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Highly excited resonance states lying above the t+t threshold in 6He are theoretically studied by the t+t

microscopic two-cluster model. The t+t two-body scattering problem is solved by the microscopic R-matrix
method in order to localize resonance states. Excited states of 6Be and 6Li (both T = 1 and 0) are as well studied
within the consistent two-cluster models. We have employed four different effective nucleon-nucleon interactions
in order to check the sensitivity to our results and we have obtained fairly consistent results in every interaction. In
positive parity states, our model gives deeply bound states which are well-known low-lying α+n+n three-body
states and these states are obtained through the overlap between the t+t and α+n+n configurations at smaller
cluster relative distance. Similar bound states are found in the T = 0 state in 6Li. In negative parity states, our
calculation shows broad 0− and 2− P -wave resonances just above the t+t threshold and in addition three F -wave
resonances of 2−, 3−, and 4− at higher energies with broader widths. Our calculations show that the noncentral
term of the effective nucleon-nucleon interaction plays an important role for these broad resonance states. T = 0
states of 6Li show single broad resonances in P - and F -waves, respectively, and their positions are very close to
those of T = 1 resonances.
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I. INTRODUCTION

The neutron rich nucleus 6He has drawn strong attractions
due to its exotic structure such as the neutron halo in the ground
and excited states [1]. Various theoretical and experimental
studies prove that the ground and low-lying excited states have
a good α+n+n three-body structure. On the other hand, the
highly excited states more than 12 MeV could have another
exotic aspect in the 6He structure because the t+t channel
comes to be another opened channel together with the α+n+n

at Ex = 12.3 MeV [2].
Experimentally, Akimune and co-workers [3] studied re-

cently highly excited states of 6He and found a di-triton
resonance at Ex = 18.0±1.0 MeV with �R = 9.5 ± 1.0 MeV
as a P -wave resonance. As for resonance states in 6Li and
6Be, a number of experimental efforts were so far performed in
order to determine P - and F -wave resonances above two-body
threshold but some disagreements in the resonance parameters
were found among their measurements [4–6]. Most recent
experiments in Ref. [3] reported a T = 1P -wave resonance at
Ex = 18.0±1.2 MeV with �R = 9.2±1.3 MeV in 6Be and at
Ex = 22.0 ± 1.0 MeV with �R = 8±1 MeV in 6Li. And they
reported at Ex = 18.0 ± 0.5 MeV with �R = 5.0 ± 0.5 MeV
as a T = 0P -wave resonance in 6Li.

Theoretically, in a few decades ago, Thompson and Tang [7]
studied the di-trinucleon resonances in A = 6 nuclei with
the resonating group method (RGM) [8,9] and showed P -
and F -wave resonances. More recently, Ohkura et al. [10]
employed the complex scaling method (CSM) [11,12] in the
RGM calculation in order to localize these broad P - and
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F -wave resonance states in 6Li. It is to be noted that their
calculations neglected the spin-orbit and tensor terms of the
interaction whereas these are essential to know the spin-parity
and width of the P - and F -wave resonances. Since the triton
has a spin and parity of 1/2+, the spin-orbit and tensor forces
split the P - and F -waves to three states, respectively. In the
present paper, therefore, we have added the spin-orbit and
tensor terms to the effective nucleon-nucleon interaction with
the aim of discussing the spin-parity of the t+t clustering
resonance.

In 6He, the soft dipole resonance (SDR) [13,14], which is a
dipole oscillation of an α-cluster core against valence neutrons,
has been hotly discussed experimentally [15] and theoretically
[16–18] as one of most intriguing topics. Theoretically, a
very recent calculation in the α+n+n three-body model by
Aoyama [19] showed that this SDR with a spin-parity of 1−
could have an excessively large decay width (�R = 31.2 MeV)
than expected. In connection with this SDR, it might have a
certain importance to know the spin-parity of the t + tP -wave
resonance since both resonances might affect, if it is 1−, their
resonance positions each other through some coupling effect.
And it could put a necessity on the theoretical study to perform
a coupled channel calculation of the α+n+n and the t+t

systems in order to confirm theoretically the SDR in 6He.
Note that, in the ground 0+ state, an additional t+t channel
on the three-body calculation is known to be non-negligible
in order to reproduce its binding energy [20,21]. However,
we concentrate our discussion on only the t+t clustering
resonance in the present paper because an explicit treatment
of a three-body resonance including the two-body channel is
much difficult in our model and the SDR itself is out of the
scope in present theoretical study.
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In the present theoretical study, we have employed the t+t

microscopic cluster model of the type of the RGM as was used
in the preceding theoretical studies. The two-body scattering
problem is solved by the means of the microscopic R-matrix
method [22,23] and parameters of the di-triton resonances
are directly derived from the position of the S-matrix pole at
the complex energy (momentum) plane. As for the effective
nucleon-nucleon interaction to be used in the present RGM
calculation, we have tried four different interactions, all of
which include the spin-orbit and tensor terms, in order to know
the sensitivity of the resonance parameters to the choice of the
interaction. Other members of the isobaric analog states of
T = 1 resonances in 6Li and 6Be have been studied as well
and in addition the T = 0 resonance in 6Li has been searched
with the consistent t+h model.

II. MODEL

In the present study of A = 6 nuclei, we employed a
(3N )+(3N ) two-body microscopic cluster model according
to the RGM. In this method, the nucleons are assumed
to be arranged in 0s clusters and all nucleons are treated
explicitly. The wave function is constructed to satisfy the Pauli
principle for all nucleons exactly and is free from spurious
center-of-mass motion while also having good total angular
momentum and parity. The intrinsic wave functions of the t

and h are taken to be simple shell-model wave functions built
up from a single 0s harmonic-oscillator state.

The wave function can be obtained approximately by
solving the six-nucleon Schrödinger equation in which the
six-nucleon Hamiltonian has an effective nucleon-nucleon
interaction. In this study, we have tried four different effective
N -N interactions so as to check the sensitivity of our results
to the choice of the effective interactions. The first interaction
is the Minnesota potential (u = 0.98) [24] with the spin-orbit
term of Reichstein and Tang (set number IV) [25] and the
tensor term of Heiss and Hackenbroich [26]. This Minnesota
potential with the tensor term was employed by Csótó for
the studies of the light nuclei [27]. The second interaction is
by Csótó and Lovas [28], which was used to calculate the
ground state of 6Li. The third is by Furutani et al. [29] and
the fourth is by Mertelmeier and Hofmann [30]. These are
hereafter denoted by MN, CL, FU, and MH, respectively.

The total wave function with total angular momentum J

and parity π is given in the RGM as

�JMπ = A{[[�i�j ]ST χ�(ρ)]JM}, (1)

where �i is an intrinsic wave function of 3H(t) or 3He(h)
clusters and the superscript (i, j ) means (t, t) for 6He, (h, h)
for 6Be, and (t, h) for 6Li. χ�(ρ) is the cluster relative
wave function with the partial wave � and ρ denotes the
cluster relative coordinate. The symbol A is the intercluster
antisymmetrizer. S and T are the total spin and isospin,
respectively. In T = 1 states, the Pauli principle allows only
S = 0 for the positive parity state and only S = 1 for the
negative parity state, while T = 0 states allow only S = 1 for
the positive parity state and S = 0 for the negative parity state.
The size parameter of the triton cluster is set to minimize

the triton binding energy with a single (0s)3 function and
the same parameter is used for the 3He cluster. The size
parameters used for MN, CL, FU, and MH potentials are ν =
0.2255 fm−2, 0.185 fm−2,0.23 fm−2, and 0.255 fm−2,
respectively. These parameters give the energy (rms radius)
of the triton as −4.56 MeV (1.49 fm), −7.46 MeV (1.64 fm),
−6.71 MeV (1.47 fm), and −6.40 MeV (1.40 fm), respectively,
while the experimental energy is −8.48 MeV [31]. And the
energy of 3He is given as −3.79 MeV, −6.77 MeV, −5.93 MeV,
and −5.58 MeV, respectively, while the experimental energy
is −7.72 MeV [31]. We should note that the present model
does not take into account the cluster distortion effect [28]
which could be given by the the superposition of the (0s)3

function with various size parameters. Although such an effect
could affect the resonance parameters of the t+t resonance to
a certain extent, we have compromised to employ the single
(0s)3 function because such a superposition makes difficult
to remove the center-of-mass motion from the present wave
function. But this uncertainty by the neglecting the distortion
effect is unlikely to be much larger than that by the choice of
the effective interaction.

The cluster relative motion is solved by the microscopic
R-matrix method where the wave function inside the channel
radius is approximated by the superposition of the various
range of the Gaussian basis function as given in Eqs. (4) and
(5) in Ref. [32] and is connected with the Coulomb function
at the channel radius [22,23]. Since the resonance states to
be calculated are possibly broad resonances according to the
preceding experimental and theoretical studies, in order to
obtain the resonance parameters accurately, we have employed
an analytic continuation of the S-matrix to the complex
energies (ACS) [27] in which the S-matrix is calculated at a
complex energy(momentum) using the Coulomb functions at
complex momenta as described in Ref. [33] and the resonance
parameters are directly given by the position of the S-matrix
pole as E = ER − i�R/2.

Above Ex = 12.3 MeV in 6He, not only the t+t channel
but also the α+n+n channel come to be opened channels,
therefore a rigorous argument for continuum states above the
t+t threshold requires to include both channels simultaneously
while such a complicated calculation for continuum states is
not feasible in our model at the present moment. We take into
account only the t+t channel in the present study since our aim
of the present calculation is to discuss the resonance states with
the t+t clustering rather than to discuss generally continuum
states and the t+t model without the α+n+n channel could
have enough reliability if we discuss only the t+t clustering
resonance in 6He.

III. RESULTS AND DISCUSSIONS

Phase shifts of the t+t elastic scattering for positive parity
states with the MN potential are shown in Fig. 1 wherein the
solid line exhibits the 0+ (1S0) phase shift and the dashed line
2+ (1D2). As seen from this figure, the positive parity states
(0+ and 2+) do not give any sign of resonance in calculated
elastic phase shifts at the low energy region and this result
is consistent with those in Ref. [7]. It is noted that the phase
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FIG. 1. t+t elastic phase shifts for the positive parity states in
6He. The MN potential is used for effective N -N potential. These
are given as a function of the c.m. energy with respect to the t+t

threshold. The phase shifts of 1S0 and 1D2 are given by the solid and
dotted lines, respectively.

shifts with the CL, FU, and MH potentials do not give any
significant difference from those with the MN potential.

In Fig. 2, the phase shifts for negative parity states are
shown. In the negative parity states, we can consider six
states for the T = 1 channel: [L = 1 ⊗ S = 1]Jπ =0−,1−,2−

and [L = 3 ⊗ S = 1]Jπ =2−,3−,4− . These six phase shifts of
3P0,

3P1,
3P2,

3F2,
3F3, and 3F4 are given in Fig. 2 by solid, dotted,

dashed, dash-dotted, dash-double-dotted, and long-dashed
lines, respectively. As shown in Fig. 2, the low energy peaks

of the P -wave (solid and dashed lines) and F -wave phase
shifts suggest an existence of several broad resonances. The
order of the phase shifts in both waves is not sensitive at all to
the choice of the effective N -N interaction. In P -wave states,
every interaction indicates very broad resonances just above
the threshold. The 0− state shows the most prominent peak
among the P -wave phase shifts and the 2− resonance could
lie close to the 0− resonance but with a much broader width.
The position of these resonances are not much sensitive to the
choice of the interaction but their widths are more sensitive
to. As for the 1− states, the t+t relative interaction is much
less attractive than in other two states. Because a peak of the
calculated phase shifts for 1− does not reach more than 5◦ for
all the interactions, it could not be observed experimentally
as a resonance. Therefore, 0− or 2− or a mixture of them is a
candidate for the recently observed P -wave resonance above
the t+t threshold [3]. Note that this order (0−, 2−, and 1−) of
the P -wave splitting is decisively attributed to the tensor force
between the two clusters. Similar trend is seen in the P -wave
low energy phase shifts of p+p [20,27]. Without the tensor
force, the order of the P -wave splitting is naturally 2−, 1−,
and 0− due to the spin-orbit force but the tensor force gives
a more attractive effect in the 0− state and a more repulsive
effect in the 1− state.

In F -wave states of 2−, 3−, and 4−, each phase shift
explicitly shows the broad resonance behavior at energies
higher than those of the P -wave resonances. And their
resonance parameters are not strongly sensitive to the choice
of the interaction except the CL potential as shown later
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FIG. 2. t+t elastic phase shifts for the negative parity states in 6He. The phase shifts of 3P0,
3P1,

3P2,
3F2,

3F3, and 3F4 are given by the solid,
dotted, dashed, dash-dotted, dash-double-dotted, and long-dashed lines, respectively. MN, CL, FU, and MH distinguish the employed effective
N -N interaction as is given in the text.
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TABLE I. Resonance parameters of 6He, 6Li (T = 1, 0), and 6Be.
MN potential [24–26] is employed as the N -N interaction. ER and
�R are the resonance energy relative to respective two-body threshold
and resonance width, respectively. Unit is given in MeV. Value in the
parenthesis at �R presents rms radius (fm) in bound state.

T = 1 6He 6Li 6Be

J π ER �R ER �R ER �R

0+ −6.09 (2.10) −5.72 (2.10) −4.75 (2.12)
2+ −4.67 (2.01) −4.29 (2.01) −3.38 (2.02)
0− 0.6 4.2 0.9 4.6 1.5 5.4
2−(� = 1) 0.3 5.8 0.6 6.3 1.3 7.2
2−(� = 3) 11 18 11 19 12 20
3− 12 19 13 19 14 20
4− 11 11 12 12 13 12

T = 0
1+ −11.81 (1.96)

−0.02 (2.42)
2+ −6.83 (1.99)
3+ −11.03 (1.90)
1− 0.3 6.7
3− 12 16

(Tables I–IV). These three F -wave resonances concentrate
within 1–2 MeV, and the 4− state (long-dashed line) is a
slightly narrower one whereas the other two states have similar
widths each other.

It might be interesting to note that the order of P -wave
states (0−, 2−, and 1−) is different from that (2−, 1−, and
0−) of the shell model in Ref. [34] wherein the 0− state has
much higher energy than the other two states. And, in F -
waves, the 3− state has much higher energy than the second
2− and 4− states in Ref. [34] whereas our model gives a small
difference in their positions as written above. And note that

TABLE II. Resonance parameters of 6He, 6Li (T = 1, 0), and
6Be. CL [27]is employed as the N -N interaction. For notation, see
Table I.

T = 1 6He 6Li 6Be

J π ER �R ER �R ER �R

0+ −8.92 (2.25) −8.58 (2.25) −7.67 (2.26)
2+ −6.58 (2.20) −6.24 (2.20) −5.40 (2.21)
0− 0.6 1.1 0.9 1.4 1.4 1.9
2−(� = 1) 0.7 2.6 0.9 2.9 1.5 3.5
2−(� = 3) 6 12 6 12 7 12
3− 8 16 9 17 9 18
4− 7 9 7–8 9–10 8 10

T = 0
1+ −8.32 (2.27)

−0.47 (2.41)
2+ −6.99 (2.22)
3+ −7.79 (2.16)
1− 0.8 3.5
3− 8 13

TABLE III. Resonance parameters of 6He, 6Li (T = 1, 0), and
6Be. FU potential [29] is employed as the N -N interaction. For
notation, see Table I.

T = 1 6He 6Li 6Be

J π ER �R ER �R ER �R

0+ −8.07 (2.02) −7.69 (2.02) −6.68 (2.03)
2+ −6.17 (1.96) −5.79 (1.96) −4.85 (1.96)
0− 0.1 6.6 0.5 7.1 1.3 8.1
2−(� = 1) −0.6 8.2 −0.3 9 0.6 10
2−(� = 3) 13 18 13 18 14 19
3− 14 19 15 19 16 20
4− 13 11 13 12 14 12

T = 0
1+ −12.06 (1.94)

−2.16 (2.08)
2+ −8.15 (1.95)
3+ −11.75 (1.88)
1−

3− 17 22

these odd states must be, in the shell model configuration,
given by the 1h̄ω excitation, where one nucleon in the p-shell
excites into the sd-shell or one in the s-shell excites into the
p-shell. Although the odd-wave t+t clustering state implies
the s-hole dominance in the shell model configuration [10], it
is known that the shell model requires much higher excitation
in order to reproduce accurately a cluster model wave function
for a developed clustering state [36].

The resonance parameters of T = 1 states obtained by the
ACS for the different N -N interactions are given in an upper
part of Tables I–IV. The left, middle and right columns in
the tables are the calculated resonance energies and the decay
widths for 6He, 6Li, and 6Be, respectively. For bound states,

TABLE IV. Resonance parameters of 6He, 6Li (T = 1, 0), and
6Be. MH potential [30] is employed as the N -N interaction. For
notation, see Table I.

T = 1 6He 6Li 6Be

J π ER �R ER �R ER �R

0+ −9.29 (1.92) −8.90 (1.92) −7.84 (1.93)
2+ −6.93 (1.87) −6.52 (1.87) −5.54 (1.87)
0− 0.9 3.0 1.3 3.3 1.9 4.1
2−(� = 1) 0.9 4.9 1.2 5.3 1.9 6.2
2−(� = 3) 11 17 11 17 12 18
3− 13 19 14 19 15 20
4− 11 10 12 10 13 11

T = 0
1+ −14.32 (1.85)

−2.22 (1.99)
2+ −10.23 (1.86)
3+ −14.58 (1.79)
1− 0.9 6.1
3− 13 15
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we give the rms radii in the parenthesis instead of the decay
widths. For positive parity states, our two-cluster model gives
two deeply bound states of Jπ = 0+ and 2+ as shown in
Tables I–IV, while no bound state is found in negative parity
state. Both in experimentally and theoretically, 6He is well
known to have the 0+ and 2+ states as the ground and the
first excited (Ex = 1.8 MeV [2]) states, respectively, where
both states are understood to have a good α+n+n three-body
structure. Note that the t+t threshold lies experimentally at
Ex = 12.3 MeV [2]. When the cluster relative distance is
smaller, two different configurations, α+n+n and t+t , can
have larger overlap each other, therefore these two bound
states can be regarded as well-known low-lying three-body
states rather than the t+t bound states. Regarding this overlap,
Csótó already discussed the large overlap between α+n+n

and t+t in the ground state [20]. In order to confirm this
idea, we calculate the t+t reduced width amplitude in these
two states and our results give one node for the S-wave
state (0+) and zero node for the D-wave state (2+) meaning
that these two states are dominated by 0h̄ω excitation in
the shell model configuration. In addition, the shape of the
amplitude in this 0+ state is quite similar with that obtained by
the three-cluster model [21]. Therefore these results confirm
the above conclusion concerning these bound states. It should
be stressed that the wave functions obtained by the t+t model
can produce a mere certain part of these states since these
bound states are obtained simply through the overlap between
two different configurations and therefore these wave functions
are insufficient to replace the α+n+n wave functions.

As far as the negative parity states in Tables I–IV are
concerned, the 0− and 2− states are obtained as the P -
wave resonance and both states give a tiny difference in the
resonance energies but the 2− state has a width larger than
the 0− state has. All of the potentials give less than 1 MeV
as the resonance energies of both states. As for the width, the
FU gives the largest width, �R = 6.6 MeV for the 0− state
and 8.2 MeV for the 2− state, and the CL the smallest width,
�R = 1.1 MeV for the 0− state and 2.6 MeV for the 2− state.
The F -wave gives three resonance states of 2−, 3−, and 4−, all
of which concentrate within 2 MeV in the resonance energy.
With the MN, FU, and MH potentials, resonance energies
of the three F -wave states are 11–14 MeV while widths are
17–19 MeV for the 2− and 3− states and 10–11 MeV for the
4− state. The CL potential gives smaller resonance energies
(6–8 MeV) and widths (9–16 MeV) in comparison with other
three potentials. We would like to remark that, among the
resonance parameters given in Tables I–IV, the MN and FU
potentials give the lower resonance energy in the 2− state than
that in the 0− state whereas the 2− state has the broader width
than the 0− state has, as easily seen in Fig. 2. Moreover, the FU
potential gives the negative energy (ER = −0.6 MeV) in the
2− state while this is the resonance state(�R = 8.2 MeV). We
can understand this behavior for these two P -wave resonances
if we consider on the complex momentum plane. When we
assume the complex momentum as k = √

ER − i�R/2, the
MN gives k = 1.2 − ı 0.9 for the 0− and k = 1.3 − ı 1.1 for
the 2−. That is, the 2− state, which has a weaker P -wave
attraction between the two triton than the 0− state, has the
larger Re[k] and Im[k] than the 0− state has, that is quite

normal behavior as the S-matrix pole trajectory on the complex
momentum plane. For the FU potential, the 0− state gives
k = 1.3 − ı 1.3 and the 2− gives k = 1.3 − ı 1.5 which are
as well normal behavior and lie on the fourth quadrant on
the complex momentum plane. Therefore, this behavior for
the resonance energy ER for the two P -wave resonance states
come simply from the larger imaginary part of the complex
momentum than the real part.

Concerning the T = 1 isobaric analog states in 6Be and
6Li, we confirmed the results consistent with those of 6He
as given in Tables I–IV. In 6Be, it should be noted that the
3He+3He resonance state near the threshold can be expected
to play an important role in the 3He(3He,2p)6Be astrophysical
low-energy reaction which is a dominant reaction of the 4He
source in stars and competes the 3He(4He,γ )7He reaction in the
p+p chain [37]. A few decades ago, a hypothetical narrow res-
onance locating close to the two-body threshold, which could
give an observable enhancement in 3He(3He,2p)6Be reaction
rate and some explanation for the missing 8B solar neutrino
flux, was suggested [38]. However, theoretical calculations in
RGM and GCM [39,40], as well as the experimental search
[41], so far did not find any narrow low-energy resonance
which could enhance the reaction. Therefore the P -wave
resonances obtained in the present study is unlikely to affect
the 3He(3He,2p)6Be reaction rate since these resonances have
very large decay widths (�R = 1.9–10 MeV).

As it is mentioned in Sec. I, the spin-orbit and tensor terms,
which is not included in the preceding theoretical studies
[7,10], are taken into account in the our effective nucleon-
nucleon interactions. In order to examine the roles of the
spin-orbit and tensor terms in the effective nucleon-nucleon
interaction for the T = 1 odd-wave resonances, we have again
calculated the odd-wave phase shifts in 6He but omitting the
spin-orbit and/or tensor terms so as to compare these with
those in Fig. 2. The calculated phase shifts of the 0− and 4−
states with the MN potential are shown in Fig. 3, where those
which omit the spin-orbit and tensor terms are given by the
solid lines, those which omit the tensor term are by the dotted
lines, and those with the spin-orbit and tensor terms are by
the dashed lines. Results which is consistent with those by the
MN potential are obtained by the other three potentials. We can
see in the 0− state, which is the narrowest resonance among
the P -wave states, that the tensor term gives an important
role to make this resonance narrower while the spin-orbit
term gives a less important role. In the 4− state, which is the
narrowest resonance among the F -wave states, the spin-orbit
term enhance largely this phase shift while the tensor term
enhance a little. In the other P - and F -wave resonances of the
1−, 2−, and 3− states, both terms give smaller contributions or
repulsive effects. Therefore, above results show the important
role of the tensor term for the 0− P -wave resonance and of the
spin-orbit term for the 4− F -wave resonance.

For the T = 0 states in 6Li, t+h elastic scattering phase
shifts in positive parity states are shown in Fig. 4, where four
states of 3S1,

3D1,
3D2, and 3D3 are given by the solid, dotted,

dashed, and dash-dotted lines, respectively. This figure shows
that 1+ states in the S- and D-waves (solid and dotted lines) do
not give any sign of the resonance states. The D-wave phase
shifts of 2+ and 3+ (dashed and dash-dotted lines) show a
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FIG. 3. t+t elastic phase shifts of the (a) 0− and (b) 4− states in
6He. The MN potential is used as the effective N -N potential. The
solid, dotted, and dashed lines are the results without the spin-orbit
and tensor terms, without the tensor term, and with spin-orbit and
tensor terms, respectively.

very small peak which implies an existence of the very broad
resonance, but they have apparently certain dependence upon
the employed interaction. Note that these 2+ and 3+ resonance
states require excitation more than 2h̄ω so as to be produced in
the shell model since the first states of 2+ and 3+ are obtained
as deeply bound states as discussed below. Therefore it could
have some uncertainty to discuss these D-wave resonances
within the present t+t cluster model and further extension of
the model space might be desired in order to get more reliable
resonance parameters.

Concerning the negative parity states (T = 0), t+h phase
shifts are shown in Fig. 5, where the P - and F -waves
are given by the solid and dotted lines, respectively. A P -wave
phase shift (1−) gives a small peak below 5 MeV except the
FU potential. The FU has, in the T = 0 state, the weakest
attraction for cluster relative motion while the CL has the
strongest attraction as is in the T = 1 state. An F -wave phase
shift (3−) shows a very broad resonance lying at much higher
energies than the P -wave resonance lies.

The resonance parameters for these T = 0 states obtained
by the ACS are given in a lower part of Tables I–IV. Our

model gives, in every interaction, four bound states with the
positive parity, two in the 1+ state and one in each of 2+
and 3+ states, but no bound state is found in the negative
parity state. 6Li is experimentally known to have the ground
state of 1+ and excited states of 3+(Ex = 2.2 MeV), 2+(Ex =
4.3 MeV), and 1+(Ex = 5.7 MeV), while the t+h threshold
lies at Ex = 15.8 MeV [2]. And these low-lying states are
considered to be dominated by the α+p+n or α + d structure.
Note that, in an α + d configuration, the S-wave state gives a
spin-parity of 1+ and the D-wave gives of 1+, 2+, and 3+ and
the present calculation, in fact, shows an S-wave dominance
for the lowest 1+ state and a D-wave for others. We have
calculated the t+h reduced width amplitudes in these bound
states as was done in 6He, and the node and the partial wave
of these amplitudes indicate that these states are dominated by
the 0h̄ω excitation in the shell model configuration. According
to above facts, it is quite natural to consider these bound states
being experimentally known states of 1+

1 , 3+, 2+, and 1+
2 lying

below Ex < 6 MeV. A certain overlap between the t+h and
α+p+n (or α + d) configurations makes these four states
being the bound states as is found in the T = 1 case. Among
these states, the second 1+ state has much higher excitation
energy than others whereas an experimental excitation energy
of the second 1+ is 5.7 MeV [2]. One of possible explanations
is that the α+p+n (α + d) configuration of this second
1+ state has much less overlap with the t+h configuration
than others have, that is, the wave function of this state is
much less spatially localized than other three states.

In odd-wave resonance states, the parameters of P - and
F -wave resonances in the T = 0 state are very close to those
in the T = 1 state except the FU potential, because the central
part of the present interaction except the FU potential hardly
changes these odd-wave phase shifts between T = 0 and 1.
Note that when the y defined in Refs. [7,10] go to 1.0 (w = m

and b = h), both odd-wave phase shifts agree exactly and the
MH potential used here is in this case.

Comparing our resonance parameters of 6Li with other
theoretical calculations, our results seem to be consistent with
those by Ohkura et al. [10] who employed the CSM in the
RGM calculation. They gave ER = 1.3 MeV (1.1 MeV) and
�R = 4.4 MeV (5.5 MeV) for the 1P (3P ) state and ER =
10.1 MeV (10.7 MeV) and �R = 9.6 MeV (11.2 MeV) for
the 1F (3F ) state. On the other hand, our resonance energies
in the P -wave states are a few MeV lower than those by
Thompson and Tang [7] who used one-level formula for their
calculated phase shifts. They gave ER = 5.5 MeV (6.5 MeV)
and �R = 6.9 MeV (9.3 MeV) for the 1P (3P ) state and
ER = 13.0 MeV (14.0 MeV) and �R = 5.9 MeV (7.5 MeV)
for the 1F (3F ) state. Concerning this discrepancy, it must be
mentioned that the definition of the resonance parameters in
the ACS and the CSM is different from that in the phase shift
analysis. Resonance parameters in the ACS and the CSM are
determined by the position of the S-matrix pole on the complex
energy (momentum) plane whereas the parametrization by the
phase shift analysis is based on the real energy axis. When a
resonance state has a small width, that is, the S-matrix pole
lies near the real energy axis, both methods can give quite
similar results, however, once the S-matrix pole moves far
from the real energy axis, we can find some discrepancies in
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FIG. 4. t+h elastic phase shifts for the positive parity states in 6Li. This is given as a function of the c.m. energy with respect to the t+h

threshold. The phase shifts of 3S1,
3D1,

3D2, and 3D3 are given by the solid, dotted, dashed, and dash-dotted lines, respectively.

their parameters due to the different definition of the resonance
parameters, as is seen in Table I of Ref. [35]. This can be
applied when our results is compared with the experimental
data, especially for broad resonances.

Secondly comparing with the experimental data, the recent
experiments in Ref. [3] gave P -wave resonances without spin
assignment in the A = 6 systems as ER = 5.7±1.0 MeV
and �R = 9.5±1.0 MeV for 6He, ER = 6.2±1.0 MeV and
�R = 8±1 MeV for 6Li(T = 1), ER = 2.2±0.5 MeV and
�R = 5.0±0.5 MeV for 6Li(T = 0), and ER = 6.5±1.2 MeV
and �R = 9.2±1.3 MeV for 6Be. On the whole our results
give smaller resonance energies and widths. Most noticeable
difference between our results and recent experimental data [3]
can be found in an energy difference of the P -wave resonance
between the T = 0 and 1 states in 6Li. As mentioned above,
our results with three potentials other than the FU potential
give less than 1 MeV as the energy difference whereas the
experimental data give about 4 MeV. And, comparing with
other experiments in Refs. [4–6], they gave 2− or 0− as spin
assignments of the T = 1P -wave resonances [5,6] and this
is consistent with our results since our present model cannot
give clear evidence of the 1− resonance. In T = 1F -wave
resonances, Mondragón [6] gave three resonances in 6Li and
Vlastou [5] gave as well three in 6Be as gives our calculation,
while Ventura [4] gave two (3− and 4−) in 6Li and one (3−) in
6Be and Vlastou [5] gave two (3− and 4−) in 6Li. Mondragón
[6] gave, in the T = 1 states of 6Li, not only resonance energies
but also widths, ER = 2.190 MeV and �R = 3.012 MeV for
the 2−(P -wave), ER = 10.795 MeV and �R = 8.684 MeV
for the 2−(F -wave), ER = 8.984 MeV and �R = 6.754 MeV

for the 3−, and ER = 9.095 MeV and �R = 5.316 MeV for the
4−. On the whole our results are not far from their resonance
energies but the widths are much larger than theirs.

IV. SUMMARY

We have explored theoretically the highly excited states
of 6He, which have possibly di-triton clustering, by means
of the t+t microscopic cluster model. We tried four different
effective nucleon-nucleon interactions in order to check the
sensitivity to our results and we obtained fairly consistent
results in most resonance states. Other members of the T = 1
isobaric analog states in the A = 6 systems and the T = 0
states in 6Li have been as well calculated in consistent ways.

In T = 1 P -waves, we have obtained rather broad reso-
nances just above the two-body threshold wherein the 0−
resonance is most noticeable and the 2− resonance lies quite
close to the 0− state but with a broader width. Our model
implies that the 1− state is unlikely to be observed exper-
imentally as a P -wave resonance. In T = 1F -waves, three
overlapping resonances of 4−, 3−, and 2− have been obtained
with much higher energies and broader widths than those of the
P -wave resonances. Among these resonances, the tensor term
in the effective nucleon-nucleon interaction plays an important
role for the narrowest P -wave resonance of the 0− state and
for the narrowest F -wave resonance of the 4− state it is the
spin-orbit term. In T = 0 states in 6Li, resonance energies of
single P - and F -wave resonances are very close to those in
T = 1 states.
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FIG. 5. t+h elastic phase shifts for the negative parity states in 6Li. The phase shifts of 1P1 and 1F3 are given by the solid and dotted lines,
respectively.

In comparison with other theoretical studies, our results are
close to those by Ohkura et al. [10] but some disagreements
are found with those by Thompson and Tang [7], in which
they neglected the spin-orbit and tensor terms, naturally due
to the different definition of the resonance parameters. With
experimental data, our results in P -wave resonances have
given lower resonance positions on the whole and a smaller
isospin splitting in 6Li than those obtained in recent experiment
by Akimune et al. [3]. In T = 1F -wave resonances of 6Li, our
resonance widths are on the whole much broader than those
by Mondragón [6].

Finally, we would like to mention that the present model
employs the simple (0s)3 function as the triton or 3He cluster
internal function whereas, in reality, the triton wave function
has a D-wave mixture about 9% [42]. Accordingly, in the

effective N+N interaction employed here, the contribution
of the tensor term is partly included into the central term.
Therefore, more realistic cluster internal function with the
more realistic N+N interaction is desired for full understand-
ing the the contribution of the non-central potential for the
t+t resonance. Although such an extend calculation in the
microscopic cluster model is intriguing and challenging, this
is beyond the scope of the present paper.
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