleus is important for the
identification of low-lying alternative parity states.
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