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We derive new Hamiltonians for the sd shell, USDA and USDB, based on a renormalized G matrix with
linear combinations of two-body matrix elements adjusted to fit a complete set of data for experimental binding
energies and excitation energies for the sd-shell nuclei. These Hamiltonians provide a new level of precision for
realistic sd-shell wave functions for applications to nuclear structure and nuclear astrophysics.
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I. INTRODUCTION

The USD Hamiltonian [1,2] has provided realistic sd-shell
(0d5/2, 0d3/2, 1s1/2) wave functions for use in nuclear structure
models, nuclear spectroscopy, and nuclear astrophysics for
over two decades. It is also an essential part of the Hamiltonian
used for the p-sd [3] and sd-pf [4–6] model spaces. Results
based on the USD Hamiltonian in 2005 include those in
Refs. [7–32]. The USD Hamiltonian is defined by 63 sd-shell
two-body matrix elements (TBME) and three single-particle
energies (SPE) given in Table I of [1]. The values are derived
from the renormalized G matrix with modifications needed
to reproduce the experimental binding energies and excitation
energies for nuclei in the region A = 16–40. In this paper we
present results for new USD-type Hamiltonians called USDA
and USDB based on an updated set of binding energies and
energy levels.

Theoretical methods for calculating the effective TBME
with a renormalized G matrix starting from NN interactions
have evolved considerably [33]. However, there are several
reasons why the renormalized G-matrix sd-shell (RGSD)
TBME may not be accurate: (i) The perturbation expansion
may not be converged [34]; (ii) the oscillator basis used for
matrix elements and energy denominators is an approximation;
and (iii) real three-body forces are required as observed
for ab initio calculations of light nuclei [35]. Three-body
forces contribute to the effective one- and two-body matrix
elements when they are averaged over the nucleons in the
closed core, 16O in our case [36]. When applied to nuclei
with three or more valence nucleons, both effective and real
three-body interactions may play a role. Thus, to obtain
realistic wave functions for medium-mass nuclei there is a
need to modify the effective interactions based on constraints
from experimental data. The resulting set of parameters for
the effective interaction may be compared with the original
G-matrix input to evaluate the contributions of higher order
terms and three-body interactions.

The USD Hamiltonian was the culmination of about a
decade of work to understand the energy levels and spectro-
scopic properties for sd-shell nuclei in terms of a “unified”
Hamiltonian applied in the full sd-shell model space. The
earliest applications of shell-model configuration mixing to
the sd-shell were limited by computational power and had

to be applied to truncations within the sd-shell space. For
example, in 1968 Arima et al. [37] considered the properties
of A = 18–20 in the model space of [0d5/2, 1s1/2]n. The
immediate predecessors to USD were the Chung-Wildenthal
particle (CWP) and hole (CWH) Hamiltonians [38] that were
obtained from fits to data in the lower and upper parts of the
sd shell, respectively. As computational power advanced it
became possible in the late 1970s to consider nuclei in the
middle of the sd shell and eventually the CW Hamiltonians
were merged into the “universal” sd (USD) Hamiltonian.

The original USD Hamiltonian was obtained from a least-
squares fit of 380 energy data with experimental errors of
0.2 MeV or less (with most experimental errors being 10 keV
or less) from 66 nuclei. The root-mean-square (rms) deviation
between experimental and theoretical energies was about
150 keV (for 380 energy data with uncertainties of 200 keV
or less). The number of states that were considered for each
nucleus is shown in Fig. 1. The largest numbers of states
are for those nuclei around N = Z = 12 and N = Z = 17.
Although many energy levels were known in the middle of the
shell, only a few were included in the USD fit owing to the
computational limitations in the 1980s. Also, since 1980 there
is much more and improved data for the neutron-rich nuclei.
Today the computational effort is trivial—on a desktop PC it
is possible to obtain a complete set of low-lying energy levels
for all sd-shell nuclei in a few hours.

Thus we are motivated to refine the derivation of the USD
Hamiltonian with an updated and complete set of energy data.
We are able to consider 608 states in 77 nuclei distributed
over sd-shell nuclei as shown in Fig. 2. The new Hamiltonians
USDA and USDB lead to a new level of precision for realistic
shell-model wave functions. In the next section we discuss
experimental data. In Sec. III we review the linear-combination
method for the least-squares fit. In Sec. IV we present the
results for the new Hamiltonians, with results for binding
energies and energy levels in Sec. V.

II. EXPERIMENTAL DATA

The data for the new fits was obtained from the most recent
compilations. In the case of A = 21–40 nuclei most data for
excited states are from the Supplement to Energy Levels of

0556-2813/2006/74(3)/034315(11) 034315-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.034315


B. ALEX BROWN AND W. A. RICHTER PHYSICAL REVIEW C 74, 034315 (2006)

P
ro

to
n 

N
um

be
r

Neutron Number

6

8

10

12

14

16

18

20

22

6 8 10 12 14 16 18 20 22

 1

 5

10

15

20

25

FIG. 1. (Color) Number of states used for the USD Hamiltonian
for each nucleus.

A = 21–44 nuclei by P. M. Endt (published in 1998 [39]), used
in conjunction with the previous complete review of nuclei in
this mass range [40]. The supplement mainly discusses new
data published in the period 1990–1996. A useful part of Endt’s
supplement is the inclusion of comparisons of positive-parity
states with the USD predictions. More recent data are used
for 20O [32,41], 21O [41], 23O [42], 22O [41],19F, 20F [43],
22F [19,43], 23F and 25F [44], 27F [45], 24Ne [46], 27Na [47],
28Na and 29Na [15], 24Mg [48], and 33Si [49].

The ground-state binding energies used are from the 2003
atomic mass evaluation of Audi, Wapstra, and Thibault [50].
These are supplemented with new results from [51] for 23O,
23F, 24O, 25F, 26F, 27F, 27Ne, 28Ne, 29Ne, 30Ne, 31Na, and 32Mg.
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FIG. 2. (Color) Number of states used for the USDA and USDB
Hamiltonians for each nucleus.

We take the binding energies relative to that of 16O with the
Coulomb energy correction used for USD [38],

BE(A,Z)r = BE(A,Z) − BE(16O) − EC(Z), (1)

with EC(Z) = 3.48 (Z = 9), 7.45 (Z = 10), 11.73 (Z = 11),
16.47 (Z = 12), 21.48 (Z = 13), 26.78 (Z = 14), 32.47 (Z =
15), 38.46 (Z = 16), 44.74 (Z = 17), 51.31 (Z = 18), and
58.14 (Z = 19) MeV. The Coulomb energy corrections were
obtained from energy differences of isobaric analog states for
the nuclei near N = Z.

For the new Hamiltonian we consider 608 states in
77 nuclei. The distribution of these states over the sd-shell
nuclei is shown in Fig. 2

Most of the new data have been added in the middle of
the sd shell (where computations are now possible) and for
neutron-rich nuclei. (We include in this figure the ground states
for six nuclei in the “island of inversion” N = 19–20 and
Z = 10–12, although as discussed in the following they are
not included in the fit.)

III. FITTING PROCEDURE

The shell-model effective Hamiltonian can be written as a
sum of one- and two-body operators (using similar notation to
that used by Honma et al. [52] for the pf shell, which is based
on the work of Chung and Wildenthal [1,38] for the sd shell):

H =
∑

a

εan̂n +
∑

a�b,c�d

∑
JT

VJT (ab; cd)T̂JT (ab; cd), (2)

where n̂a is the number operator for the spherical orbit a with
quantum numbers (na, la, ja) and

T̂JT (ab; cd) =
∑
MTz

A
†
JMT Tz

(ab)AJMT Tz
(cd) (3)

is the scalar two-body density operator for nucleon pairs in
orbits a, b and c, d coupled to spin quantum numbers JM and
isospin quantum numbers T Tz. We use a simplified notation

H =
p∑

i=1

xiOi, (4)

where the xi stand for single-particle energies εa or the
two-body matrix elements VJT (ab; cd), and the operators Oi

stand for n̂ or T̂ , respectively. The vector �x = (x1, x2, · · · , xp)
defines the Hamiltonian. This Hamiltonian will have eigen-
vectors φk and eigenvalues λk that can be expressed in terms
of a linear combination of the Hamiltonian �x :

λk = 〈φk|H |φk〉 =
p∑

i=1

xi〈φk|Oi |φk〉 =
p∑

i=1

xiβ
k
i , (5)

where βk
i = 〈φk|Oi |φk〉.

For a given starting Hamiltonian �x s , we calculate βk
i and

then minimize the quantity

χ2 =
N∑

k=1

(
Ek

exp − λk

σ k
exp

)2

, (6)
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where Ek
exp are the experimental energies and σ k

exp are the
associated errors. This gives

∂χ2

∂xj

=
N∑

k=1

2

(
Ek

exp − λk

)
(
σ k

exp

)2

∂

∂xj

(
−

p∑
i=1

xiβ
k
i

)
= 0. (7)

Without taking into account the implicit dependence of βk
i on

xj through φi we obtain p linear equations for an improved
Hamiltonian �x :

N∑
k=1

(
Ek

exp −
p∑

i=1

xiβ
k
i

)
βk

j(
σ k

exp

)2 = ej −
p∑

i=1

γij xi = 0, (8)

where j = 1, 2, · · · , p. This can be written in terms of a p × p

matrix

G = (γij ) =
N∑

k=1

βk
i β

k
j(

σ k
exp

)2 (9)

and a p-dimensional vector

�e = (ei) =
N∑

k=1

Ek
expβ

k
i(

σ k
exp

)2 (10)

as

G�x = �e. (11)

Since G is a real symmetric matrix, it can be inverted to obtain
the new Hamiltonian

�x = G−1�e. (12)

To take into account the implicit dependence of βk
i on xj this

procedure is repeated (iterated) until convergence.
The matrix G−1 is referred to as the error matrix [53] since

the diagonal elements are the square of the parameter errors
and the off-diagonal matrix elements are related to the correla-
tions between the parameters. As in most multiparameter fits,
the resulting parameters xi are highly correlated. In addition,
the low-lying nuclear states are much more sensitive to some
linear combinations of Hamiltonian parameters than others.
These issues can be quantified by diagonalizing the matrix G :

D = AGAT , (13)

or in terms of the error matrix,

D−1 = AG−1AT , (14)

where D is a p-dimensional diagonal matrix with positive
elements Di . The eigenvalues of the error matrix D−1 are
di = 1/Di . With this definition for A, Eq. (11) is equivalent
to D�y = �c, where �y = A�x and �c = A�e, which has the simple
solution

yi = cidi . (15)

The least-squares fit is thus reformulated in terms of uncor-
related linear combinations. The orthogonal parameters yi are
linear combinations of the Hamiltonian parameters xi , with
associated errors di . It is clear from Eq. (15) that, for large
di , the values of yi are strongly affected by a small change
in the data ci . Therefore, such linear combinations are only
poorly determined by a given set of data. We can separate
poorly determined linear combinations from well-determined

ones by setting a certain criterion on the magnitude of the
corresponding eigenvalues di .

The fitting procedure can be modified as follows. We start
with the best available Hamiltonian �x s . From the fit, mutually
independent linear combinations yi are determined according
to Eq. (15). At the same time linear combinations of the starting
Hamiltonian �x s are also obtained from �y s = A�x s . Then new
linear combinations �y a are defined by adopting only well-
determined values of yi and using the starting values for the
rest,

ya
i = yi(di�δ) + ys

i (di > δ), (16)

where δ is taken to be a suitable value for the criterion. The
number of well-determined linear combinations is denoted by
Nd . A new Hamiltonian is obtained from �x a = A−1 �y a , which
is used for the next iteration to obtain �x b = A−1 �y b from

yb
i = yi(di�δ) + ys

i (di > δ). (17)

This procedure is iterated until convergence.
This linear-combination (LC) method for finding the well-

determined uncorrelated linear combinations of Hamiltonian
parameters was used by Arima et al. [37] for the d5/2-s1/2

model space and by Macfarlane for the p shell [54]. The LC
method together with the iteration method was used by Chung
and Wildenthal to determine the original USD Hamiltonian
[1,38], which was the starting point of the present work. The
LC method was used in the pf shell to obtain the FPMI3 [55]
and GXFP [52,56] Hamiltonians. More recently, it has been
used in for the (f5/2, p3/2, p1/2, g9/2) model-space description
of the Ni isotopes and N = 50 isotones [57].

IV. RESULTS FOR THE FIT

The calculations for the wave functions, energies, oc-
cupation numbers, and scalar two-body transition densities
were carried out with OXBASH [58]. One iteration took about
12 hours on a desktop PC.

For the data set we consider all ground-state binding
energies and all positive-parity energy levels for sd-shell
nuclei. The first criterion for inclusion of the nth Jπ level
in the fit is whether or not the Jπ for all lower states are
known. Generally this means that we cannot consider states
above the energy where one level has an unknown Jπ . This
usually occurs starting at Ex = 5–7 MeV. The second criterion
is the energy at which the experimental level density for
a given Jπ becomes suddenly higher than the theoretical
level density. This is a signature of intruder states. There
is a well-defined region of nuclei with N = 19 − 20 and
Z = 10 − 12 where the difference between the experimental
and theoretical ground-state binding energies is much larger
than the rms average. These nuclei are in the island of inversion
that requires the explicit extension of the pf -shell orbits to
the model space [4]. Ground and excited states for these six
nuclei are not included in the fit. In the end we will show the
comparison of all experimental levels to all theoretical levels.

With this selection we are able to consider 608 states
in 77 nuclei with errors of less than 0.2 MeV (with most
experimental errors being 10 keV or less). The uncertainty
used in Eq. (6) is the experimental uncertainty σexp folded
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quadratically with a theoretical error that is close to the rms
value obtained in the best fit for which we take σth = 0.1 MeV:

(σ k)2 = (
σ k

exp

)2 + (
σ k

th

)2
. (18)

We include ground-state binding energies in the fit directly
in terms of their calculated E and β values. Excited states
are included in the fit by taking the differences E − Egs and
β − βgs. This allows for states in exotic nuclei to be included
where the E − Egs is known more accurately (for example,
from γ -ray transitions) than Egs.

As was done for USD, the SPE are taken to be constant
(mass independent). One could add some mass dependence
to the SPE, but it has little effect on the rms since it can be
compensated by a change in the TBME (in particular in the
monopole TBME combinations).

One can define the “effective SPE” by the addition of
the monopole linear combinations of the TBME [59] to the
original SPE. The effective SPE are well defined by the data,
but the division into their separate SPE and monopole TBME
parts cannot be made on the basis of sd-shell data (i.e., it must
come from a theoretical model).

As was done for USD, we employ a mass dependence of
the two-body matrix elements of the form

VJT (ab; cd)(A) =
(

18

A

)p

VJT (ab; cd)(A = 18), (19)

with p = 0.3. This accounts qualitatively for the mass de-
pendence expected from the evaluation of a medium-range
interaction with harmonic-oscillator radial wave functions.
With h̄ω = 41A−1/3, the matrix elements for a delta-function
interaction scale analytically as A1/2 and the matrix elements
of the Coulomb interaction scale analytically as A1/6. The
rms of the fit has a shallow minimum near p = 0.3. The
minimum is shallow because the mass dependence can
be partly compensated by a change in the fitted values of
the TBME.

The poorly determined linear combinations of Hamiltonian
parameters were always constrained to the values obtained
from the renormalized G matrix applied to the sd shell
(RGSD). The calculations were based on the Bonn-A NN

potential and include diagrams up to third order as well as
folded diagrams. The TBME are given in Table 20 of [33].

For the present work the original USD Hamiltonian was
used for the first iteration. Then the equations were iterated
with Nd = 30 well-determined (varied) linear combinations
with the remaining 36 poorly determined linear combinations
set to the RGSD values. This was continued until the energies
and �x values converged to the level of about 10 keV. This rather
highly constrained Hamiltonian is called USDA. In Fig. 3
we show the eigenvalues Di of the fit matrix for USDA. A
physically interesting quantity from the fit is the rms deviation
between experimental and theoretical energies,

rms =
√√√√ 1

N

N∑
k=1

(
Ek

exp − Ek
th

)2
. (20)

In Fig. 4 we show this rms deviation (solid line) as a
function of the number of varied linear combinations Nd

TABLE I. Comparison of sd shell TBME for T = 1 (in MeV).
v(a, b, c, d; JT ) = VJT (ab; cd)(A = 18). The orbits are labeled by
1 = s1/2, 3 = d3/2, and 5 = d5/2.

Matrix element USD RGSD USDA USDB

v(5 5 5 5; 0 1) −2.8197 −2.5418 −2.4796 −2.5598
v(5 5 3 3; 0 1) −3.1865 −2.9807 −3.5693 −3.1025
v(5 5 1 1; 0 1) −1.3247 −1.0885 −1.1572 −1.5602
v(3 3 3 3; 0 1) −2.1845 −1.1624 −1.5050 −1.8992
v(3 3 1 1; 0 1) −1.0835 −0.7911 −0.9834 −1.0150
v(1 1 1 1; 0 1) −2.1246 −2.0617 −1.8461 −1.6913
v(5 3 5 3; 1 1) 1.0334 −0.4249 0.2510 0.6556
v(5 3 3 1; 1 1) 0.1874 −0.0304 0.0736 −0.0456
v(3 1 3 1; 1 1) 0.6066 0.3994 0.3105 0.5158
v(5 5 5 5; 2 1) −1.0020 −0.9932 −0.9899 −1.0007
v(5 5 5 3; 2 1) −0.2832 −0.1394 −0.3092 −0.2137
v(5 5 5 1; 2 1) −0.8616 −0.7957 −0.7746 −0.9317
v(5 5 3 3; 2 1) −1.6221 −0.9399 −1.1335 −1.2187
v(5 5 3 1; 2 1) 0.6198 0.8477 0.8901 0.8866
v(5 3 5 3; 2 1) −0.3248 −0.4043 0.2248 −0.1545
v(5 3 5 1; 2 1) −0.4770 −0.2469 0.1022 −0.3147
v(5 3 3 3; 2 1) −0.6149 −0.9871 −0.5208 −0.5032
v(5 3 3 1; 2 1) 0.5247 0.6449 0.2811 0.3713
v(5 1 5 1; 2 1) −0.8183 −1.2335 −0.9039 −0.9405
v(5 1 3 3; 2 1) −0.4041 −0.6317 −0.5542 −0.3173
v(5 1 3 1; 2 1) 1.9410 1.4633 1.7072 1.6131
v(3 3 3 3; 2 1) −0.0665 0.1427 −0.1570 −0.0974
v(3 3 3 1; 2 1) 0.5154 0.1787 0.1368 0.3494
v(3 1 3 1; 2 1) −0.4064 −0.2767 −0.2533 −0.3034
v(5 3 5 3; 3 1) 0.5894 0.5050 0.4777 0.7673
v(5 3 5 1; 3 1) −0.6741 −0.1021 −0.4507 −0.5525
v(5 1 5 1; 3 1) 0.7626 0.2781 0.6470 0.6841
v(5 5 5 5; 4 1) −0.1641 0.0356 −0.2136 −0.2069
v(5 5 5 3; 4 1) −1.2363 −1.4942 −1.3155 −1.3349
v(5 3 5 3; 4 1) −1.4474 −1.6941 −1.2509 −1.4447

obtained for the final iteration of USDA (with the actual
USDA corresponding to the results obtained at Nd = 30). The
individual contributions to Eq. (20) are shown in Fig. 5 The rms
deviation of the fitted and RGSD two-body matrix elements
as a function of Nd are shown by the points connected by a
dashed line in Fig. 4

The motivation for 30 linear combinations can be seen in
Fig. 4 One observes a plateau in the rms energy deviation of
about 170 keV between 30 and 45 linear combinations. Beyond
this there is a gradual drop until about 56 linear combinations
with an rms deviation of 130 keV that does not significantly
decrease going out to the full set of 66 combinations. Thus
we also derive another Hamiltonian called USDB by varying
56 linear combinations of parameters. Three more iterations
were required for convergence. As seen in the histogram in the
upper right-hand corners of Figs. 5 and 6 the scatter between
experiment and theory for USDB is systematically reduced
compared to that for USDA. We include in Figs. 5 and 6 six data
points not included in the fit—those for the ground states of
29,30Ne, 30,31Na, and 31,32Mg—to show the large deviation for
these nuclei in the island of inversion. The TBME for A = 18
are given in Tables I and II for T = 1 and T = 0, respectively.
The TBME for other A values are given by Eq. (19). The single-

034315-4



NEW “USD” HAMILTONIANS FOR THE sd SHELL PHYSICAL REVIEW C 74, 034315 (2006)

TABLE II. Comparison of sd shell TBME for T = 0 (in MeV).
v(a, b, c, d; JT ) = VJT (ab; cd)(A = 18). The orbits are labeled by
1 = s1/2, 3 = d3/2, and 5 = d5/2.

Matrix element USD RGSD USDA USDB

v(5 5 5 5; 1 0) −1.6321 −1.4315 −1.4277 −1.3796
v(5 5 5 3; 1 0) 2.5435 3.1790 3.0520 3.4987
v(5 5 3 3; 1 0) 0.7221 1.7666 1.9658 1.6647
v(5 5 3 1; 1 0) 1.1026 0.3628 0.3967 0.0272
v(5 5 1 1; 1 0) −1.1756 −0.8749 −0.8900 −0.5344
v(5 3 5 3; 1 0) −6.5058 −6.5104 −6.5106 −6.0099
v(5 3 3 3; 1 0) 0.5647 −0.0200 0.0136 0.1922
v(5 3 3 1; 1 0) 1.7080 1.7250 1.5511 1.6231
v(5 3 1 1; 1 0) 2.1042 1.8887 1.9021 2.0226
v(3 3 3 3; 1 0) −1.4151 −1.3404 −1.4927 −1.6582
v(3 3 3 1; 1 0) −0.3983 −0.8402 −1.0014 −0.8493
v(3 3 1 1; 1 0) 0.0275 0.0405 0.0949 0.1574
v(3 1 3 1; 1 0) −4.2928 −3.3056 −3.8051 −4.0460
v(3 1 1 1; 1 0) −1.2501 −0.2441 −0.6655 −0.9201
v(1 1 1 1; 1 0) −3.2628 −3.3313 −3.8693 −3.7093
v(5 3 5 3; 2 0) −3.8253 −4.5004 −4.5452 −4.2117
v(5 3 5 1; 2 0) −0.0968 −1.2555 −1.0254 −0.6464
v(5 3 3 1; 2 0) 0.2832 −1.4793 −1.2803 −0.4429
v(5 1 5 1; 2 0) −1.4474 −0.4109 −0.4874 −0.3154
v(5 1 3 1; 2 0) −2.0664 −2.7050 −2.5947 −2.5110
v(3 1 3 1; 2 0) −1.8194 −1.3883 −1.7530 −1.8504
v(5 5 5 5; 3 0) −1.5012 −0.8478 −1.4018 −1.6651
v(5 5 5 3; 3 0) 2.2216 2.1769 2.2427 2.3102
v(5 5 5 1; 3 0) −1.2420 −1.4992 −1.7954 −1.2167
v(5 5 3 3; 3 0) 1.8949 0.8466 0.9812 1.1792
v(5 3 5 3; 3 0) −0.5377 −1.0712 −1.2963 −1.2124
v(5 3 5 1; 3 0) 1.2032 1.0367 0.8962 1.2526
v(5 3 3 3; 3 0) 2.0337 2.1625 1.8985 1.4300
v(5 1 5 1; 3 0) −3.8598 −3.6000 −3.9337 −4.1823
v(5 1 3 3; 3 0) 0.1887 0.1668 0.4599 0.0968
v(3 3 3 3; 3 0) −2.8842 −2.9026 −2.9800 −2.9660
v(5 3 5 3; 4 0) −4.5062 −4.4330 −4.4652 −4.6189
v(5 5 5 5; 5 0) −4.2256 −3.6858 −4.3811 −4.3205

particle energies for (d5/2, s1/2, d3/2 ) are (−3.9478,−3.1636,
1.6466) MeV for USD, (−3.9436,−3.0612, 1.9798) MeV for
USDA, and (−3.9257,−3.2079, 2.1117) MeV for USDB.

The fitted and input RGSD (G matrix) TBME are shown
in Fig. 7. The USDA TBME are similar to the RGSD
with an rms deviation between the TBME of 290 keV (see
Fig. 4). Compared to the maximum magnitude of 6 MeV
for the TBME, this represents only a 5% rms difference.
However, this specific 5% change is critical for obtaining ac-
curate binding energies and spectra. The USDB Hamiltonian,
where 56 parameters are varied, is compared with RGSD in
middle panel of Fig. 7; the result is a 375-keV rms difference
for the TBME (6% of the largest). When the rms sum in
Eq. (20) is restricted to the original set of energy data used
for the original USD interaction (380 data points with σ k of
200 keV or less) the result is 171 and 126 keV for USDA and
USDB, respectively. Thus the added data do not worsen the
quality of the fit, but they do provide more constraints on the
determination of the TBME.
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FIG. 3. Eigenvalues Di of the fit matrix.

Thus we have two new Hamiltonians: a conservative one,
USDA, which is closest to RGSD and gives a good but not
the best fit to the data, and another, USDB, that differs more
from RGSD but gives a best fit to the data. Calculation of
other observables such as spectroscopic factors, moments, and
γ - and β-decay rates with both USDA and USDB will give
an estimate of the theoretical errors attributable to the sd-shell
Hamiltonian as well as determine whether or not USDB is in
fact superior to USDA. The original USD and RGSD TBME
are compared on the right-hand side of Fig. 7. USD deviates the
most from RGSD with a 450-keV rms in the TBME perhaps
because of the smaller data set used for its determination.
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FIG. 4. The rms deviations as a function of the number of
fitted linear combinations for the final USDA iteration. The points
connected by a line show the deviation between experimental and
theoretical sd-shell energies. The points connected by a dashed line
show the rms deviation between the two-body matrix elements for
the USD and RGSD Hamiltonians.
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FIG. 5. Deviations between experimental and theoretical energies
for USDA. The ground-state binding energies are plotted on the top
panel and the excitation energies on the bottom. The inset shows a
histogram of the deviations binned over 100-keV intervals.

The monopole linear combinations of TBME are among
the most important for the fit:

V̄ab,T =

∑
J

(2J + 1)VJT (ab; ab)

∑
J

(2J + 1)
. (21)

They combine with the SPE to determine how the effective SPE
evolve as a function of N and Z. The monopole combinations
for the various interactions are compared in Fig. 8. The values
for USDA and USDB are essentially the same. They are
also close to the original USD except for the s1/2-s1/2 and
d5/2-d3/2T = 0 terms being 500 keV smaller for USD.

The T = 0 monopole terms are large and attractive with
a general agreement between USD and RGSD in the overall
pattern. The d5/2-d3/2T = 0 monopole term is the largest. This
term with its large tensor interaction component is responsible
for the change in shell structure as a function of N and Z in
the sd shell [60]. This strong tensor contribution is important
for the changes in shell structure for all nuclei [60,61]. All of
the USD Hamiltonians deviate from the RGSD values by as
much as 1 MeV for both T = 0 and T = 1.

For USDB the A = 17 single-particle energies are
−3.93,−3.21, and 2.11 MeV for d5/2, s1/2, and d3/2, respec-
tively, to be compared with experimental values of −4.14 and
−3.27 for d5/2 and s1/2. The d3/2 particle strength in 17O lies
above the neutron-decay threshold and can only be observed in
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FIG. 6. Same as Fig. 5 except for the USDB Hamiltonian.

particle-transfer reactions. The 16O(d, p)17O reaction has only
been analyzed [62] for the lowest and strongest 3/2+ state at
5.08 MeV corresponding to a d3/2 SPE of 5.08 − 4.14 = 0.94
MeV. There are states seen at higher energy in these reactions
that have not been analyzed that could contain fragmented d3/2

strength, and the spectra above 7 MeV were not measured.
Thus the position of the centroid d3/2 strength in 17O is not
known.

For USDB the A = 39 single-hole energies, −[BE(40Ca) −
BE(39Ca)], are −15.47,−18.11, and −23.41 MeV for d3/2,
s1/2, and d5/2 respectively, to be compared with experimental
values of −15.64 and −18.11 for d3/2 and s1/2. The d5/2

particle strength in 39K is fragmented over many states in
the energy range of 4.5–10 MeV [63] with a centroid value
of about 7.5 MeV corresponding to a neutron-hole SPE of
−15.64 − 7.5 = −23.1 MeV. Experiment and calculation are
in good agreement.
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FIG. 8. The sd-shell monopole interactions. The solid lines are
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The USDB neutron-hole SPE for 28O (an unbound nucleus)
are 0.17, −4.64, and −7.45 MeV for d3/2, s1/2, and d5/2,
respectively. The positive value for the highest hole state
gives the marginally unbound nature of 25−28O. Note that
the spin-orbit splitting is still large in this very neutron-rich
nucleus. Also note the large SPE gaps for both d3/2-s1/2 and
d1/2-d5/2 that are related to the observed shell gaps in the
doubly-magic nuclei 24O and 22O, respectively [64].

The USD proton particle SPE for 28O [BE(29F) −
BE(28O)] are −19.90,−16.40, and −12.99 MeV for d5/2,
s1/2, and d3/2, respectively (which includes the Coulomb
correction of 3.48 MeV). The protons are of course deeply
bound in 28O. The stability of 29F is determined by the
neutron separation energy. With USDB, 29F is 0.8 MeV more
bound than 28F, in agreement with its observed stability.
The experimental binding energy difference is 1.0 ± 0.8 MeV.
(The large error in 28F and 29F precludes them from having
any influence in the fit and it is not clear whether these nuclei
are in the island of inversion.)

V. RESULTS FOR BINDING ENERGIES AND SPECTRA

For the binding energies, it is instructive to compare the
results of the original USD with the updated set of data as
shown in Fig. 9. Most of the differences lie in the nominal
rms range of 150 keV. The binding energies predicted for the
neutron-rich fluorine (Z = 9) isotopes turn out to be larger
than experiment by up to 1.5 MeV. This indicates that the
USD TBME involving the d3/2 orbital in this mass region
are incorrect. The oxygen isotopes (Z = 8) beyond N = 16
are known to be unbound [65–70] and the neutron-decay
properties are not yet measured. The USD predicts that
these nuclei are unbound except for 26O, which is bound by
1.0 MeV with USD. Thus both neutron-rich oxygen and
fluorine are too tightly bound with USD. In contrast, the
binding energies predicted for Z = 10–12 and N = 20 are
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FIG. 9. (Color) Difference between the experimental and theoret-
ical (USD) ground-state binding energies. A positive value indicates
that experiment is more bound than theory.

larger than experiment by up to 1.5 MeV. This indicates
that the USD TBME are incorrect or that other shell-model
configurations dominate the wave functions.

The binding energy difference for USDB is shown in Fig. 10
(The results for USDA are similar.) The fluorine problem for
USD is corrected by the new USDA and USDB Hamiltonians.
In addition, all of the oxygen isotopes are unbound with
USDA and USDB. However, the Z = 10 − 12, N = 20
difference cannot be corrected, confirming the intruder state
(island-of-inversion) interpretation for these nuclei. Although
28,29F appear to lie outside of the island of inversion, they
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FIG. 10. (Color) Difference between the experimental and the-
oretical (USDB) ground-state binding energies. A positive value
indicates that experiment is more bound than theory.
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FIG. 11. Comparison of experimental and USDB theoretical
levels (T = 0) for 26Al. See the text for details.

have large experimental errors (0.5–0.6 MeV) and they were
thus not included in the fit. The improved USDA and USDB
results for the ground-state binding energies of the neutron-rich
fluorine and oxygen isotopes with N�16 are related to the
increased energy for the effective d3/2 SPE. We note that
this particular problem with USD was corrected when it was
applied to the sd-pf model space [5].

Spectra were calculated for all 87 sd-shell nuclei for both
USDA and USDB and compared to experiment. The compete
set of comparisons can be found on the Web [71]. As an
example, we show the results for A = 26. The spectrum for
the positive-parity states in 26Al with T = 0 is shown in
Fig. 11. Experiment is shown on the left-hand side with lines
that indicate the J value for the known positive-parity states.
The lowest J value is labeled. Levels with an unknown Jπ

assignment are shown by the shortest lines, with the first
such level for 26Al lying at about 4 MeV. The theoretical
levels are shown on the right-hand side, also indicated by
lines of different length for the J value. The experimental
and theoretical levels joined by a line in the middle are
those included in the fit. The slope of these lines shows the
difference between experiment and theory for the excitation
energy. The ground-state binding energies are shown at the
bottom. Starting at about 4 MeV we cannot make a level to
level assignment between theory and experiment owing to
the incomplete experimental information. From 4–6 MeV the
experimental and theoretical level densities are similar; but
there are too many levels of unknown spin-parity to make
definitive associations between experiment and theory.

Above 6 MeV in 26Al the experimental level density
becomes higher, indicating the onset of intruder states (e.g.,
wave functions that contain the excitation of two or more
nucleons out of the 0p shell or into the 1p0f shell). Generally
toward the beginning and end of the sd shell where the sd-shell
level density is smaller, the intruder states are more obvious
in the low-lying spectra. For example, in 18O two 0+ states
appear below 6 MeV compared to only one in the theory. The
structure of this extra 0+ in terms of p-shell excitations is
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FIG. 12. Comparison of experimental and USDB theoretical
levels for 26Mg. See the text for details.

well known [72]. In the upper part of the sd shell we find
for example the lowest 2+ state in 34Si experimentally at
3.2 MeV and theoretically at 5.2 MeV. The lowest 2+ state
is interpreted as the neutron 2p-2h configuration that becomes
the ground state in the island-of-inversion nuclei 32Mg and
30Ne [5].

The spectrum for 26Mg (shown in Fig. 12) is another nucleus
for which there is much well-established experimental data.
All positive-parity levels are well matched between experiment
and theory up to 6.5 MeV. Above this point there are levels with
unknown spin and only a few high-spin levels can be matched.
Above about 7.5 MeV the experimental level density becomes
higher than that of theory.

For 26Na (shown in Fig. 13) there are few experimental
data with spin assignments to compare to theory. Recent
results for 26Na have been obtained from the 14C(14C, d)
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FIG. 13. Comparison of experimental and USDB theoretical
levels for 26Na. The theoretical ground state is 3+ with the first excited
1+ at 4 keV. See the text for details.
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TABLE III. Gamow-Teller (GT) β-decay properties for 26Ne (0+) → 26Na (1+). The B(GT)
values include an overall quenching factor of 0.6 [76].

Experiment USD USDA USDB

Ex (MeV) B(GT) Ex (MeV) B(GT) Ex (MeV) B(GT) Ex (MeV) B(GT)

0.083 0.52(1) 0 0.61 0.077 0.51 0.004 0.46
1.511 0.07(1) 1.531 0.08 1.409 0.11 1.281 0.17
2.723 0.12(2) 2.271 0.14 2.412 0.11 2.450 0.14

2.720 0.074 2.600 0.003 2.677 0.008

reaction [73]. The low-lying quadruplet is now established
with the fourth state being 2+, in agreement with theory. In the
region 1–3 MeV 14 levels are predicted and 14 levels are seen
in experiment, but still most levels do not have an experimental
spin assignment. The highest spin of 5+ predicted at 2.25 MeV
is seen at 2.28 MeV in experiment. The 1+ states can be
assigned from the β decay of 26Ne; the results are shown
in Table III. It was noted [73,74] that the USD Hamiltonian
predicted that four 1+ states should be seen in the β decay of
26Ne [75], but only three were observed in experiment [74].
The USDA and USDB results in Table III show that the fourth
1+ state has a very small B(GT) value (much smaller than
the USD value), indicating that it would be too weak to be
observed. As noted in [73] several levels in the region of
3 MeV have γ -decay properties consistent with spin-parity
1+. A future project will be to apply the new Hamiltonians to
the γ -decay properties of 26Na as well as other sd-shell nuclei.
(The 1+ states from [74] were not included in the fit owing
to the disagreement in the number of 1+ states that should be
observed.)

For 26Ne (shown in Fig. 14) there are little experimental
data. The ground-state and first excited 2+ state energies are in
good agreement with theory. The 0+ state found in experiment
at 3.69 MeV is significantly lower than the theoretical state
at 4.39 (4.63) MeV with USDA (USDB), indicating that this
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FIG. 14. Comparison of experimental and USDB theoretical
levels for 26Ne. See the text for details.

is an intruder state perhaps associated with the (sd)n−2(pf )2

configuration that becomes the ground-state configuration in
30Ne. The transitional role of 28Ne of having nearly degenerate
(sd)n and (sd)n−2(pf )2 configurations has been noted [5], but
the experimental ground-state binding energy for 28Ne turns
out to be in good agreement with all of the USD Hamiltonians.

For 26F (shown in Fig. 15) the ground-state spin and
energy are in agreement with theory but nothing is known
about excited states. There are two levels below the neutron
separation energy of 1 MeV. The 4+ level should be isomeric
and may β decay. The γ decay of the 2+ level at 0.56 MeV
(with USDB) to the ground state may correspond to the
0.66 MeV γ -ray decay reported in [77]. Levels for 26O are
shown in Fig. 16. The ground state of 26O is bound to
one-neutron decay by 0.80 (0.95) MeV with USDA (USDB),
but it is unbound to two-neutron decay by 0.50 (0.35) MeV,
in agreement with the experimental observation that it is
unstable [67,68]. This unique situation for a dineutron decay
would be interesting to observe experimentally. The predicted
neutron-decay properties of 25−28O will be the subject of a
separate paper.

For neutron-rich nuclei with Z = 8–10, the increase in
the d3/2 effective single-particle energy needed to improve
the ground-state properties of nuclei with N�16 is reflected
in improvements in the spectra for excited states related to
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FIG. 15. Comparison of experimental and USDB theoretical
levels for 26F. See the text for details.
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the d3/2 orbit in nuclei with 14 � N � 16. For example, the
doublet of states near 2 MeV in 25Ne is suggested to be on
the order 3/2+-5/2+ and is incorrect with the original USD
[30], but is now corrected with USDA and USDB (see [71]).
Excited states of 25Ne were not included in the fit because
the spin assignments are uncertain and because the recent
experimental work [30] was published after the new fit was
completed.

VI. SUMMARY AND CONCLUSIONS

The systematic application of USDA and USDB to other
observables such as moments, electromagnetic decay, and
β decay will be carried out over the foreseeable future. As
a consequence we will gain a better understanding of the
precision and limitation of this approach to nuclear structure.
We should have more precise theoretical input for astrophys-
ical applications such as those for electron-capture [78] and
proton-capture cross sections [28] where experimental data
cannot be obtained.

For this study we have used the renormalized G matrix
from the Bonn-A potential as given in Table 20 of [33]. The
results with Bonn-B and Bonn-C, also given in this table,

show that there is some sensitivity to the NN interaction.
We will explore which of the modern NN interactions and
renormalization methods provide the best starting point for
USD-type Hamiltonians.

From the introduction we repeat the reasons why the
renormalized G-matrix sd-shell TBME may not be adequate:
(i) The perturbation expansion may not be converged [34];
(ii) the oscillator basis used for matrix elements and energy
denominators is an approximation; and (iii) real three-body
forces are required as observed for ab initio calculations
of light nuclei [35]. For (i) we may be able to apply the
ab initio approaches used for lighter nuclei via a similarity
transformation to evaluate an effective sd-shell Hamiltonian
for A = 18. For (ii) we should explore the use of Hartree-Fock
basis states in place of the harmonic oscillator for evaluation
of the renormalized G matrix. For (iii) we need to find the
contribution from realistic three-body forces to the effective
two-body matrix elements for A = 18. The most important
deviations to understand are the monopole interaction terms
shown in Fig. 8.

Real and effective three-body interactions in principle
require an explicit three-body interaction operator for three
or more valence particles. However, the average effects of
these three-body terms can be evaluated from an interaction
calculated for two holes in the closed shell of 40Ca (taking
into account the three-body interaction explicitly). The USD
Hamiltonians should be regarded as an average of the ab
initio interactions for two particles and two holes. Eventually
we may understand how much of the remaining 130- to
170-keV deviation between experiment and theory can be
understood in terms of an explicit evaluation of the three-
body Hamiltonian. With our updated database, new ideas can
be readily incorporated into new versions of the USD-type
Hamiltonians that are constrained by experimental data.
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[48] I. Wiedenhöver, et al., Phys. Rev. Lett. 87, 142502 (2001).
[49] J. Enders et al., Phys. Rev. C 65, 034318 (2002).
[50] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337

(2003).
[51] H. Savajols et al., Eur. Phys. J. A 25, Suppl. 1, 23(2005); W.

Mittig (private communication, 2006).
[52] M. Honma, B. A. Brown, T. Mizusaki, and T. Otsuka, Nucl.

Phys. A704, 134c (2002).
[53] P. R. Bevington and D. K. Robinson, Data Reduction and Error

Analysis, 3rd ed. (McGraw-Hill, New York, 2003).

[54] M. H. Macfarlane, in Two-Body Force in Nuclei, edited by
S. M. Austin and G. M. Crawley (Plenum Press, New York,
1972), p. 1.

[55] W. A. Richter, M. G. Van der Merwe, R. E. Julies, and
B. A. Brown, Nucl. Phys. A523, 325 (1991).

[56] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev.
C 65, 061301(R) (2002).

[57] A. F. Lisetskiy, B. A. Brown, M. Horoi, and H. Grawe, Phys.
Rev. C 70, 044314 (2004).

[58] B. A. Brown, A. Etchegoyen, N. S. Godwin, W. D. M. Rae,
W. A. Richter, W. E. Ormand, E. K. Warburton, J. S. Winfield,
L. Zhao, and C. H. Zimmerman, OXBASH for Windows, MSU-
NSCL Report No. 1289.

[59] B. A. Brown, AIP Conference Proceedings 764, 107 (2005).
[60] T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma,

and T. Mizusaki, Phys. Rev. Lett. 87, 082502 (2001).
[61] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaishi,

Phys. Rev. Lett. 95, 232502 (2005).
[62] F. Ajzenberg-Selove, Nucl. Phys. A281, 1 (1977); S. E. Dardeen,

S. Sen, H. R. Middleston, J. A. Aymar, and W. A. Yoh, ibid.
A208, 77 (1973); M. D. Cooper, W. F. Hornyak, and P. G. Roos,
ibid. A218, 249 (1974).

[63] P. Doll, G. J. Wagner, K. T. Knoepfle, and G. Mairle, Nucl. Phys.
A263, 210 (1976).

[64] B. A. Brown and W. A. Richter, Phys. Rev. C 72, 057301
(2005).

[65] M. Langevin et al., Phys. Lett. B150, 71 (1985).
[66] M. Thoennessen et al., Phys. Rev. C 68, 044318 (2003).
[67] D. Guillemaud-Mueller et al., Phys. Rev. C 41, 937 (1990).
[68] M. Fauerbach et al., Phys. Rev. C 53, 647 (1996).
[69] H. Sakurai et al., Phys. Lett. B448, 180 (1999).
[70] O. Tarasov et al., Phys. Lett. B409, 64 (1997).
[71] http://www.nscl.msu.edu/∼brown/resouces/resources.html.
[72] R. D. Lawson, F. J. D. Serduke, and H. T. Fortune, Phys. Rev. C

14, 1245 (1976).
[73] S. Lee et al., Phys. Rev. C 73, 044321 (2006).
[74] L. Weissman et al., Phys. Rev. C 70, 057306 (2004).
[75] B. H. Wildenthal, M. S. Curtin, and B. A. Brown, Phys. Rev. C

28, 1343 (1983).
[76] B. A. Brown and B. H. Wildenthal, At. Data Nucl. Data

Tables 33, 347 (1985). The B(GT) as defined in the present
work is related to the M(GT) of this reference by B(GT) =
[M(GT)/1.251]2/(2Ji + 1).

[77] M. A. Stanoiu, These, Universite de Caen/Basse-Normandie,
2003, p. 84.

[78] T. Kajino, E. Shiino, H. Toki, B. A. Brown, and B. H. Wildenthal,
Nucl. Phys. A480, 175 (1988).

034315-11


