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Proton-3He elastic scattering at low energies
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We present new accurate measurements of the differential cross section σ (θ ) and the proton analyzing power
Ay for proton-3He elastic scattering at various energies. A supersonic gas-jet target has been employed to obtain
these low-energy cross-section measurements. The σ (θ ) distributions have been measured at Ep = 0.99, 1.59,
2.24, 3.11, and 4.02 MeV. Full angular distributions of Ay have been measured at Ep = 1.60, 2.25, 3.13, and
4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic
nucleon-nucleon (NN) and three-nucleon (3N ) interactions. For the unpolarized cross section, the agreement
between the theoretical calculation and data is good when a 3N potential is used. The comparison between the
calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum
of each distribution. This is analogous to the existing “Ay puzzle” known for the past 20 years in nucleon-deuteron
elastic scattering.
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I. INTRODUCTION

The study of the four nucleon (4N ) system is interesting
from a number of different perspectives. First of all, many reac-
tions involving four nucleons, like 2H(d, p)3H, 2H(d, n)3He,
or p + 3He → 4He + νe + e+ (the hep process), are of ex-
treme astrophysical interest, as they play important roles in
solar models or in big-bang nucleosynthesis (BBN). The hep
process, for instance, is the source of the highest energy
neutrinos from the Sun. Moreover, 4N systems have become
increasingly important as testing grounds for models of the
nuclear force. While not the nuclear-structure “imbroglio” of
heavy nuclei, the A = 4 system is the simplest system that
presents the complexity—thresholds and resonances—that
characterize nuclear systems, and therefore is a very good
testing ground of modern few-body techniques [1]. Similarly,
since the 4N bound-state is (to a very good approximation)
a (Jπ , T ) = (0+, 0) state, it is a good “laboratory” for the
study of the strange quark components of the nucleon via
parity-violating electron-scattering experiments [2].
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The theoretical description of A = 4 systems still con-
stitutes a challenging problem from the standpoint of nu-
clear few-body theory. Only recently, with the near-constant
increase in computing power and the development of new
numerical methods, has the study of the α-particle bound
state reached a satisfactory level of accuracy; the 4N bound
state has been calculated to a few tenths of keV [3–5]. The
study of 4N scattering states, on the other hand, is less
satisfactorily developed. The same increases in computational
power, however, have opened the possibility for accurate
calculations of the 4N observables using realistic models
for nucleon-nucleon (NN) and three-nucleon (3N ) forces.
These calculations have been performed mainly by means of
the Faddeev-Yakubovsky (FY) approach [6–8] and the Kohn
variational principle [9–13]. In spite of this progress, some
disagreements still exist between theoretical groups, as for
example, in the calculation of the n-3H total cross section in
the peak region (around Ec.m. = 3 MeV) [14].

To make matters worse, even in cases where the theoretical
calculations agree, they are often strongly at variance with the
experimental data. For example, the proton analyzing power
Ay in p-3He elastic scattering is underestimated by theory at
the peak of the angular distribution by about 40% [10]. Other
disagreements are discussed in Refs. [1,7,8,12,15].

The existing data in the literature for 4N scattering are of
lesser quality, when compared with the excellent and abundant
data that exist for the NN and 3N (N-d scattering) systems. The
intensely studied 4He system is (unfortunately) very difficult
to describe theoretically because of the presence of the bound
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state and many higher-energy resonances [16]. This leads us
to investigate p-3He scattering states.

A. n-3H elastic scattering

This paper will focus on p-3He elastic scattering at low
energies, which is simpler than the 4He system to investigate
theoretically. However, the situation for the closely related
n-3H elastic scattering case is worth briefly discussing first.
The quantities of interest in n-3H zero-energy scattering are
the zero-energy total cross section σT (0) and the coherent
scattering length ac. Experimentally, only the total cross
section σT has been measured with high precision for a large
range of energies. The extrapolation of the measured σT to zero
energy is straightforward, and the value obtained is σT (0) =
1.70 ± 0.03 b [17]. The coherent scattering length has been
measured by neutron-interferometry techniques. The most
recent value reported in the literature is ac = 3.59 ± 0.02 fm
[18]. An additional estimation of ac = 3.607 ± 0.017 fm has
been obtained from p-3He data by using an approximate
Coulomb-corrected R-matrix theory [19]. These values should
be compared with those obtained theoretically: σT (0) = 1.73 b
and ac = 3.71 fm [9].

As already mentioned, at higher energies (specifically in the
“peak” region), sizable discrepancies exist between different
theoretical predictions. The σT calculations by Fonseca [7] and
Pfitzinger, Hofmann, and Hale [12] are in good agreement with
the experimental data, while the calculations by the Grenoble
[8,14,20] and Pisa groups [14] are well below the data. The
origin of this disagreement is still not clear.

B. p-3He elastic scattering

Let us consider now the situation for p-3He elastic scat-
tering. The zero-energy quantities for this case are more
difficult to evaluate. Approximate values of the triplet and
singlet scattering lengths have been determined from effective
range extrapolations [21] to zero energy of data taken mostly
above 1 MeV, and therefore they suffer large uncertainties [10].
This problem has been reconsidered recently by George and
Knutson [15]; this new phase-shift analysis (PSA) gave two
possible sets of scattering-length values, both of which are at
variance with the theoretical estimates (see the discussion in
Ref. [15]).

The world database of existing p-3He scattering data can be
divided in three energy regions. There is a set of cross-section
and proton analyzing power Ay measurements at very low
energies, from Ep = 0.3 to 1.0 MeV [22]. Another energy
region is for Ep = 1.0 to 4.0 MeV which includes the recent
Ay measurements at Ep = 1.60 and 2.25 MeV [10]. However,
these Ay data are not very precise. The cross-section data
in this region are similarly imprecise and sparse in number.
They are also very old, being the very first published cross-
section data for p-3He elastic scattering found in the literature
[23]. The third group of measurements (Ep > 4.0 MeV)
includes differential cross sections, proton and 3He analyzing
power measurements, and spin correlation coefficients of good
precision. References for all these measurements can be found
in Ref. [21].

The calculations performed so far for p-3He scattering have
shown a glaring discrepancy between theory and experiment
in the proton analyzing power [10,13]. This discrepancy is
very similar to the well-known “Ay puzzle” in N-d scattering.
This is a fairly old problem, first reported almost 30 years
ago [24,25] in the case of N-d and later confirmed in the p-d
case [26,27]. All N-d theoretical calculations based on realistic
NN potentials (even including 3N forces) underestimate the
measured nucleon vector analyzing power Ay by about 20%–
30%. The same problem also occurs for the vector analyzing
power of the deuteron iT11 [26,27], while the tensor analyzing
powers T20, T21, and T22 are reasonably well described [27,
28]. The inclusion of standard models of the 3N force has
little effect on calculations of these observables. To solve this
puzzle, speculations about the deficiency of the NN potentials
in 3Pj waves (where the spectroscopic notation 2S+1LJ has
been adopted) have been suggested. Looking at NN scattering
data only, this possibility does not seem to be ruled out [29,30].
However, after taking theoretical constraints into account [31],
this solution was considered unlikely, and this notion has been
confirmed by recent calculations which show that this puzzle is
not solved even when new NN potentials derived from effective
field theory are used [8,32].

Consequently, attention has focused on exotic 3N force
terms not contemplated so far. The best solution seems to be
given by the inclusion of a spin-orbit 3N force [33]; such
a force has a negligible effect on the observables already
well reproduced by standard 3N potential models (such as
the binding energies, N-d unpolarized cross sections, and
tensor analyzing powers) but it is very effective for solving—
or at least for noticeably reducing—the discrepancy. Other
explanations have been proposed in Refs. [34–37]. It should
be noted that the current understanding of the 3N interaction
is rather poor [38,39], and new terms in the 3N interactions
derived from chiral perturbation theory have very recently
been proposed [40,41]. These new models have to be tested
primarily in the 3N system, but the 4N system could also play
an important role. In fact, 3N force effects are expected to be
sizable in the 4N system [42]; in the N-d scattering system,
3N force effects are small [28] and masked in part by the
contribution of the Coulomb potential [43,44]. Moreover, the
N-d system is essentially a pure isospin T = 1/2 state. Tests of
the T = 3/2 channel in any 3N force can only be satisfactorily
performed in a 4N system such as p-3He.

Seeking to explore potential three-nucleon force effects
in a different system, and to investigate this new A = 4
Ay puzzle, a series of proton- 3He elastic scattering measure-
ments have been made. Angular distributions of the differential
cross section σ (θ ) and proton analyzing power Ay have been
measured at several energies below 5 MeV; the analyzing
power experiments were performed with a gas-cell target, and
the σ (θ ) measurements were performed using a supersonic
gas-jet target. The nominal proton energy Ep at which each
experiment was performed is listed later in Table II. These
energies were chosen to maximize the improvement in the
low-energy database and because theoretical calculations are
tractable in this region.

In addition, we present new theoretical calculations for
the p-3He system. They are performed via an expansion of
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the wave functions of the scattering states in terms of a
hyperspherical harmonic (HH) basis and using the complex
form of the Kohn variational principle [45,46]. These new
calculations reach a much higher degree of accuracy than those
performed previously using the correlated hyperspherical
harmonic (CHH) functions [10]. In this paper, we present
calculations based on the Argonne v18 (AV18) [47] NN

potential, which represents the NN interaction in its full
richness, with short-range repulsion, tensor, and other non-
central components and charge symmetry breaking terms. The
calculations are performed without and with the inclusion of
the Urbana IX (UIX) 3N force [48].

The remainder of this paper is organized as follows: in
Sec. II, a brief description of the HH technique is reported; in
Sec. III, the experimental setup and methods are discussed;
the cross section σ (θ ) and proton analyzing power Ay

measurements are compared with the theoretical results in
Sec. IV; finally, Sec. V is devoted to the conclusions and
broader context of the present work.

II. THE HH TECHNIQUE FOR SCATTERING STATES

The wave function �
LSJJzπ

1+3 describing a p-3He scattering
state with incoming orbital angular momentum L and channel
spin S (S = 0, 1), total angular momentum J, and parity π =
(−)L can be written as

�
LSJJzπ

1+3 = �
LSJJzπ

C + �
LSJJzπ

A , (1)

where �
LSJJxπ
C vanishes in the limit of large intercluster

separations, and hence it describes the system in the region
where the particles are close to each other and their mutual in-
teractions are strong. On the other hand, �LSJJzπ

A describes the
relative motion of the two clusters in the asymptotic regions,
where the p-3He interaction is negligible. In the asymptotic
region, the wave function �

LSJJzπ

1+3 reduces to �
LSJJzπ

A , which
must therefore be the appropriate asymptotic solution of the
Schrödinger equation. �LSJJzπ

A can be decomposed as a linear
combination of the functions

�±
LSJJz

= 1√
4

4∑
i=1

[[si ⊗ φ3(jkl)]S ⊗ YL(ŷi)]JJz

×
(

fL(yi)
GL(ηC, qyi)

qyi

± i
FL(ηC, qyi)

qyi

)
, (2)

where yi is the distance vector between the proton (particle i)
and 3He (particles jkl), q is the magnitude of the relative
momentum between the two clusters, si the spin state of
particle i, and φ3 is the 3He wave function. The total kinetic
energy Tc.m. in the center of mass (c.m.) system and the proton
kinetic energy Ep in the laboratory system are

Tc.m. = q2

2µ
, Ep = 4

3
Tc.m., (3)

where µ = (3/4)MN is the reduced mass (MN is the nucleon
mass.) Moreover, FL and GL are the regular and irregular
Coulomb functions, respectively, with ηC = 2µe2/q. The
function fL(yi) = [1 − exp(−γyi)]2L+1 in Eq. (2) has been

introduced to regularize GL at small yi , and fL(yi) → 1 as yi

becomes large, thus not affecting the asymptotic behavior of
�

LSJJzπ

1+3 . Note that for large values of qyi ,

fL(yi)GL(ηC, qyi) ± i FL(ηC, qyi)

→ exp[±i (qyi − Lπ/2 − ηC ln(2qyi) + σL)], (4)

and therefore, �+
LSJJz

(�−
LSJJz

) describes in the asymptotic
regions an outgoing (incoming) p-3He relative motion. Finally,

�
LSJJzπ

A =
∑
L′S ′

[
δLL′δSS ′�−

LSJJz
− SJ

LS,L′S ′ (q)�+
L′S ′JJz

]
, (5)

where the parameters SJ
LS,L′S ′ (q) are the S-matrix elements

which determine phase shifts and (for coupled channels)
mixing angles at the energy Tc.m.. Of course, the sum over L′
and S ′ is over all values compatible with a given J and parity.
In particular, the sum over L′ is limited to include either even
or odd values such that (−1)L

′ = π .
The “core” wave function �

LSJJzπ

C is expanded using the
HH basis. For four equal mass particles, a suitable choice of
the Jacobi vectors is

x1p =
√

3

2

(
rm − ri + rj + rk

3

)
,

x2p =
√

4

3

(
rk − ri + rj

2

)
, (6)

x3p = rj − ri ,

where p specifies a given permutation corresponding to
the order i, j, k, and m of the particles. By definition, the
permutation p = 1 is chosen to correspond to the order 1, 2, 3,
and 4. For a given choice of the Jacobi vectors, the hyper-
spherical coordinates are given by the so-called hyperradius
ρ, defined by

ρ =
√

x2
1p + x2

2p + x2
3p, (independent ofp), (7)

and by a set of angular variables which in the Zernike and
Brinkman [49,50] representation are (i) the polar angles x̂ip ≡
(θip, φip) of each Jacobi vector, and (ii) the two additional
“hyperspherical” angles φ2p and φ3p defined as

cos φ2p = x2p√
x2

1p + x2
2p

, cos φ3p = x3p√
x2

1p + x2
2p + x2

3p

,

(8)

where the xip are the moduli of the Jacobi vector xi . The
set of angular variables x̂1p, x̂2p, x̂3p, φ2p, and φ3p is denoted
hereafter as �p. A generic HH function is written as

YK,,M
�1,�2,�3,L2,n2,n3

(�p) = [
(Y�1 (x̂1p)Y�2 (x̂2p))L2Y�3 (x̂3p)

]
M

×P(φ2p, φ3p), (9)

where

P(φ2p, φ3p) = N �1,�2,�3
n2,n3

sin�1 φ2p cos�2 φ2p sin�1+�2+2n2 φ3p

× cos�3 φ3pP
�1+ 1

2 ,�2+ 1
2

n2 (cos 2φ2p)

×P
�1+�2+2n2+2,�3+ 1

2
n3 (cos 2φ3p), (10)
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where P a,b
n are Jacobi polynomials and the coefficients

N �1,�2,�3
n2,n3

are normalization factors. The quantity K = �1 +
�2 + �3 + 2(n2 + n3) is the so-called grand angular quantum
number. The HH functions are the eigenfunctions of the hyper-
angular part of the kinetic energy operator. Another important
property of the HH functions is that ρKYK,,M

�1,�2,�3,L2,n2,n3
(�p)

are homogeneous polynomials of the particle coordinates of
degree K.

A set of antisymmetrical hyperangular-spin-isospin states
of grand angular quantum number K, total orbital angular
momentum , total spin �, total isospin T, total angular
momentum J, and parity π can be constructed as

�K�T Jπ
µ =

12∑
p=1

�K�T Jπ
µ (i, j, k,m), (11)

where the sum is over the 12 even permutations p ≡ i, j, k,m,
and

�K�T Jπ
µ (i, j ; k; m) = {

YK,,M
�1,�2,�3,L2,n2,n3

(�p)[[[sisj ]Sa
sk]Sb

× sm]�
}

JJz
[[[ti tj ]Ta

tk]Tb
tm]T Tz

. (12)

Here, YK,,M
�1,�2,�3,L2,n2,n3

(�p) is the HH state defined in (9), and si

(ti) denotes the spin (isospin) function of particle i. The total
orbital angular momentum  of the HH function is coupled to
the total spin � to give a total angular momentum J and parity
π = (−1)�1+�2+�3 . The integer index µ labels the possible
choices of hyperangular, spin, and isospin quantum numbers,
namely,

µ ≡ {�1, �2, �3, L2, n2, n3, Sa, Sb, Ta, Tb}, (13)

which are compatible with the given values of K,,�, T , J

and π . Another important classification of the states is to group
them in “channels”: states belonging to the same channel have
the same values of angular (�1, �2, �3, L2,), spin (Sa, Sb,�),
and isospin (Ta, Tb, T ) quantum numbers but different values
of n2, n3.

Each state �K�T Jπ
µ entering the expansion of the 4N

wavefunction must be antisymmetric under the exchange of
any pair of particles. Consequently, it is necessary to consider
states such that

�K�T Jπ
µ (i, j ; k; m) = −�K�T Jπ

µ (j, i; k; m), (14)

which is true when the condition

�3 + Sa + Ta = odd (15)

is satisfied.
The number MK�T Jπ of antisymmetrical functions

�K�T Jπ
µ having given values of K,,�, T , J , and π but

different combination of quantum numbers µ [see Eq. (13)]
is in general very large. In addition to the degeneracy of
the HH basis, the four spins (isospins) can be coupled
in different ways to S (T). However, many of the states
�K�T Jπ

µ , µ = 1, . . . ,MK�T Jπ are linearly dependent. In
the expansion of a 4N wave function, it is necessary to include
the subset of linearly independent states only, whose number is
fortunately significantly smaller than the corresponding value
of MK�T Jπ .

The internal part of the wave function can be finally written
as

�
LSJJzπ

C =
∑

K�T

∑
µ

u
LSJJzπ

K�T,µ(ρ)�K�T Jπ
µ , (16)

where the sum is restricted only to the linearly independent
states.

The main problem is the computation of the matrix elements
of the Hamiltonian. This task is considerably simplified by
using the following transformation

�K�T Jπ
µ (i, j ; k; m) =

∑
µ′

aK�T Jπ
µ,µ′ (p)�K�T Jπ

µ′ (1, 2; 3; 4).

(17)

The coefficients aK�T Jπ
µ,µ′ (p) have been obtained using the

techniques described in Ref. [51]. Then the kinetic energy
operator matrix elements are readily obtained analytically, and
the NN (3N ) potential matrix elements can be obtained by one
(three) dimensional integrals. The details are given in Ref. [5].

The S-matrix elements SJ
LS,L′S ′ (p) and functions uµ(ρ)

occurring in the expansion of �
LSJJzπ

C are determined by
making the functional

[
SJ

LS,L′S ′ (q)
] = SJ

LS,L′S ′ (q) − MN√
6 i

×
〈
�

L′S ′JJz

1+3

∣∣∣∣H − E3 − q2

2µ

∣∣∣∣�LSJJz

1+3

〉
(18)

stationary with respect to variations in the SJ
LS,L′S ′ and uµ(ρ)

(Kohn variational principle). Here E3 is the 3He ground-state
energy. By applying this principle, a set of second-order
differential equations for the functions u

LSJJzπ

K�T,µ(ρ) is obtained.
By replacing the derivatives with finite differences, a linear
system is obtained which can be solved using the Lanczos
algorithm. This procedure, which allows for the solution of a
large number of equations, is very similar to that outlined in
the Appendix of Ref. [52] and it will not be repeated here.

The main difficulties of the application of the HH technique
are the slow convergence of the basis with respect to the
grand angular quantum number K, and the (still) large number
of linearly independent HH states with a given K. Also a
brute-force application of the method is not possible even with
the most powerful computers available, so one has to select a
suitable subset of states [50,53,54]. In the present work, the
HH states are first divided into classes depending on the value
of L = �1 + �2 + �3, total spin �, and n2, n3. In practice, HH
states of low values of �1, �2, �3 are first included. Between
them, those correlating only a particle pair are included first
(i.e., those with n2 = 0), then those correlating three particles
are added and so on. The calculation begins by including
in the expansion of the wave function the HH states of the
first class C1 having grand angular quantum number K � K1

and studying the convergence of a quantity of interest (for
example, the phase shifts) by increasing the value of K1. Once
a satisfactory value of K1 = K1max is reached, the states of the
second class with K � K2 are added in the expansion, keeping
all the states of the class C1 with K1 = K1max. Then K2 is
increased until the desired convergence is achieved and so on.
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Let us consider, for example, the case Jπ = 0−, where
there is only one LS channel in the sum over L′S ′ of Eq. (5),
namely L′ = 1, S ′ = 1. Consequently, for this wave the
S-matrix reduces to a value which is parametrized (as usual)
as S0

LS,LS = η exp(2iδ), where η is known as the elasticity
parameter. Note that in the application of the Kohn principle
given in (18) the value η = 1 is not guaranteed: it is achieved
only when the corresponding internal part �

LSJJzπ

C is well
described by the HH basis. We have used the value of η as
a check of the convergence of the HH expansion. In cases of
poor convergence, the value of η has been found to depend
very much also on the choice of fL(yi), the function used to
regularize the Coulomb function GL. This function has been
chosen to depend on a nonlinear parameter γ , and thus a test
of the convergence is performed by analyzing the dependence
of η on the parameter γ . At the beginning of the calculation,
when the number of HH functions is not large enough to get
convergence, η is extremely dependent on the value of γ .
The phase shift δ, however, depends less critically on γ . By
increasing the number of HH components in the internal wave
function, we observe that η → 1 and that the dependence on
γ becomes negligible. Notice that the convergence rate has
been found to depend on the value of γ ; some critical values
of this parameter exist at which the convergence can be very
slow. However, it is not difficult to find ranges of values of
γ at which the convergence is fast and smooth and the final
results are independent of γ . Since we are interested in the
convergence of the HH function, we have chosen γ in one of
the “favorable” regions, where the convergence is achieved in
a smooth and fast way. A detailed study on this subject will be
reported elsewhere.

Let us now briefly discuss the choice of the classes of HH
states for the Jπ = 0− case. Note that since the wave under
consideration is of negative parity, only HH functions with
odd values of K and L have to be considered. Moreover, we
consider in this work only states with total isospin T = 1, as
the effect of the states with T = 2 should be negligible. The
criteria used to select the appropriate classes of HH functions
require that the states with lowest L be considered first. A
few of the channels considered in the calculation have been
reported in Table I. The final choice of classes for the case
Jπ = 0− is detailed below.

(i) Class C1. This class includes the HH states with n2 = 0
belonging to the channels 1–8 of Table I. Note that the
corresponding radial part of the HH functions depends
essentially on cos φ3p = rij /ρ, and thus these states take
into account two-body correlations [see Eq. (10)]. This
part of the wave function is more difficult to construct
because of the strong repulsion at short interparticle
distances.

(ii) Class C2. This class includes HH functions belonging to
the same eight channels as for class C1, but with n2 > 0.
Since cos φ2p is proportional to the distance of particle
k from the center of mass of the pair ij, these states, also
include part of the three-body correlations.

(iii) Class C3. This class includes the remaining T = 1
states of the channels having L = 1 (channels 9–17 of
Table I).

TABLE I. Quantum numbers of the first 17 channels considered
in the expansion of the 0− state wave functions.

α �1 �2 �3 L2  Sa Sb � Ta Tb T

1 1 0 0 1 1 1 1/2 1 0 1/2 1
2 1 0 0 1 1 1 3/2 1 0 1/2 1
3 1 0 0 1 1 0 1/2 1 1 1/2 1
4 1 0 0 1 1 0 1/2 1 1 3/2 1
5 1 0 2 1 1 1 1/2 1 0 1/2 1
6 1 0 2 1 1 1 3/2 1 0 1/2 1
7 1 0 2 1 1 0 1/2 1 1 1/2 1
8 1 0 2 1 1 0 1/2 1 1 3/2 1
9 0 1 0 1 1 1 1/2 1 0 1/2 1

10 0 1 0 1 1 1 3/2 1 0 1/2 1
11 0 1 0 1 1 0 1/2 1 1 1/2 1
12 0 1 0 1 1 0 1/2 1 1 3/2 1
13 0 0 1 0 1 1 1/2 1 1 1/2 1
14 0 0 1 0 1 1 1/2 1 1 3/2 1
15 0 0 1 0 1 1 3/2 1 1 1/2 1
16 0 0 1 0 1 1 3/2 1 1 3/2 1
17 0 0 1 0 1 0 1/2 1 0 1/2 1

(iv) Class C4. This class includes the T = 1 states belonging
to the remaining channels with L = 3 and � = 1.

(v) Class C5. This class includes the T = 1 states belonging
to the channels with L = 3 and � = 2.

(vi) Class C6. This class includes the T = 1 states belonging
to the channels with L = 3 and � = 0.

(vii) Class C7. This class includes the T = 1 states belonging
to the channels with L = 5.

All states of the first four classes have a total spin � = 1.
The classification related to the total spin is important since we
have observed that the component with � = 1 is the dominant
one and requires more states to be well accounted for, while the
� = 2 and � = 0 components give only a tiny contribution
to the phase shift (however, they are important for achieving
η = 1).

We have also calculated the phase shifts of the states
Jπ = 0+, 1+, 2+, 3+, 1−, and 2−. The choice of the classes in
these cases has been performed in the same way as discussed
above. To test the accuracy reached by the theory, significant
work has been done checking the convergence of the HH
expansion in terms of the various classes. Some examples of
the convergence for the phase shift δ and elasticity parameter
η using the AV18 potential are discussed in the appendix.

III. EXPERIMENTS

Angular distributions of cross sections σ (θ ) and proton
analyzing powers Ay were measured with high precision
for proton-3He elastic scattering at several energies below
5 MeV. Silicon surface-barrier detectors, having an effective
efficiency at these energies of (100.0 ± 0.1)%, were used for
both sets of measurements. In all of the measurements, a pulse
generator signal was sent to the test input of the preamplifier
of each detector and used as a measure of the dead time of the
data acquisition system.
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TABLE II. Summary of measurements. Ay measurements were
made using a proton beam; σ (θ ) measurements, using a 3He beam.
Center-of-mass energies at which the two sets of measurements were
made do not exactly agree because of differences in analyzing magnet
calibrations for the two sets of experiments and because of energy
losses in the targets. All energies are in MeV.

Ay measurements σ (θ ) measurements

Ec.m. Ep Ec.m. Ep E3He

0.74 0.99 2.97
1.20 1.60 1.19 1.59 4.76
1.69 2.25 1.67 2.24 6.69
2.35 3.13 2.33 3.11 9.31
3.03 4.05 3.02 4.02 12.06

A. Cross-section measurements

All of the measurements of the differential cross section
were made using the TUNL supersonic gas-jet target, a
refurbished and upgraded version of the target designed and
built at the University of Erlangen-Nürnberg [55]. Target
thicknesses of ≈5 × 1017 atoms/cm2 were routinely obtained
in a narrow jet (≈1 mm) for the measurements in this
work, facilitating very reasonable counting times for the
cross sections measured. The target’s lack of beam-degrading
windows and its well-defined geometry, high purity, and high
density were ideal for these low-energy measurements.

Since 3He is a very expensive gas, the measurements were
performed in inverse kinematics using a 3He beam incident
on a hydrogen gas-jet. Measurements of σ (θ ) were made at
the five 3He energies listed in Table II. Scattered 3He particles
can only be detected forward of θlab ≈ 19◦. Detection of both
the scattered 3He and the recoiling proton allowed for the
measurement of σ (θ ) over a wide range of center-of-mass
angles.

For each energy, a beam of 3He++ ions was accelerated
with the FN tandem accelerator and then deflected onto the hy-
drogen gas-jet target. The elastically scattered protons and 3He
nuclei were detected by three pairs of primary detectors placed
symmetrically about the beam direction, as shown in Fig. 1.

Each detector was fitted with a pair of rectangular slits mounted
in a cylindrical “snout.” The dimensions of these slits are given
in Table III. The counts in each detector were normalized to the
yield of scattered particles in a pair of monitor detectors also
placed symmetrically about the scattering region. The angular
range covered with the movable chamber detectors was 7.5◦
to 75◦. When measuring forward angles, the monitor detectors
were placed at 55◦; for more backward angle measurements,
they were placed at 15◦. A cross-normalization was performed
to maintain a consistent normalization for both sets of monitor
detector angle settings. A typical spectrum is shown in Fig. 2.
The beam position relative to the jet target was monitored by a
pair of horizontal and vertical slits behind the target region. The
beam passing through the small slit opening was integrated by
a Faraday cup which was electrically isolated from the slits.
For each measurement, the beam current was maximized on
the Faraday cup, thus making sure that the scattering geometry
remained the same from run to run. The currents from the slits
and Faraday cup were summed and used to measure the total
integrated charge on the target.

At lower beam energies, multiple scattering in the gas-jet
decreased the measured total integrated charge, and a small
correction factor had to be applied. This factor was determined
by frequently cycling the gas in the jet on and off and
determining the effect of the gas presence on the integrated
beam current. This was found to be a (6 ± 1)% correction
at E3He = 2.97 MeV, reducing to a negligible correction at
E3He = 12 MeV.

The absolute normalizations of the σ (θ ) measurements
were performed with two methods. In the first method, proton-
3He elastic scattering was normalized to 3He-40Ar Rutherford
scattering. Bombarding a gas-jet containing both hydrogen and
argon with a 3He beam, the ratio of the proton-3He yield to
the 3He-40Ar yield in the same detector at a given angle was
measured. If the ratio Rt of hydrogen target thickness to argon
target thickness is known, the ratio of p-3He counts to 3He-40Ar
counts at the same angle gives an absolute determination of
σ (θ ) at that angle.

For measurements of the absolute normalization using this
method, a small amount (∼3%) of argon was mixed with
the hydrogen gas making the target jet. The gas was mixed

FIG. 1. Scattering chamber setup for σ (θ )
measurements. The primary detectors are ar-
ranged symmetrically about the beam direction.
For the relative σ (θ ) measurements, the yields
in the primary detectors were normalized to the
counts in the fixed monitor detectors shown. The
beam position and beam current were monitored
using a set of slits behind the target.
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TABLE III. Collimation configurations for the relative σ (θ ) measurements. All lengths are in mm.
All detectors were 16.6 cm from the target center, and fitted with a 5.1 cm snout. H is the horizontal
collimator dimension, and V is the vertical collimator dimension. The table shows the detector setups for
forward angle measurements (with the monitors at 55◦) and for backward angle measurements (with the
monitors at 15◦).

E3He (MeV) Detector Forward angles Backward angles

Front Rear Front Rear
H × V (mm2) H × V (mm2) H × V (mm2) H × V (mm2)

2.97 Primary 2.4 × 9.5 0.8 × 9.5 2.4 × 9.5 0.8 × 9.5
Monitor 6.4 × 9.5 6.4 × 9.5 2.4 × 9.5 0.8 × 9.5

4.76 Primary 2.4 × 9.5 0.8 × 9.5 3.2 × 9.5 1.6 × 9.5
Monitor 6.4 × 9.5 6.4 × 9.5 2.4 × 9.5 0.8 × 9.5

6.69 Primary 2.4 × 9.5 0.8 × 9.5 2.4 × 9.5 0.8 × 9.5
Monitor 6.4 × 9.5 6.4 × 9.5 2.4 × 9.5 0.8 × 9.5

9.31 Primary 2.4 × 9.5 0.8 × 9.5 3.2 × 9.5 1.6 × 9.5
Monitor 6.4 × 9.5 3.2 × 9.5 2.4 × 9.5 0.8 × 9.5

12.06 Primary 2.4 × 9.5 0.8 × 9.5 2.4 × 9.5 0.8 × 9.5
Monitor 6.4 × 9.5 6.4 × 9.5 2.4 × 9.5 0.8 × 9.5

by the manufacturer and the Ar/H2 ratio Rt was determined
to an accuracy of 2% by gas chromatography [56]. Rt was
also measured using a proton beam at Ep = 2.24 MeV,
at angles where proton-40Ar elastic scattering is known to
be described by the Rutherford formula within a percent,
as calculated using several different sets of optical model
parameters [57]. Using the well-known proton-proton elastic
scattering cross section, which was obtained from the high-
accuracy phase-shift analysis of the Nijmegen group [58,59],
determinations of Rt using this method agreed within error
with the gas-chromatography measurements.

Similarly, this mixed-jet method also relies on 3He-40Ar
elastic scattering being described correctly by the Rutherford
scattering formula. Using the DWBA code DWUCK4 [60] and
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FIG. 2. (Color online) Typical energy spectrum of particles from
the scattering of the 3He beam on the hydrogen target. This spectrum
was measured at θlab = 15◦ at a 3He beam energy of 6.73 MeV. The
peak at channel 850 is caused by heavier gas contaminants.

optical model parameters from Ref. [61], it was determined
that the 3He-40Ar elastic scattering cross section is within 5%
of the Rutherford prediction out to θlab = 40◦ for the three
lowest 3He energies in Table II.

The other technique for determining the absolute normal-
ization of the σ (θ ) angular distributions was a beam-switching
method, in which the product of the detector is solid angle
and target thickness was determined using a proton beam
incident on a hydrogen jet, via the known proton-proton elastic
scattering cross section. A 3He beam at the proper energy was
first tuned onto the hydrogen jet target; this was followed by
irradiating the jet with a proton beam with the same magnetic
rigidity. This procedure allowed for minimal beam-transport
adjustments; the source inflection magnet before the tandem
accelerator and the accelerator terminal potential were adjusted
so that both beams passed into the chamber with the same beam
tune. This ensured the beam-target geometry was the same for
each beam. Scattered particles from each beam were detected
by three pairs of fixed-angle detectors. This procedure was
repeated several times to ensure reproducibility.

The beam-switching technique was used at energies at
which the mixed-jet method was not feasible. Both techniques
were used at several energies, as a cross-check, and the results
from both methods agreed within errors. Typical error budgets
for each method are shown in Table IV, and the overall
systematic normalization errors are listed in Table V.

B. Analyzing power measurements

The measurements of Ay were made utilizing the atomic
beam polarized ion source at TUNL [62] via a two polarization
state method [63] with fast state switching [64]. This polarized
proton beam was accelerated to the desired energy with the
tandem accelerator and tuned onto a gas-cell target inside the
62 cm diameter scattering chamber. The gas cell, employing
a 2.3 µm Havar foil, was filled with 1 atm of 3He gas and
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TABLE IV. Typical error budgets for both the mixed-jet and
beam-switching absolute normalization methods. Statistical and
systematic errors are listed.

Source Mixed-jet type Error (%)

Counting statistics stat. 0.3
40Ar/H2 ratio stat. 0.6

sys. 0.5
40Ar-3He σ (θ ) sys. 0.8
Angle setting sys. 1.0

Source Beam-switching type Error (%)
Counting statistics stat. 0.4
Proton-proton σ (E, θ ) sys. 0.7
BCI correction factor sys. 1.0
Beam energy sys. <0.1
Angle setting sys. <0.1
Jet reproducibility sys. 0.8

mounted on the target rod which was supported from the top
of the chamber. This allowed the cell to be raised, allowing
the beam to directly enter the polarimeter. A schematic of
the experimental setup for the Ay measurements is shown in
Fig. 3, and the collimation setup is detailed in Table VI. These
collimators limited the view of the detectors to only protons
scattered from 3He gas in the cell and not those scattered from
the cell entrance and exit foils. Ay data were taken only at
angles for which foil-scattering was negligible.

Since there is significant energy loss (particularly at the
lowest energies) in the cell foil, the incident beam energy was
adjusted so that the beam reached the desired energy at the
cell center. The energy losses in the cell foil and 3He gas were
modeled by the computer code SRIM-2000 [65]. The proton
energies at the center of the gas cell are listed in Table II.

The polarization of the proton beam was monitored on-line
with a polarimeter based on 4He( 
p, p)4He elastic scattering
[66]. Periodically during the experimental runs, the beam
energy was raised to either 6 or 8 MeV, where the analyzing
power for the polarimeter is very close to unity. This was
done once every 2–3h. The polarization state of the beam was
switched approximately three times a second and was typically
≈ (67 ± 2)%. A 2% systematic error on the Ay measurements
arises from the error in beam polarization determinations.

TABLE V. Overall systematic nor-
malization error for each of the σ (θ )
measurements.

Equivalent Ep (MeV) Error (%)

0.99 3.5
1.59 2.0
2.25 2.7
3.11 2.9
4.02 2.7

Beam
Gas Cell Target

Chamber
detectors

Online
polarimeter

FIG. 3. (Color online) Chamber setup for Ay measurements.

IV. COMPARISONS WITH THEORY

In this section, the experimental data are presented and
compared with the results of the theory reviewed in Sec. II.
The results for the differential cross sections and analyzing
powers are presented in Sec. IV A and Sec. IV B, respectively.
Note that the σ (θ ) data are designated by their equivalent
proton laboratory energy Ep, despite the data being taken in
inverse kinematics. Finally, the theoretical predictions of other
observables reported in Ref. [67] are presented and discussed
in Sec. IV C. The calculations presented were performed using
the Argonne v18 [47] NN potential (AV18 model) and with the
v18 NN potential with the inclusion of the Urbana IX 3N force
[48] (AV18/UIX model). The corresponding phase-shift and
mixing-angle parameters calculated with the HH expansion
reached a noticeable degree of convergence, as discussed in
great detail in the appendix.

A. Differential cross section σ (θ )

The measured differential cross sections σ (θ ) at the five
energies considered here are presented and compared with the
existing data in Fig. 4. The results of the previously described
calculations for the AV18 potential and AV18/UIX model
interactions are also shown.

When comparing the data of this work with previous
measurements of σ (θ ) at the same energies, the agreement
(in general) is quite good; there is a marked improvement
in the size of the error bars, and the new data sets contain
many more data points. The precision is much better than the
data of Ref. [23], slightly better than that of Ref. [68], and is
comparable to that of Ref. [22]. At Ep = 4.02 MeV, there is
good agreement between the current data and those of Ref. [68]
but with slightly smaller error bars. There is no previous data
known to exist at Ep = 3.11 MeV.

As can be seen in Fig. 4, there is a general agreement
between the theoretical and the experimental results. For
small angles, the cross section is dominated by the Coulomb
scattering and a good agreement is observed (the exception
being two points at small θc.m. at Ep = 4.02 MeV). At
θc.m. = 90◦, the contribution of the L = 1 waves vanishes,
and therefore the cross section is almost completely due to
the L = 0 phase-shifts. As discussed in the appendix, there
are no problems in the calculation of the L = 0 phase-shifts
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TABLE VI. Horizontal (H ) and vertical (V ) detector slit dimensions for Ay measurements. The front and
back collimators for each detector were the same dimensions, as listed. The distance from the target center to
the detector face R, and the length of the detector snout S are also listed. The detector pairs were spaced at 15◦

intervals.

Ep (MeV) Forward pair Middle pair Backward pair

H × V R S H × V R S H × V R S
(mm2) (cm) (cm) (mm2) (cm) (cm) (mm2) (cm) (cm)

1.60 1.6 × 9.5 12 6.4 1.6 × 9.5 12 5.1 2.4 × 9.5 14 5.1
2.25 1.6 × 9.5 10.2 5.1 1.6 × 9.5 12 5.1 2.4 × 9.5 14 5.1
3.13 1.6 × 9.5 10.2 5.1 1.6 × 9.5 12 5.1 2.4 × 9.5 14 5.1
4.05 1.6 × 9.5 10.2 5.1 1.6 × 9.5 12 5.1 2.4 × 9.5 14 5.1

from the numerical point of view, and therefore σ (90◦) is
an unambiguous test of the underlying nuclear dynamics. We
observe a sizable 3N force effect in this region (the minimum),
which tends to decrease as Ep is increased. This is consistent
with the increased binding of the 3He when the 3N force is
included.

As θc.m. approaches 180◦, the predicted cross section
becomes quite sensitive to the L = 1 phase-shifts (states with
Jπ = 0−, 1−, and 2−). The calculations slightly underestimate
the cross sections there, particularly when the 3N force is
included. This problem is somewhat analogous to that found in
n-3H elastic scattering in the peak region at En ≈ 3 MeV [14],
as mentioned in Sec. I A. In that case, the calculations based
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FIG. 4. (Color online) Measured p-3He elastic differential cross
sections (solid circles) at five different energies are compared with the
data reported in Ref. [23] (open squares), Ref. [22] (open diamonds),
and Ref. [68] (open circles). Curves show the results of the theoretical
calculations for the AV18 (dashed lines) and AV18/UIX (solid lines)
potential models.

on the standard NN and 3N forces (as used here) are found to
underestimate the total cross section by 20% on the peak [14].
These problems probably arise from an incomplete knowledge
of either the NN or the 3N interaction in P-waves, and therefore
are closely related to the N-d Ay puzzle. This becomes more
evident in the study of the p-3He analyzing powers presented
below.

B. Proton analyzing power Ay

The measured proton analyzing power Ay at the four
energies considered here are presented and compared with
the existing data in Fig. 5. Additionally, at Ep = 1.0 MeV,
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FIG. 5. (Color online) Measured p-3He proton analyzing power
Ay (solid circles) at five different energies are compared with the data
of Ref. [10] (open squares), Ref. [22] (open diamonds), and Ref. [67]
(open circles). Curves show the results of theoretical calculations
for the AV18 (dashed lines) and AV18/UIX (solid lines) potential
models.
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FIG. 6. (Color online) Relative difference as a function of energy between the theoretical predictions and measured values for Ay at the
peak of the distribution for p-3He scattering (solid cicles). Also shown are results from Ref. [44] for p-d (solid squares) and n-d scattering (open
diamonds).

the experimental data of Ref. [22] are shown. The calculations
obtained with the AV18 and AV18/UIX models are also shown.
Note that Ay steadily grows as Ep is increased. There is good
agreement between the new measurements and the older ones
reported in Refs. [10,67]. Note, however, that the present
measurements are noticeably more precise, in particular at
Ep = 1.60 and 2.25 MeV.

The theoretical calculations clearly underestimate the data
at all energies. The 3N force of the Urbana type has very little
effect at low energies, but its effects are larger at Ep = 3.13 and
4.05 MeV. They are, however, clearly insufficient to resolve
the discrepancies with the data. The present results confirm
the disagreement previously reported in Refs. [10,12]. A plot
of the relative difference between experiment and theory at the
maximum Ay value in the angular distribution as a function
of proton energy is shown in Fig. 6. Note that this difference
is nearly constant as the energy is changed. This is similar
to what is observed in N-d scattering, though the discrepancy
in the p-3He case is about 50% larger. The Ay observable
is very sensitive to the L = 1 phase shifts, and in particular
to the combination of phase shifts � = δ(3P2) − [δ(3P1) +
δ(3P0)]/2 [10]. The value of � is predicted (using the AV18
and AV18/UIX models) to be smaller than the one extracted
from the data. It is interesting to note that this is analagous to
the N-d case, in which the splitting between the 4P1/2 phase
and the average of the 4P3/2 and 4P5/2 phases is too small to
reproduce the observed Ay . It would be very interesting to
see if new terms in the 3N interaction could explain both the
N-d and p-3He Ay discrepancies. Work in this direction is in
progress.

C. Other observables at E p = 4.05 MeV

At Ep = 4.05 MeV, measurements of other p-3He ob-
servables (the spin correlation coefficient Ayy and the 3He
analyzing power A0y) exist [67]. The comparison between the
results of the present calculation and these data are shown in
Fig. 7. The measurements have rather large error bars, and no
clear conclusion about the agreement with theory for the Ayy

measurements can be reached. However, A0y does appear to
be underpredicted at the maximum. Indeed, A0y is particularly
sensitive to the combination δ(3P2) − δ(3P1). On the other
hand, the observable Ayy is quite sensitive to ε (1+), the mixing
parameter of the Jπ = 1+ state. More precise measurements
of these observables could provide much-needed input for an
experimental phase-shift analysis and therefore permit a better
understanding of the discrepancy with theoretical calculations.
Such measurements are currently underway [69].

V. CONCLUSIONS

In this paper, the solution of the Schrödinger equation for
four-nucleon scattering states has been obtained using the HH
function expansion. The main difficulty when using the HH
basis is its large degeneracy. Accordingly, a judicious selection
of the HH functions giving the most important contributions
has been performed. For this work, the HH functions have been
divided into classes, depending on the number of correlated
particles, the values of the orbital angular momenta, the total
spin quantum number, etc. For each class, the expansion has
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FIG. 7. (Color online) 3He analyzing power A0y and spin-correlation coefficient Ayy at Ep = 4.05 MeV. Data are from Ref. [67]. Curves
show the theoretical predictions from the AV18 (dashed lines) and AV18/UIX (solid lines) potential models.

been truncated so as to obtain the required accuracy. The
study of the convergence of p-3He elastic scattering phase
shifts and observables reported in the appendix has shown that
good accuracies are achieveable, and a powerful method to
extrapolate the results has also been discussed. When applied
previously for n-3H elastic scattering, the HH method gave
results in good agreement with other theoretical techniques
[14].

We also reported measurements of the cross section σ (θ )
and proton analyzing power Ay for p-3He elastic scattering
over the range of energies 1.6 � Ep � 4.05 MeV. Additionally,
σ (θ ) measurements were obtained at Ep = 0.99 MeV. Analyz-
ing powers were large and increased in magnitude by more than
a factor of 3 as the energy was increased from 1.6 to 4.05 MeV.
Both the Ay and σ (θ ) measurements have higher statistical
precision at more angles, and smaller and well-understood
systematic errors than those existing previously.

There is good agreement between the cross-section data
and the calculations when the 3N potential is included.
However, there are large differences between the Ay data
and theory. At the maxima of the Ay angular distribution,
the theory underpredicts experimental values by about 50%.
The inclusion of the 3N potential produces only a small
percentage change in the predicted analyzing powers and
hence has little effect on the magnitude of the disagreement.
This disagreement is remarkably similar to (and twice as
large as) the Ay puzzle observed for nearly 30 years for N-d
scattering.

The present calculations were extended to include Ayy

and A0y for which there are measurements at 4.05 MeV

[67]. The inclusion of the 3N force has some influence on
predictions of both A0y and Ayy . The calculations for these
two observables are much closer to the experimental data,
although the data have much larger errors than for Ay . More
precise measurements of A0y and Ayy could help define the
phase shifts and provide a better understanding of the origin
of this new Ay puzzle. Such measurements are currently
underway [69].
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APPENDIX: CONVERGENCE OF THE CALCULATED
PHASE SHIFTS

In this appendix, we discuss the convergence of the
calculated phase shifts. At the energies of interest here, p-3He
scattering is dominated by the L = 0 and 1 waves. The
convergence of the HH expansion of �

LSJJzπ

C for the L = 0
waves (Jπ = 0+, 1+) can be obtained by including a rather
small number of channels. This is due mainly to the Pauli

034001-11



B. M. FISHER et al. PHYSICAL REVIEW C 74, 034001 (2006)

TABLE VII. Convergence of 0− inelasticity parameter η and phase shift δ at Ep = 4.05 MeV
corresponding to the inclusion in the internal part of the wave function of the different classes C1–C7
in which the HH basis has been subdivided. The AV18 potential is considered here with the inclusion of
the point-Coulomb interaction.

K1 K2 K3 K4 K5 K6 K7 η δ (deg)

21 1.00032 10.649
31 1.00069 11.484
41 1.00107 11.882
51 1.00133 12.060
61 1.00146 12.136
61 11 1.00139 12.599
61 21 1.00131 12.897
61 31 1.00134 13.020
61 37 1.00136 13.055
61 37 11 1.00064 15.284
61 37 21 1.00049 15.923
61 37 31 1.00048 16.105
61 37 35 1.00048 16.132
61 37 35 11 1.00045 16.256
61 37 35 21 1.00040 16.646
61 37 35 25 1.00040 16.727
61 37 35 31 1.00040 16.794
61 37 35 31 3 1.00012 16.877
61 37 35 31 7 1.00002 17.003
61 37 35 31 11 1.00000 17.101
61 37 35 31 15 1.00000 17.157
61 37 35 31 19 1.00000 17.191
61 37 35 31 19 11 1.00000 17.194
61 37 35 31 19 11 11 1.00000 17.219

principle which limits overlaps between the four nucleons. As
a consequence, the internal part is rather small and does not
require a large number of channels to be well described.

On the other hand, for L = 1 waves (Jπ = 0−, 1−, and
2−), the convergence rate is slow and many channels have to
be included. In these cases, the interaction between the p and
3He clusters is very attractive (it has been speculated that some
4N resonant states exist) and the construction of the internal
wave function is more delicate.

Finally, the contribution from L = 2 waves is rather tiny,
since the centrifugal barrier does not allow the two clusters
to come close, and the corresponding phase shifts can be
calculated with good approximation by neglecting the internal
part �

LSJJzπ

C . Contributions from L = 3 or higher waves has
been disregarded since they are assumed to be negligible.

Let us discuss in detail the convergence of the HH
calculation of the 0− phase shift; the other Jπ states will
be reported elsewhere. As shown in Sec. II, for this state
L, S = 1, 1 and S0

11,11 can be parametrized as η exp(2iδ).
The results obtained for η and δ at Ep = 4.05 are reported
in Table VII. Here we have considered the AV18 potential
model [47]; however, the electromagnetic interaction has been
limited to just the point-Coulomb potential. We have used
1/MN = 41.47108 MeV fm2. We study the convergence as
explained in Sec. II, and the results presented in Table VII are
arranged accordingly. For example, the phase shift δ reported
in a row with a given set of values of K1, . . . , K7 has been

obtained by including in the expansion all the HH functions of
class Ci with K � Ki, i = 1, . . . , 7.

The convergence of the class C1 is rather slow, and a
fairly large value of K has to be used. The inclusion of the
second and third classes increases the phase shift by about
4◦. The class C4 contributes an additional 0.6◦. The number
of the states of this class increases very rapidly with K4,
but fortunately the convergence is reached around K = 21.
Up to now, the expansion includes only states with � = 1.
The contribution of states with � = 2, first appearing when
class C5 is considered, is rather small; and the contribution of
states with � = 0 (class C6) is practically negligible. The
contribution of class C7 is also small. Since the number
of states of this class is very large (121 channels with
�1 + �2 + �3 = 5 for Jπ = 0−) when confronted with a very
tiny change of the phase shift, a selection of the states has
to be performed to save computing time and to avoid loss of
numerical precision. In the present example, only the channels
with (�1, �2, �3) = (1, 2, 2) have been found important. Note
that at lower energies, the convergence is noticeably faster (see
below).

The convergence rate when considering the AV18/UIX
interaction model is similar to the AV18 case. Since the
models most frequently used for the 3N interactions lack
a strongly repulsive core at short interparticle distances, the
convergence rate of the various classes is found not to change
appreciably.

034001-12



PROTON-3He ELASTIC SCATTERING AT LOW ENERGIES PHYSICAL REVIEW C 74, 034001 (2006)

0 10 20 30 40 50 60 70
0.001

0.01

0.1

1

∆1
∆2
∆3
∆4
∆5

∆
[d

eg
]

K

FIG. 8. 0− phase-shift differences for p-3He elastic scattering
at Ep = 4.05 MeV for classes C1 (circles), C2 (squares), C3 (up
triangles), C4 (asterisks), and C5 (down triangles) as function of the
grand angular value K. The potential used is AV18.

To obtain a quantitative estimate of the “missing” phase
shift due to truncation of the HH expansion of the various
classes, let us consider δ(K1,K2,K3,K4,K5,K6,K7), the
phase shift obtained by including in the expansion all the HH
states of class C1 with K � K1, all the HH states of class C2
having K � K2, etc. Let us compute

�1(K) = δ(K, 0, 0, 0, 0, 0, 0) − δ(K − 2, 0, 0, 0, 0, 0, 0),

(A1)

�2(K) = δ(K1,K, 0, 0, 0, 0, 0)

− δ(K1,K − 2, 0, 0, 0, 0, 0), K1 = 61, (A2)

�3(K) = δ(K1,K2,K, 0, 0, 0, 0)

− δ(K1,K2,K − 2, 0, 0, 0, 0), K2 = 37, (A3)

and so on. The values obtained for �i, i = 1, 5 are shown in
Fig. 8 for Ep = 4.05 MeV on a logarithmic scale. As can be

seen, all the differences �1 through �5 decrease exponentially,
and approximately with the same decay constant. For a given
K, however, there is a clear hierarchy �1(K) � �2(K) ≈
�3(K) ≈ �4(K) � �5(K). Note that there are slight fluc-
tuations in �(K) as K is increased (this is evident particularly
for �5). The phase-shift differences for classes C6 and C7 are
not shown since they are tiny.

From the simple behavior observed in Fig. 8, we can
readily estimate the missing phase shift due to the truncation
of the expansion to finite values of K = K . Let us suppose
that the states of class i up to K = K have been included
and used to compute �i(K). From the observed behavior
�i(K) ∝ exp(−γK), the “missing” phase-shift δM

i due to the
states with K = K + 2,K + 4, . . . , can be estimated as

δM
i = c(γ )�i(K), (A4)

where

c(γ ) =
∞∑

K=K+2,K+4,...

e−γ (K−K) = x

1 − x
, and x = e−2γ.

For example, consider the missing phase shift for class C1.
For K = 61,�1(K) = 0.009◦ and x ≈ 0.8. Therefore, δM

1 ≈
0.04◦, a rather small quantity. The missing phase shift of the
other classes can be estimated in the same way.

However, to estimate the total missing phase shift δM
T due to

the truncation of the expansion of the first class up to K � K1,
of the second class up to K � K2, etc., we cannot simply add the
�M

i , i = 1, . . . , 7 so obtained. The inclusion of the HH states
of classes C2, C3, . . ., also alters the convergence of class C1 by
a small amount, etc. To study the “full” rate of convergence,
we have taken advantage of the fact that the various �(K)
show a similar convergence behavior (with approximately the
same decay constant γ ) and that the coefficient c(γ ) defined in
Eq. (A4) does not depend on K . Let us then consider

�T (K1, . . . , K7) = δ(K1, . . . , K7)

− δ(K1 − 2, . . . , K7 − 2). (A5)

From the above discussion, we can estimate the total missing
phase shift as

δM
T = x

1 − x
�T (K1, . . . , K7), x = e−2γ . (A6)

TABLE VIII. Convergence of 0− phase shift at Ep = 1.00, 2.25, and 4.05 MeV corresponding to the inclusion in the
internal part of the wave function of the different subsets of HH basis. The AV18 potential is considered here with the
inclusion of the point-Coulomb interaction. In the last row, the total missing phase shifts computed as described in text have
been reported (we have estimated e−2γ ≈ 0.8).

K1 K2 K3 K4 K5 K6 K7 Ep = 1.00 MeV Ep = 2.25 MeV Ep = 4.05 MeV
δ (deg) δ (deg) δ (deg)

51 27 25 21 1 1 1 1.867 7.401 16.364
53 29 27 23 3 3 3 1.880 7.467 16.559
55 31 29 25 5 5 5 1.891 7.526 16.724
57 33 31 27 7 7 7 1.902 7.583 16.878
59 35 33 29 9 9 9 1.912 7.632 17.010
61 37 35 31 11 11 11 1.919 7.668 17.106

δM
T 0.028 0.144 0.384
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FIG. 9. (Color online) Four p-3He elastic scattering observables
at Ep = 4.05 MeV calculated using different values for the 0−

phase shift. The dashed and solid curves were obtained using
different truncations of the HH expansion corresponding to choices
of (K1, . . . , K7) reported in the first and sixth rows of Table VIII. The
thick solid curves were obtained using the extrapolated value for this
phas shift, obtained as explained in the text. The experimental data
are from Ref. [67] (open circles) and the present work (solid circles).
The potential used is AV18.

As an example, the values for �i(K1, . . . , K7) computed at
Ep = 1.00, 2.25, and 4.05 MeV are reported in Table VIII,
from which it is possible to derive the values of γ and then of
δM
T . The computed values of δM

T using Eq. (A6) are reported
at the bottom.

As can be seen in Table VIII, δM
T is estimated to be

rather small at Ep = 1.00 and 2.25 MeV. However, for the
largest energy, the convergence seems not to be completely
under control and higher values of K1 through K7 should be
employed. In any case, we can see that the missing phase shift
is less than 2%. Analogous problems have been found for the
1− and 2− states, whereas for the other states the convergence
did not present any difficulty.

Since, the inclusion of a greater number of states would
have require a significant increase in computing time, we
preferred to use the extrapolation outlined above for obtaining
estimates for the converged phase shifts and mixing parameters
for the Jπ = 0−, 1−, and 2− states. To show the effect of
the extrapolation on the observables, we present in Fig. 9
the results for four p-3He observables at Ep = 4.05 MeV
and calculations using the AV18 potential. The dashed and
thin solid curves have been obtained using the 0− phase
shift calculated with different values for K1, . . . , K7. More
precisely, the dashed (solid) curves have been obtained using
the value δ = 16.364◦ (17.106◦) obtained with the choice of
K1, . . . , K7 reported in the first (sixth) row of Table VIII. The
thick solid curve has been obtained using the extrapolated
value δ(61, 37, 35, 31, 11, 11, 11) + δM

T ≈ 17.5◦. The other
phase shifts were taken with their final values (in particular,
for the 1− and 2− phase shifts, we used the extrapolated values
obtained using a similar procedure as described above). The
four observables considered in the figure ar: the differential
cross section σ (θ ), the proton analyzing power Ay , the 3He
analyzing power A0y , and the spin correlation coefficient Ayy .

As can be seen, there is a good convergence for σ (θ ), Ay ,
and Ayy . A0y is more sensitive to δ, and the convergence is
more critical. In any case, however, the thick solid curves
are rather close to the thin solid curves, showing that the
convergence has been nearly reached. A similar analysis has
been performed for the 1− and 2− phase shifts and mixing
parameters, with similar findings. Therefore, we can conclude
that the convergence of the HH expgansion is sufficiently good
to obtain nearly correct predictions of the p-3He observables,
allowing therefore meaningful comparisons between theory
and experimental data. The calculated phase shifts are in
reasonable agreement with those calculated by other methods
(for example, those in Ref. [13]).
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