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22C: An s-wave two-neutron halo nucleus
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A dripline nucleus 22C is studied in a Borromean three-body model of 20C+n+n. The valence neutrons,
interacting via a realistic potential, are constrained to be orthogonal to the occupied orbits in 20C. We obtain
ample results supporting that 22C is an ideal s-wave two-neutron halo nucleus: The ground state is bound
by 390–570 keV, the root mean square neutron and proton radii are 4.0 and 2.4 fm, and the two neutrons
are predominantly in (s1/2)2 orbits. The binding mechanism of 22C is discussed. One- and two-body density
distributions elucidate the halo character as well as the correlated motion of the neutrons. The reaction cross
sections of 22C + 12C collisions are predicted.
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I. INTRODUCTION

The subshell closure of N = 14 and N = 16 is one of
the topics discussed intensively in the study of neutron-rich
nuclei, and the N = 14 closure has experimentally been
confirmed around 22O [1–5]. This issue is closely related to
the competition of 0d5/2 and 1s1/2 neutron orbits. In fact, they
play a vital role in determining the ground state structure of
A = 15–20 carbon isotopes. For example, the ground state of
16C is found to contain the (1s1/2)2 and (0d5/2)2 configurations
nearly equally [6,7], whereas the last neutron in 19C is in
the 1s1/2 orbit, forming one-neutron halo structure [8,9]. The
deformations of carbon isotopes are considered to have a strong
N -dependence [10,11]. An overview of the structure of carbon
isotopes is given in Ref. [12].

No information is available to determine whether the
N = 14 subshell closure occurs in 20C. The systematics of
the interaction cross section suggests, however, that the radius
of 20C is smaller than that of 19C [13]; so it is natural to
assume that the ground state of 20C predominantly consists
of a (0d5/2)6 configuration. If its dominant component were
(0d5/2)4(1s1/2)2, one more neutron could be added to the 0d5/2

orbit to form a particle-stable 21C, which is in contradiction to
observation.

In this study we demonstrate that 22C is an s-wave two-
neutron halo nucleus on the basis of the analysis of its
structure, including the neutron and proton densities. For
Z � 8, 22C is the only dripline nucleus for which the interaction
or reaction cross section measurement on a 12C target has
not yet been obtained [13]; therefore, measurement of the
reaction cross section of 22C is desired. The neutron and
proton densities obtained here will be useful in estimating the
reaction cross section of 22C on a proton target, which is being
investigated experimentally [14]. Our model is that 22C is a
three-body system of 20C+n+n and that 20C has the (0d5/2)6

configuration. 22C is thus Borromean, just as 11Li is. Though
22C may be expected to be much like 11Li in its halo character,
a remarkable difference shows up: In 11Li both (0p1/2)2 and
(1s1/2)2 components contribute to producing its halo [15–17],
whereas in 22C only an (s1/2)2 component is predominant.
Another difference to be noted is that the 20C core has zero

spin, which makes the content of angular momentum coupling
in 22C simpler than that in 11Li.

II. MODEL

The wave function for 22C is determined from the
Hamiltonian

H = Tλ + Tρ + U1 + U2 + v12, (1)

where the subscripts, λ and ρ, of the kinetic energies stand for
the relative distance vectors of the three-body system. The two-
neutron potential v12 is taken from the realistic G3RS (case 1)
potential [18] which contains central, tensor, and spin-orbit
forces and reproduces the nucleon-nucleon scattering data as
well as the deuteron properties. Ui is the n−20C potential
whose form is assumed as

U = −V0f (r) + V1� · s
1

r

d

dr
f (r) + Vse

−µr2Ps , (2)

where f (r) = [1 + exp( r−Rc
a

)]−1, with Rc = r0A
1/3
c (Ac =

20). The operator Ps of the last term projects to the s wave of
the n−20C relative motion, so this term modifies the s-wave
potential strength. To determine the parameters of U , we take
into account the conditions that (i) the 1s1/2 orbit is unbound
as 21C is unstable for a neutron emission and (ii) the 0d5/2 orbit
is bound by at most 2.93 MeV, which is the neutron separation
energy of 20C. Without the Ps term, the above conditions were
barely met only by making V1 much larger than the standard
strength [19]. The set A potential in Table I corresponds to
this case. With the Ps term included, we have more freedom
to generate different potentials, which offers the opportunity
of investigating the sensitivity of U on theoretical results. The
spin-orbit strength V1 is fixed to be the standard value. Three
sets of U of this type are listed in Table I as B, C, and D.
These potentials are determined by giving different values for
the 0d5/2 single-particle (s.p.) energy: Set B potential gives the
deepest energy, while set D gives the shallowest energy. The
energies of the lower s.p. orbits turn out to be considerably
different. It should be noted, however, that our result for 22C
never depends on these energies but rather on their s.p. wave
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TABLE I. Parameters of the n−20C potential U . µ=0.09 fm−2. a and r0 are 0.6 and 1.3 fm for set A
and 0.65 and 1.25 fm for sets B, C, and D. ε is the s.p. energy of the n−20C relative motion. Energy and
length are given in units of MeV and fm, respectively.

V0 V1 Vs ε(0s1/2) ε(0p3/2) ε(0p1/2) ε(0d5/2)

Set A 33.22 42.10 0.00 −19.03 −9.86 −4.77 −1.00
Set B 43.24 25.63 9.46 −19.79 −14.32 −11.00 −2.93
Set C 41.08 25.63 7.14 −19.56 −12.88 −9.58 −1.93
Set D 38.76 25.63 4.66 −19.31 −11.37 −8.09 −0.93

functions as is shown later. Fortunately, the different potentials
chosen here give almost the same s.p. wave function for each
occupied orbit. All of the potentials are set to predict the 1s1/2

s.p. energy to be almost zero. It may be probable that the s-wave
potential strength is even weaker. In that case, the ground state
energy of 22C that we obtain below is to be considered a
minimum.

The ground state of 22C is described as

� = �c�2n, with �2n =
K∑

i=1

Ci�(�i,Ai), (3)

where �c is the intrinsic wave function of 20C and the valence
neutron part �2n is given as a combination of correlated
Gaussian bases

�(�,A)= (1−P12){e− 1
2 x̃Ax[[Y�(x1)Y�(x2)]LχS(1, 2)]00}, (4)

where P12 permutes the neutron coordinates and x̃Ax =
A11x 2

1 + 2A12x1 ·x2 + A22x 2
2 . The coordinates x1 = ρ + 1

2λ

and x2 = ρ− 1
2λ are the distance vectors of the neutrons from

the center of mass (c.m.) of 20C. The angular parts of the
two-neutron motion are described using Y�m(r)=r�Y�m(r̂)
and they are coupled with the spin part χS to the total
angular momentum zero. The basis function is specified by
a set of angular momenta � = (�, S) (L = S) and a 2×2
symmetric matrix A (A21 = A12). The two neutrons are
explicitly correlated due to the term A12x1 · x2, the inclusion of
which assures a precise solution in a relatively small dimension
[20].

It is vital to take into account the Pauli principle for the
valence neutrons in determining the energy and corresponding
wave function. Though the fulfillment of antisymmetrizing
the core and valence neutrons is beyond the present model,
the Pauli constraint is included by imposing that the valence
neutrons cannot occupy any s.p. orbits un�jm of �c. Here
un�jm are generated from U , and n�j runs over 0s1/2, 0p3/2,
0p1/2, and 0d5/2. We used the stochastic variational method

(SVM) [20] to optimize the parameter matrices A. The SVM
increases the basis dimension one by one by testing a number of
candidates that are chosen randomly. The basis selection with
the SVM is very effective for taking care of the short-range
repulsion of v12 as well as for satisfying the orthogonality
constraint.

III. RESULTS

The most important channel for the binding of 22C was
found to be � = (0, 0), and other channels included were
(1, 0), (2, 0), (1, 1), and (2, 1). Note, however, that our
correlated basis functions in practice include higher partial
waves as well. Convergent results are obtained with the basis
dimension of K ≈ 300. The U dependence of the solution
is moderate as shown in Table II. The results with the
�-independent set A potential are similar to those with the
other potentials, especially the set D potential. This indicates
that the present result is not very sensitive to the potential
provided that it is chosen to satisfy the two conditions. The
ground state energy is about −390 to −570 keV with respect to
the 20C+n+n threshold, which is consistent with the empirical
value of −0.423 ± 1.140 MeV [21]. To see the importance of
both spatial and angular correlations of the basis functions, we
repeated the following calculations. The first was to include
only the single channel of � = (0, 0), and then the ground
state energy turned out to be −0.29 MeV for set B. In the
second calculation, which truncates the basis functions to those
with � = (0, 0) and A12 = 0 (no correlation calculation), we
obtained the result that the ground state is bound by at most
90 keV. Thus the inclusion of the correlated bases is found to
gain the energy of about 400 keV.

The rms neutron, proton, and matter radii of 22C, assuming
pointlike nucleons, are listed in Table II. They are obtained
using the corresponding radii of 20C, 3.23, 2.37, and 2.99 fm,
which are calculated from �c. The rms neutron radius is
3.9–4.1 fm. The rms matter radius results in about 3.6–3.7 fm,

TABLE II. Properties of 22C. Length is given in units of fm.

E (MeV) Rn
rms Rp

rms Rm
rms

√
〈x2

1〉
√〈ρ2〉

√
〈λ2〉 〈x1 · x2〉 PS=0 〈(s1/2)2〉

Set A −0.413 4.11 2.44 3.73 8.17 6.19 10.7 9.80 0.998 0.968
Set B −0.489 3.96 2.43 3.61 7.54 5.86 9.48 11.9 0.981 0.915
Set C −0.573 3.93 2.43 3.58 7.37 5.66 9.44 9.83 0.990 0.942
Set D −0.388 4.12 2.44 3.74 8.21 6.29 10.6 11.6 0.995 0.954
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which corresponds to that of a stable nucleus with A≈60.
Accordingly one may call 22C a giant halo nucleus. The
probability of finding the spin-singlet neutrons, PS=0, shows
that the ground state of 22C almost consists of the S = 0
component. Therefore, the noncentral potentials have small
expectation values and play a minor role in binding 22C: In the
case of set B, the value of 〈v12(tensor + spin-orbit)〉 is only
7 keV and that of 〈U1(spin-orbit)〉 is 57 keV. Thus the binding
energy contribution virtually comes from the kinetic energy
and the central potentials of both U and v12.

It is interesting to understand how the Borromean system is
bound. First of all, we note that the noncentral forces are found
to give negligible contributions. Rewriting the kinetic energy
as Tλ + Tρ = T1 + T2 + Trc [22], where Ti is the kinetic energy
for the n−20C relative motion and Trc is the recoil correction
term, we decompose the energy contribution as follows:

E = 2〈T1 + U1〉 + 〈Trc〉 + 〈v12〉. (5)

The decomposition for set B is 2×(7.185 − 6.436) − 0.118 −
1.868 = −0.489 MeV. Except for the small contribution of the
〈Trc〉 term, we conclude that the binding of 22C is obtained by
a delicate balance of the two factors: One is that the attraction
of v12, though not large, keeps the neutrons from separating,
and the other is the weak attraction of U that puts the neutron
in continuum.

We calculate the probability 〈(�j )2〉 of finding the halo
neutrons in an (�j )2 component. The 〈(s1/2)2〉 value is listed in
Table II. Other probabilities for set B are 0.033, 0.024, 0.009,
0.007, 0.003, 0.003 for �j = d3/2, p3/2, p1/2, f7/2, d5/2, f5/2,
respectively. The other potential sets give similar results. We
find that the (s1/2)2 component is predominant and many
other components have small admixtures. Because no bound
orbit exists for the valence neutron, a realistic shell-model
description taking into account these components would be
hard. On the contrary, the present approach has the advantage
that it requires no s.p. energies, no matter how high the valence
neutrons are excited.

The halo behavior of 22C is exhibited through the neutron
density, ρn(r), which is given by

ρn(r) = 〈�2n|ρn
c

(
2

22ρ + r
)|�2n〉 + ρh(r), (6)

where ρn
c (r) stands for the intrinsic neutron density of 20C,

which is calculated from �c, and ρh(r) is the halo-neutron
density with respect to the c.m. of 22C,

ρh(r) = 〈�2n|
2∑

i=1

δ
(
xi − 2

22ρ − r
)|�2n〉. (7)

The integration of ρn
c in Eq. (6) takes care of the fluctuation of

the c.m. of 20C around the c.m. of 22C. The proton density is
given by

ρp(r) = 〈�2n|ρp
c

(
2

22ρ + r
) |�2n〉. (8)

These densities are displayed in Fig. 1. The contribution of the
halo density to ρn exceeds that of the core density beyond r =
6.2 fm. Note that ρh(r)/2 is, roughly speaking, the squared sin-
gle halo-neutron wave function. The dip at around r = 2.4 fm
is due to the orthogonality of �2n to the 0s1/2 orbit.

10-6

10-5

10-4

10-3

10-2

10-1

 0  5  10  15  20

ρ(
r)

[fm
-3

]

r [fm]

ρn

ρc
n

ρh

ρp

ρc
p

FIG. 1. The neutron and proton densities of 22C and 20C. ρh is the
halo-neutron density. Set B potential is used.

It is of interest to examine the correlated motion of the two
neutrons. A two-neutron subsystem with S = 0 is often called
a di-neutron when they have spatial extension comparable to
that of the deuteron. The two-body halo-neutron distribution
function,

ρn−n(r) = 〈�2n|δ(λ − r)|�2n〉, (9)

is compared in Fig. 2 with the corresponding p − n distribution
function of the deuteron

ρp−n(r) = 1

3

1∑
M=−1

〈�d (1M)|δ(rp − rn − r)|�d (1M)〉, (10)
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FIG. 2. Comparison of the two-body density distribution of the
halo neutrons in 22C with that of the proton and neutron in the
deuteron. Set B potential is used.
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FIG. 3. The two-neutron correlation function ρ(x, x, θ ) weighted by 8π2x4sinθ . The lower panel is its contour map. Set B potential is used.

which is calculated using the G3RS potential. It is found that
ρn−n(r) has a distribution much wider than ρp−n(r). Thus the
di-neutron correlation is not prominent in 22C. The value of
〈Tλ+v12〉 is 6.16 MeV (set B), which is to be compared to
−2.28 MeV (G3RS) of the deuteron. Since ρn−n(r) has a long
tail, one may expect that the use of a two-nucleon potential
with a one-pion exchange tail would give a potential energy
different from the G3RS potential of a Gaussian tail. To check
this point, we estimated the energy difference arising when the
singlet-even central potential of G3RS is replaced with that of
the OPEG potential (case 1) [18], using

∫
d rρn−n(r)[v12(OPEG) − v12(G3RS)], (11)

and found that the energy gain is only 6 keV.
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FIG. 4. Prediction of the reaction cross sections of 22C and 20C
on a 12C target. Experimental data are taken from Refs. [13,25,26].

Another function of interest is the two-neutron correlation
function defined as

ρ(x1, x2, θ ) = 〈�2n|�2n〉spin, (12)

where θ is the angle between x1 and x2 and 〈· · ·〉spin indicates
that the integration is to be done over the spin coordinates
only. Figure 3 displays the value of 8π2x4sinθ ρ(x, x, θ ).
One prominent peak appears around x = 5.0 fm and θ = 17◦,
which is often attributed to the correlation of di-neutron type,
but the spatial extension of the two neutrons is too wide to
be called the di-neutron, as shown in Fig. 2. The peak is
followed by a plateau extending to larger angles. The valley of
the correlation function that appears at around x = 2.4 fm
reflects the dip observed in the halo-neutron density of
Fig. 1.

The interaction cross section data for the carbon isotopes
are available up to 20C for high incident energies [13]. With the
reaction model proposed in Ref. [23], we predict the reaction
cross section σR of 22C (and 20C) using the calculated densities.
To make the prediction reliable, we modify a nucleon-nucleon
(NN ) profile function �NN available in the literature [24]
so as to reproduce both the elastic scattering cross section
and the total cross section of the NN collision. Details
will be published elsewhere. Figure 4 displays σR(12,20,22C)
on a 12C target calculated at several incident energies. A
good agreement between theory and experiment for σR(12C)
confirms the validity of the modification of �NN . The σR(20C)
value at the incident energy of 900A MeV is fairly well re-
produced, which indicates that our model for �c is acceptable
at least in its prediction for the radius of 20C. We thus expect
that σR(22C), or at least the increase of the cross sections,
σR(22C) − σR(20C), is predicted to good approximation. A
measurement of σR(22C) for a wide range of incident energies
will provide us with valuable information for quantifying the
extent to which the halo reaches in far distances. We are
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studying the reaction cross section of 22C on a proton target as
well.

IV. CONCLUSIONS

To conclude, we studied the ground state structure of 22C
in the 20C+n+n three-body model with the orthogonality
constraint. The N = 14 subshell closure was assumed for 20C.
We showed that 22C is an almost pure s-wave two-neutron
halo nucleus and that the noncentral forces play no active
role in binding this fragile system. A measurement of the

reaction cross section of 22C+12C is desired to establish the
halo structure experimentally.
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