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Test of J-matrix inverse scattering potentials on electromagnetic reactions of few-nucleon systems
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The J -matrix inverse scattering nucleon-nucleon potentials (JISP), describing both two-nucleon data and
bound and resonant states of light nuclei to high accuracy, are tested on the total photoabsorption cross sections
of 2H, 3H, and 3,4He. The calculations in the three- and four-body systems are carried out via the Lorentz integral
transform method and the hyperspherical harmonics (HH) technique. To this end the HH formalism has been
adapted to accommodate nonlocal potentials. The cross sections calculated with the JISP are compared to those
obtained with more traditional realistic interactions, which include two- and three-nucleon forces. Although the
results of the two kinds of potential models do not differ significantly at lower energies, beyond the resonance peak
they show fairly large discrepancies, which increase with the nuclear mass. We argue that these discrepancies may
be due to a probably incorrect long-range behavior of the JISP, because the one pion exchange is not manifestly
implemented there.
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I. INTRODUCTION

In the past few years the possibility to perform very accurate
calculations in few-nucleon systems has stimulated a new
attitude in studying the nature and form of the nuclear force.
Differently from what was common in the past, nowadays po-
tential models are tested not only on the increasingly accurate
nucleon-nucleon (NN ) data and triton binding energy but also
on bound and resonant states of more complex systems.

The modern debate on nuclear forces focuses on potential
models that can schematically be grouped into three different
categories. Category A includes the most traditional potentials.
Their two-body parts either are based on meson exchange
models [1–3] or are largely phenomenological [4,5]. However,
all of them include the essential one-pion exchange term at
long range and reproduce the NN -scattering data with very
high accuracy. However, when tested on A � 3 nuclei, they
show nonnegligible underbinding. Three-body forces have
been introduced to fit the A = 3 binding energy and more
recently also to describe energies of bound and low-lying
resonant states of p-shell nuclei [6–9].

Category B includes the effective field theory (EFT)
potentials [10], which have a stronger connection to quantum
chromodynamics (QCD). They imply consistent two-, three-,
or more-body terms. The number of these terms and of the
associated parameters, as well as the accuracy in reproducing
data, increase significantly with the order of the expansions.
The common feature of potentials belonging to categories A
and B is the presence of three-body operators. These require
very intense computational efforts when used in many-body
systems.
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Category C includes potentials that, although describing
NN -scattering data with high accuracy make use of the
remaining off-shell freedom to reproduce few-body ground-
state energies and low-lying resonances, avoiding the necessity
of three-body operators [11–15].

Electromagnetic reactions can provide good constraints
of the off-shell behavior of the potential. The potentials of
category A have been tested at large on quite a number of
observables in the photo- and electrodisintegration of the
two-body system. The comparison with data is very good, at
least within the nonrelativistic regime (see, e.g., Refs. [16,17]).
As to category B potentials, analogous systematic studies
are still missing. Investigations on electromagnetic reactions
have been performed also in the three-body systems (see,
e.g., Refs. [18–21]) for potentials falling into category A
and B.

Due to its large binding energy the four-body system
represents a very good testing ground for off-shell versus
many-body properties of the nuclear force. However, an
ab initio calculation of the total photodisintegration cross
section of 4He has been performed [22] with a category
A potential of local nature (AV18 and UIX [5,8]) only
recently. Even if the lack of precise experimental data limits
the validity of such kind of calculations as test of the off-
shell behavior of the potentials, it is interesting to calculate
the same observable also with a potential of category C.
In particular, one can ask whether potential models that
reproduce the binding energy of the α particle in two
different ways, either by including three-body operators or
by a proper choice of the off-shell behavior of the two-body
potential, predict the same results for the electromagnetic
observables.

Among the potentials of category C, of particular interest
are the potentials of Refs. [12–14], which are highly nonlocal
and given in terms of matrix elements constructed by means
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of the J -matrix version of inverse scattering theory. Due to
the lack of the three-body operator and the way they are
constructed, they lead to rapid convergence, when used in
many-body ab initio calculations based on complete basis
expansions, as was shown in Ref. [13] within the no core
shell-model approach [23].

The aim of this work is twofold. On the one hand we want
to extend the calculation of Ref. [22] to nonlocal potentials.
On the other hand we would like to compare the results on
the total photodisintegration of 2H, 3H, and 3,4He below pion
threshold, obtained with two versions of the JISP, to those
given by typical category A potentials.

We have chosen this particular electromagnetic observable
because in this case the validity of Siegert’s theorem allows
to take largely into account, in an implicit way, the two- (or
more-) body current contributions. Because of the particular
form of the JISP (in matrix and not in operator form) it would
be otherwise very difficult, if not impossible, to construct them
in a consistent way. However, just these currents can help to get
an idea on the importance of the underlying degrees of freedom
that are “mocked” by the off-shell part of the potential.

The photodisintegration cross sections are calculated here
using the Lorentz integral transform (LIT) method [24], which
allows the treatment of the continuum states dynamics by
means of a bound state technique. This method is briefly
summarized in Sec. II. We use the symmetrized HH expansion
[25–28] for the three- and four-body calculations, whereas
standard numerical methods are used to solve the differential
equations in the two-body case.

The use of the HH formalism is natural in configuration
space and for local potentials. Because the JISP are nonlocal
and given in terms of two-body matrix elements between
harmonic oscillator (HO) states, the many-body HH formalism
has to be adapted to this case. Section III contains the
description of how this is achieved. In Sec. IV we present the
results for the total photodisintegration of A = 2, 3, 4 nuclei
and compare them to those obtained by category A potentials.
Conclusions are drawn in Sec. V.

II. THE TOTAL PHOTOABSORPTION CROSS SECTION
WITH THE LIT METHOD

The total photoabsorption cross section is given by

σγ (ω) = 4π2αωR(ω) , (1)

where α is the fine structure constant, ω represents the energy
transferred by the photon, and R(ω) is the response function
defined as

R(ω) =
∑∫

f

|〈f |�|0〉|2δ(Ef − ω − E0). (2)

Here |0〉 and E0 are the nuclear ground-state wave function and
energy, |f 〉 and Ef denote eigenstates and eigenvalues of the
nuclear Hamiltonian H , and � is the operator relevant to this
reaction (it is assumed that recoil effects are negligible). In the
low-energy region considered here one can rely on Siegert’s

theorem and use for � the unretarded dipole operator

� = 1

2

A∑
i

ziτ
3
i . (3)

The calculation of R(ω) seems to require the knowledge
of the continuum states |n〉. However, this difficulty can
be avoided using the LIT method. This method has been
described extensively in several publications [24,29]. Here
we summarize only the three steps that are needed for the
calculation of R(ω).

Step 1. The equation

(H − E0 − ω0 + i	)|
̃〉 = �|0〉 (4)

has to be solved for many ω0 and a fixed 	. This is a
Schrödinger-like equation with a source. It can be shown
easily that the solution |
̃〉 is localized. Thus one only
needs a bound state technique to calculate it. One gener-
ally adopts the same bound state technique as for the solu-
tion of the ground state, which is an input for Eq. (4). We
use expansions on the HH basis, as explained in Sec. III.

The values of the parameters ω0 and 	 are chosen in
relation to the physical problem. In fact, as it becomes
clear in Step 2, the value of 	 is a kind of “energy
resolution” for the response function and the values of ω0

scan the region of interest. In our case we are interested in
the resonance region and up to pion threshold. Therefore
we solve Eq. (4) with 	 = 10 and 20 MeV and for a few
hundred of ω0 values chosen in the interval from −10 to
200 MeV.

Step 2. After solving Eq. (4) the overlap 〈
̃|
̃〉 is
calculated. Of course this overlap depends on ω0 and 	.
A theorem for integral transforms based on the closure
property of the Hamiltonian eigenstates [30] ensures that
this dependence can be expressed as [24]

L(ω0, 	) = 〈
̃|
̃〉 =
∫

R(ω)L(ω,ω0, 	)dω , (5)

where L is the Lorentzian function centered at ω0 and
with 	 as a width:

L(ω,ω0, 	) = 1

(ω − ω0)2 + 	2
. (6)

Therefore by solving Eq. (4) one can easily obtain the LIT
of the response function.

Step 3. The transform (5) is inverted (see, e.g., Ref. [29,
31]) to obtain the response function and therefore the
cross section. Of course the inversion result has to be
independent of 	 and show a high degree of stability.

III. ACCOMMODATION OF NONLOCAL NN POTENTIAL
MATRIX ELEMENTS IN THE HH FORMALISM

In this section we describe the implementation of nonlocal
potentials in the HH formalism. Our method is alternative to
that of Ref. [32] and more convenient for the structure of our
codes.
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A. The A-body basis states

In the HH formalism the antisymmetric A-body
configuration-spin-isospin basis functions with total angular
momentum JA, J z

A and isospin TA, T z
A are given by (notations

as in Ref. [33])∣∣nAKAJAJ z
ATAT z

A	AαAβA

〉
= |nA〉

∑
YA−1

�	A,YA−1√|	A|
[|KALAMA	AYA−1αA〉

× ∣∣SASz
ATAT z

A	̃A, ỸA−1βA

〉]JA

J z
A

, (7)

where

〈A|KALAMA	AYA−1αA〉 ≡ Y [A]
KALAMA	AYA−1αA

(A) (8)

are the HH functions with hyperspherical angular momen-
tum KA, and orbital angular momentum quantum numbers
LA,MA that belong to well-defined irreducible representations
(irreps) 	1 ∈ 	2 . . . ∈ 	A of the permutation group-subgroup
chain S1 ⊂ S2 . . . ⊂ SA, denoted by the Yamanouchi symbol
[	A, YA−1] ≡ [	A, 	A−1, . . . , 	1]. The dimension of the irrep
	m is denoted by |	m| and �	A,YA−1 is a phase factor [34].
Similarly, the functions〈

sz
1..s

z
A, tz1 ..t

z
A

∣∣SASz
ATAT z

A	̃A, ỸA−1βA

〉
≡ χ

[A]
SASz

ATAT z
A	̃A,ỸA−1βA

(
sz

1..s
z
A, tz1 ..t

z
A

)
(9)

are the symmetrized spin-isospin basis functions. In Eqs. (8)
and (9) the quantum numbers αA, βA are used to remove the
degeneracy of the HH and spin-isospin states, respectively.
The function

〈ρ|nA〉 = R[A]
nA

(ρ) (10)

is the A-body hyperradial basis function,

R[A]
nA

(ρ) =
√

nA!

(nA + αL)!
b−3(A−1)/2

(ρ

b

)(αL−3A+4)/2

×LαL

nA
(ρ/b) exp[−ρ/(2b)] , (11)

where La
n(x) are the associated Laguerre polynomials. The

A-body hyperradial basis functions depend on the range
parameter b and the Laguerre parameter αL.

For the sake of brevity in the following the state
of Eq. (7) will be denoted by |nA, [KA]〉, with [KA] ≡
KAJAJ z

ATAT z
A	AαAβA.

B. The interaction and the HH (A − 2, 2) basis

The representation of a non-local two-body interaction
becomes very simple if the basis for the A-body Hilbert
space is chosen as an outer product of a two-particle and a
(A − 2)-particle states. In such a representation the interaction
has the following form

v[2](ij ) =
∑

c2c
′
2CA−2

|c2CA−2〉v[2]
c2c

′
2
〈c′

2CA−2| , (12)

where by c2 and c′
2 we denote the two-body states of the

interacting particles ij and by CA−2 we indicate a state that

includes the (A − 2)-body residual system. For a fermion
system, these states should be taken as antisymmetric two-
body and (A − 2)-body states, respectively.

We choose to label the particles of the pair as particle A and
A − 1 and to indicate their relative coordinate by 	η ≡ 	ηA−1 =√

1
2 (	rA − 	rA−1). Thus c2 depends on the Jacobi coordinate

	ηA−1 and CA−2 on the remaining (A − 2) reversed order Jacobi
coordinates 	ηA−2, 	ηA−3...	η1 [27]. Notice that in this way CA−2

has information also on the relative orientation of the two- and
the (A − 2)-body subsystems.

After having transformed {	ηA−2, 	ηA−3... 	η1} and 	η to hy-
perspherical and spherical coordinates, respectively, one can
express CA−2 (c2) on the hyperspherical (spherical) basis. In
analogy to Eq. (7) one has the antisymmetric (A − 2)-body
configuration-spin-isospin states

|CA−2〉 = |nA−2〉
∑
YA−3

�	A−2,YA−3√|	A−2|
× [|KA−2LA−2MA−2	A−2YA−3αA−2〉
× |SA−2S

z
A−2TA−2T

z
A−2	̃A−2, ỸA−3βA−2〉

]JA−2

J z
A−2

,

(13)

and the antisymmetric two-body states (the sum �2 + S2 + T2

is odd)

|c2〉 = |n2〉
[|�2m2〉

∣∣S2S
z
2T2T

z
2

〉]J2

J z
2
. (14)

The notations in the previous equations are similar to
those in Eqs. (7) and (8). The difference is in the subscripts
A − 2 and 2, indicating that the quantum numbers refer to
the (A − 2) system and to the pair, respectively. Therefore
the corresponding HH, spin-isospin and hyperradial functions
are Y [A−2]

KA−2LA−2MA−2	A−2YA−3αA−2
(A−2) and Yl2m2 (2 = η̂),

χ
[A−2]
SA−2S

z
A−2TA−2T

z
A−2	̃A−2ỸA−3βA−2

(sz
1..s

z
A−2, t

z
1 ..t

z
A−2) and χ

[2]
S2S

z
2T2T

z
2

(sz
1s

z
2, t

z
1 t

z
2 ), R[A−2]

nA−2
(ρA−2) and R

[2]
n2l2

(η), respectively. More-
over, in the following |CA−2〉 will be denoted by
|nA−2, [KA−2]〉 and |c2〉 by |n2, [K2]〉.

To calculate the matrix elements of the potential between
the A-body states of Eq. (7), it is also useful to introduce a
particular HH basis that reflects the division of the particle sys-
tem into a pair of interacting particles and an (A − 2) spectator.
Such a basis is obtained by coupling the two- and (A − 2)-body
spherical-spin-isospin states and hyperspherical-spin-isospin
states to yield an A-body basis function with quantum numbers
[KA−2], [K2],KA, JA, J z

A, TA, T z
A, through the relation∣∣[KA−2]; [K2])KAJAJ z

ATAT z
A

〉 = N a,b
n (sin θ[A−2,2])

�2

× (cos θ[A−2,2])
KA−2P (a,b)

n

× (cos 2θ[A−2,2])
[|[KA−2]〉

× |[K2]〉]JATA

J z
AT z

A

, (15)

where θ[A−2,2] is defined by the following equations

η = ρ sin θ[A−2,2]
(16)

ρA−2 = ρ cos θ[A−2,2].
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Here P (a,b)
n are the Jacobi polynomials, with arguments

a = �2 + 1/2

b = KA−2 + 3A − 8

2
(17)

n = KA − KA−2 − �2

2
.

The numerical factor

N a,b
n =

√
2(2n + a + b)n!	(n + a + b + 1)

	(n + a + 1)	(n + b + 1)
(18)

is a normalization constant.
For the sake of brevity we use the following notation:

P
KA−2,�2
KA

≡ N a,b
n (sin θ[A−2,2])

�2 (cos θ[A−2,2])
KA−2P (a,b)

n

× (cos 2θ[A−2,2]).

Therefore the HH (A − 2, 2) basis states |[KA−2]; [K2])KA

JAJ z
ATAT z

A〉 can now be written as∣∣([KA−2]; [K2])KAJAJ z
ATAT z

A

〉 = P
KA−2,�2
KA

[|[KA−2]〉
× |[K2]〉]JATA

J z
AT z

A
. (19)

These states, together with the A-body hyperradial basis states
|nA〉, form a complete orthonormal basis of our Hilbert space.

C. The transformation between the A and (A − 2, 2) basis

The next step is the evaluation of the overlaps between
the A-body functions, Eq. (7), and the (A − 2)- and two-
body functions, Eqs. (13) and (14). To this end we use the
completeness of the HH (A − 2, 2) basis, Eq. (19), i.e.,

〈nA, [KA]|nA−2, [KA−2]; n2, [K2]〉 =∑ 〈
nA, [KA]

∣∣nA, ([KA−2]; [K2])KAJAJ z
ATAT z

A

〉
× 〈

nA([KA−2]; [K2])KAJAJ z
ATAT z

A

∣∣
× nA−2, [KA−2]; n2, [K2]〉. (20)

Let us start with the first matrix element on the right-hand
side of Eq. (20). The contributions of the hyperangular, spin,
and isospin matrix elements are evaluated with the help of 6j

and 9j symbols, the hyperspherical coefficients of fractional
parentage (CFPs) and the spin-isospin CFPs [35]. One has〈

[KA]
∣∣ ([KA−2]; [K2]) KAJAJ z

ATAT z
A

〉 =
×

√
(2JA−2 + 1)(2J2 + 1)(2SA + 1)(2LA + 1)

×
S2 SA−2 SA

�2 LA−2 LA

J2 JA−2 JA

 ∑
	A−1

�	A,	A−1�	A−1,	A−2

√
|	A−2|
|	A|

×〈KALAYAαA| (KA−2LA−2YA−2αA−2; �2) KALA〉
×〈SATAỸAβA| (SA−2TA−2ỸA−2βA−2; S2T2

)
SATA〉, (21)

where the hyperspherical matrix elements are written as

〈KALAYAαA|(KA−2LA−2YA−2αA−2; �2)KALA〉 =
×

∑
αA−1

〈KALA	A−1αA−1|KALA	AαA〉

×〈(KA−2LA−2	A−2αA−2;�2)KALA|KALA	A−1αA−1〉 (22)

and, analogously, the spin-isospin term is written as

〈SATAỸAβA|(SA−2TA−2ỸA−2βA−2; S2T2)SATA〉 =∑
SA−1TA−1βA−1

� T SCFPA〈SA−2SA−1SA|(SA−2; S2)SA〉

× 〈TA−2TA−1TA|(TA−2; T2)TA〉 , (23)

with CFPs products

� T SCFPA = 〈SASA−1TATA−1	̃A−1βA−1|SATA	̃AβA〉
× 〈SA−1SA−2TA−1TA−2	̃A−2βA−2|
× SA−1TA−1	̃A−1βA−1〉. (24)

The spin-isospin matrix elements can be easily evaluated using
angular momentum techniques:

〈TA−2TA−1TA|(TA−2; T2)TA〉 =

(−)TA+TA−2+1
√

(2TA−1 + 1)(2T2 + 1)

{
TA−2 t TA−1

t TA T2

}
.

(25)

Here t is equal to 1
2 and stands for the isospin of a single

nucleon. The spin matrix element can be obtained by simply
replacing in Eq. (25) the isospin quantum numbers by
corresponding spin quantum numbers. The overlap between
the interaction basis and the HH (A − 2, 2) states are given by〈
nA([KA−2]; [K2])KAJAJ z

ATAT z
A

∣∣nA−2, [KA−2]; n2, [K2]
〉 =〈

JA−2J
z
A−2J2J

z
2

∣∣JAJ z
A

〉〈
TA−2T

z
A−2T2T

z
2

∣∣TAT z
A

〉
�nA−2 n2

nA

× (KA,KA−2, �2), (26)

where

�nA−2 n2
nA

(KA,KA−2, �2) =
∫

η2dηR
[2]
n2�2

(η)

×
∫

ρ3A−7
A−2 dρA−2R

[A−2]
nA−2

(ρA−2)

×R[A]
nA

(ρ)P KA−2,�2
KA

(cos θ[A−2,2]).

(27)

This two-dimensional integral can be easily evaluated using
the Gauss-quadrature integration.

D. The potential matrix elements

Using the representation of the potential as in Eq. (12)
and the overlaps 〈nA, [KA] | c2 CA−2〉 calculated above, the
A-body matrix elements of a scalar-isoscalar two-body oper-
ator can be written as

〈nA[KA]|v[2](A,A − 1)|n′
A[K ′

A]〉 =∑
c2c

′
2CA−2

〈nA[KA]|c2CA−2〉v[2]
c2c

′
2
〈c′

2CA−2| n′
A[K ′

A]〉 =
∑

[K2],[K ′
2],[KA−2]

∑
[n2],[n′

2],[nA−2]

�nA−2n2
nA

(KA,KA−2, �2)�
nA−2n

′
2

n′
A

× (K ′
A,KA−2, �

′
2)

〈
[KA]

∣∣(KA−2]; [K2])KAJAJ z
ATAT z

A

〉
×〈[K ′

A]|([KA−2]; [K ′
2])K ′

AJAJ z
ATAT z

A〉
× v

[2]
n2[K2],n′

2[K ′
2](A,A − 1), (28)
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where we have used the orthogonality of the Clebsch Gordon
coefficients∑

J z
2 J z

A−2

〈
JA−2J

z
A−2J2J

z
2

∣∣JAJ z
A

〉〈
JA−2J

z
A−2J2J

z
2

∣∣J ′
AJ ′z

A

〉 =

δJAJ ′
A
δJ z

AJ ′z
A

(29)

and ∑
T z

2 T z
A−2

〈
TA−2T

z
A−2T2T

z
2

∣∣TAT z
A

〉〈
TA−2T

z
A−2T2T

z
2

∣∣T ′
AT ′z

A

〉 =

δTAT ′
A
δT z

AT ′z
A
. (30)

Finally, the actual potential matrix elements are calculated
via

v
[2]
n2[K2],n′

2[K ′
2] = δJ2J

′
2
δJ z

2 J ′z
2
δT2T

′
2
δT z

2 T ′z
2

〈
n2�2S2J2J

z
2 T2T

z
2

∣∣
× v[2]

∣∣n′
2�

′
2S

′
2J2J

z
2 T2T

z
2

〉
. (31)

E. Application to the J-matrix inverse scattering potentials

In view of the use of the JISP as given in Ref. [12,14], a
convenient choice for the configuration space two-body basis
functions are the HO states,

〈	r|n2�2m2〉HO = RHO
n2�2

(r)Y�2m2 (r̂) , (32)

with the radial function

RHO
n2�2

(r) = (−1)n2

r

√
2n!

r0	(n + l + 3/2)

(
r

r0

)�2+1

× exp
[ − r2/

(
2r2

0

)]
L

�2+ 1
2

n2

(
r2/r2

0

)
. (33)

Here r is the distance between the two particles, i.e., r ≡ |	r1 −
	r2|, r0 is related to the oscillator strength HO and the reduced
mass µ through the relation r0 = √

h̄/µHO . However, the
basis states in Eq. (32) do not possess the proper normalization.
In fact they are normalized according to∫

d	r|〈	r|nlm〉HO |2 = 1 , (34)

whereas in the canonical transformation from the single-
particle coordinates to the center of mass and reversed order
Jacobi coordinates the appropriate normalization is∫

d 	η|〈	η|nlm〉|2 = 1 , (35)

where 	η =
√

1
2 (	rA − 	rA−1) =

√
1
2 	r . Consequently a normal-

ization factor of 4
√

8 has to be introduced. Therefore the
appropriate two-body basis functions are

〈	η|n2�2m2〉 = R
[2]
n2�2

(η)Y�2m2 (η̂)

≡ 4
√

8RHO
n2�2

(r =
√

2η)Y�2m2 (η̂). (36)

TABLE I. Binding energies [MeV] for A = 3, 4 nuclei using the
HH expansion with the JISP6 and JISP16 potentials. For comparison
we also present the results obtained in the NCSM approach.

Nucleus JISP6 JISP16

HH NCSM [12] HH NCSM [14]

3H 8.461(1) 8.461(5) 8.369(1) 8.354
3He 7.749(1) 7.751(3) 7.662(1) 7.648
4He 28.602(1) 28.611(41) 28.299(1) 28.297

IV. RESULTS

In the following we discuss the results for the unretarded
total photoabsorption cross section of the two-, three-, and
four-nucleon systems obtained with the JISP and compare
them to the results given by other nuclear force models. For the
three- and four-body systems the cross sections are calculated
with the LIT method, as outlined in Sec. II, and using HH
expansions of ground-state wave function and 
̃. For the JISP
these HH expansions have rather rapid convergences, though
no effective interaction has been introduced in this case. We
obtain convergent binding energies of the three- and four-
body systems with K � 20 (see Table I), whereas for potentials
such as AV18 one needs K larger than 100. For the deuteron
photoabsorption with the JISP we also use the LIT method
but here combined with expansions on HO functions. For the
other NN potentials a conventional calculation with explicit
NN final-state wave functions is carried out (for one of these
potentials it was checked that we get the same result also with
the LIT method).

FIG. 1. Deuteron elastic longitudinal form factor (see text) for
three different potential models.
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FIG. 2. Deuteron total photoabsorption cross section at lower (a)
and higher (b) photon energies for four different potential models.
Comparison with data for two potentials (see text) is shown in (c):
open circles [38], solid squares [42], open diamonds [40], solid
triangles [41], solid circles [39].

Before discussing the total photoabsorption cross sections
we first consider the longitudinal deuteron elastic form factor
FL(q2). In Fig. 1 we show results for the JISP6 [12], AV14
[4], and BonnRA [1] potential models (note that the proton
and neutron electric form factors are set equal to 1 and 0,
respectively). Up to a momentum transfer q2 = 2 fm−2 all
models lead to rather similar results, whereas for higher q2 the
JISP6 result is considerably lower than those of the other two
potential models. In comparison with experimental data one
usually considers the elastic deuteron form factors A(q2) and
B(q2), where A(q2) contains in addition to the longitudinal
also a transverse contribution. However, in the momentum
range shown in Fig. 1 the transverse piece is very small (see,
e.g., Ref. [36]). For this momentum range it is known that the
A(q2) of conventional potential models like AV14 or BonnRA
agree well with experimental data (see, e.g., Ref. [4]). Thus
one may conclude that the JISP6 potential leads to a good
description of data only up to q2 = 2 fm−2. However, this
might be sufficient for the calculation of electromagnetic low-
momentum transfer reactions such as nuclear photoabsorption
below pion threshold.

In Fig. 2 the unretarded deuteron total photoabsorption
cross section is shown for various potential models. In
Fig. 2(a) one sees that the low-energy peaks have slightly dif-
ferent heights (note that the cross section below about 5 MeV
is also affected by the here not considered M1 contribution).
Beyond the peak one finds a good agreement of all models up to
about 10 MeV. At higher photon energies one has very similar
results for the AV14, AV18 [5], BonnRA models, whereas the

20 30 40 50 60 70 80 90

ω [MeV]

0
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0.8
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σ
γ 

[m
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AV18+UIX

0 10 20 30 40 50 60 70 80 90 100
0

0.5
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σ
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JISP16
AV18+UIX
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BonnRA+TM

(a)

(b)

3
H

3
He

FIG. 3. Three-body total photoabsorption cross sections: (a) 3H
results for five different potential models; (b) 3He results for two
potential models, compared to data from Ref. [44].

JISP6 result shows a somewhat higher cross section between
15 and 60 MeV [see Fig. 2(b)]. Figure 2(c) helps to understand
the situation better. For the BonnRA potential we illustrate the
effect of the inclusion of retardation and of other multipoles
(electric and magnetic ones up to multipole order L = 4),
where the nonrelativistic one-body current and the Siegert op-
erator are considered (calculation corresponds to Arenhövel’s
normal calculation for the deuteron photodisintegration, see,
e.g., Ref. [37]). One notes that the additional contributions
increase the cross section only slightly. In principle one
has to include also other current contributions (meson ex-
change, isobar, and relativistic currents); however, as shown in
Fig. 7.1.8 of Ref. [37] these effects are rather small. In
the considered energy range they lead to a reduction of the
normal cross section between 2 and 3%, thus bringing the
total result very close to the unretarded total photoabsorption
cross section. In comparison to experimental data [38–42]
there is good agreement of the unretarded cross section with
the BonnRA potential, whereas with the JISP6 potential the
data are somewhat overestimated.

Now we turn to the total photoabsorption cross section
of 3H and 4He. In Fig. 3(a) we show the triton case with
the JISP6 and JISP16 potentials and for the nuclear force
models AV14 [4] and UVIII [7]; AV18 [5] and UIX [8];
BonnRA [1] and Tucson-Melbourne (TM) [6]. Results for the
AV14+UVIII and BonnRA+TM potentials are taken from
Ref. [43]. The situation is similar to the deuteron case of
Fig. 2: small differences among the low-energy peak heights of
all potential models and beyond 20 MeV differences between
the conventional nuclear force models and the JISP, which,
however, are considerably more pronounced than for the
deuteron case. Because beyond the peak there are no triton total
photoabsorption cross section data available, the comparison
with data is done for the 3He case [see Fig. 3(b)], choosing
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FIG. 4. Total photoabsorption cross section of 4He for three
different potential models. Experimental data from Ref. [45].

one of the JISP (JISP6) and one conventional (AV18+UIX)
potential model. Unfortunately the data [44] have rather large
error bars and do not lead to a clear picture. However, one can
say that between 20 and 50 MeV there is a better agreement
with the JISP6, whereas beyond 50 MeV the conventional
potential models are favored.

In Fig. 4 we show the 4He total photoabsorption cross
section for the JISP6 and JISP16 potential models, as well
as for the AV18+UIX nuclear force. The calculation for
AV18+UIX is described in Ref. [22]. There it is discussed that
the convergence of the HH expansion is rather slow because of
the three-nucleon force. As already mentioned, for the JISP we
find a much better convergence, though no effective interaction
is introduced. In Fig. 4 one notices that the trend observed for
deuteron and three-nucleon cases is confirmed. Beyond the
peak the cross sections obtained with the JISP are considerably
higher than that obtained using the conventional nuclear force
model AV18+UIX. This effect is more pronounced than for
the three-nucleon case, which in turn is already stronger than
found for the deuteron case. In addition, for 4He the JISP
lead to somewhat lower peak heights and to a shift of the
peak position by about 2 MeV toward higher energy, when
compared to the AV18+UIX result. It is evident that the latter
agrees much better with the experimental data [45]. Here we

should mention that the experimental situation is not yet settled
(see also Ref. [22]), particularly regarding the height of the
low-energy peak (the shown data are the only experimental
total 4He σγ (ω) results that extend to energies beyond the
peak region).

V. CONCLUSIONS

In this work we have presented results for the total
photoabsorption cross section of the two-, three-, and four-
nucleon systems, obtained within the recently proposed
J -matrix inverse scattering potential models.

The calculation in the three- and four-body systems are
performed via the LIT method and the HH technique. To
this aim the HH formalism has been adapted to accommodate
nonlocal potentials.

The comparison of the JISP results with those obtained
with a few more traditional realistic potentials, including two-
and three-body forces, has shown that, whereas the latter give
very similar results, JISP display a rather different behavior,
especially beyond the resonance peak. The differences increase
with the nuclear mass.

These results show that a “classical” electromagnetic
observable as the total photonuclear cross section is able to
emphasize the rather different off-shell properties of these
two classes of potentials. In particular, in this observable
nonlocalities of the two-body potential and three-body forces
are not equivalent. Considering that, different from the JISP,
the traditional potentials have in common the long-range
one-pion exchange part, one may ascribe the discrepancies
to this fact.

In the case of deuteron the comparison with data speaks in
favor of the more traditional two-body potentials. For the three-
body systems data are missing or have insufficient accuracy,
making the comparison inconclusive. Regarding the four-body
system the old data of Ref. [45] seem to favor the traditional
potentials, as in the deuteron case. More recent data obtained
in Lund [46], whereas measuring only the 4He(γ, n) cross
section point in this direction as well, provided that they are
extrapolated to σγ by means of the charge symmetry argument.

More data of higher accuracy are very much needed to
further clarify the issue of two- and three-body forces.
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