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Simple interpretation of proton-neutron interactions in rare earth nuclei
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The rare earth nuclei from N = 92 to N = 108 display a very regular pattern of empirically extracted
interactions of the last protons with the last neutrons. The simplicity of the empirical systematics suggests
that a simple interpretation should be possible. We discuss calculations of these proton-neutron (p-n) interactions
with a zero-range δ force.
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It is possible to extract empirical values of the average
interactions of the last two protons with the last two neutrons,
called δVpn, from double differences of binding energies. This
was first suggested [1] and carried out [2–4] about fifteen
years ago based on the masses then available. The recent 2003
mass evaluation [5] has expanded the number of available
masses considerably and has led to recent studies of these
interactions [6–8]. These studies focused on the striking
behavior across major shell gaps [6] and the relation of the
proton-neutron (p-n) interaction strengths to the growth of
collectivity and deformation in particle-particle (p-p), particle-
hole (p-h), and hole-hole (h-h) regions [7]. In Ref. [8], a
global summary of all δVpn values was presented. A number of
patterns as well as anomalies were identified, but perhaps the
most striking feature was a remarkable regularity in the mass
region A ∼ 150–180. The relevant δVpn values are shown in
Fig. 1.

The behavior is indeed striking. For each element these
valence p-n interaction strengths grow systematically and
substantially with N. The values for each successive Z are
shifted systematically to the right, giving nearly perfect parallel
trajectories. For those elements where sufficient data are
known, a falloff at the largest neutron numbers is also observed.
Behavior as regular and simple as this suggests that there must
be a simple underlying microscopic physics interpretation.
Previous investigations of δVpn values [6–8] have focused on
simple arguments relating to the spatial overlaps of proton
and neutron orbits [9]. For example, near 208Pb stronger
interactions were found [6] for nuclei where both protons
and neutrons were above shell closures, or where both were
below, than when protons were above Z = 82 and neutrons
below N = 126. The reason is simply the generic behavior
of shell structure in heavy nuclei in which the normal parity
orbits have typical sequences of nlj values ranging from low
n high j to high n low j. This was also the explanation for
the empirically noted higher growth rates of collectivity in p-p
and h-h regions (each filling similar orbits) compared with p-h
regions [7].
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It would seem likely that a similar explanation should apply
in the present case. Indeed, it was speculated in Ref. [8] that the
systematic behavior of Nilsson orbits (these are all deformed
nuclei) from equatorial (low �) to polar (high �) provides an
explanation. The relevant proton numbers Z = 64−74 are near
or above mid-shell and are therefore flat or slightly upsloping in
the Nilsson scheme. The neutrons, however, are filling from N
= 92 to around mid-shell. Hence, for a given Z, the p-n overlap
of the last neutrons with the last protons should increase with
N as more similar orbits are occupied.

It is the purpose of this Brief Report to focus on the
systematics in Fig. 1 and on calculations, using a zero-range
δ interaction, including spin exchange, of p-n interaction
matrix elements to test whether these simple ideas are validated
and whether the data plotted in Fig. 1 can be reproduced.

We consider the interaction of the last proton with the last
neutron, both occupying Nilsson orbits. To do so, we use the
standard expression of a Nilsson wave function in a spherical
basis:
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The nuclei of interest, those in Fig. 1 with neutron
numbers from N = 92 to N = 108, are all well deformed
with deformation ε2 ∼ 0.3. In this deformation range the Cj

coefficients [10] are weakly dependent on ε2, and so we use
a single set of Nilsson wave functions (test calculations of
the resulting p-n interactions show virtually no dependence
on ε2 in the range 0.2–0.3). The interaction matrix elements,
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FIG. 1. Empirical δVpn values for nuclei from Gd to W for N
between 92 and 108. The p-n interactions are attractive, but, for
visual convenience, the δVpn values are plotted as positive. Extracted
from Ref. [8].

The three expressions for the other �tot terms are similar,
differing primarily in phase factors. These phase factors arise
both in the Clebsch-Gordan coefficients, when � values
change sign, and in the Cj coefficients, where one has
C−�

j = C�
j (−1)j−1/2+�. Note that the sums extend not only

over the Cj coefficients (the jp, jn values), but also over the
total angular momenta J to which they can couple. Note also
that, in general, the interaction matrix elements also depend
on J. Owing to the different total � values, the four cases differ
in the ranges of J values summed over. Nevertheless, the four
�tot values give identical results, and therefore the total p-n
matrix element is just four times that in Eq. (2).

Any particular interaction can be substituted for Vpn in
Eq. (2). Here, for simplicity we use a zero-range δpn interaction
including spin exchange. The matrix elements in a spherical

FIG. 2. Calculation of the interactions of a proton in the unique
parity 11

2

−
[505] orbit with neutrons in the unique parity orbits

1
2

+
[660] . . . 13

2

+
[606]. In each case the largest term, by far, is the

diagonal one (open circles). The sum in Eq. (2) is given by the filled
circles.

single-particle basis have been calculated and provided to us
by A. De Maesschalck [11].

It is instructive to understand these interactions physically
and intuitively with a simple first test case. Consider the
interaction of a proton in the unique parity 11

2
−

[505] orbit
with a neutron in the seven orbits stemming from the 1i13/2

shell, namely, 1
2

+
[660], 3

2
+

[651] . . . 13
2

+
[606]. The orbital

plane of the proton orbit is perpendicular to the symmetry
axis of a prolate rotor, while the neutron orbits vary from
nearly perpendicular to nearly parallel to this plane in going
from 1

2
+

[660] to 13
2

+
[606]. Therefore the interaction strength

should grow as the neutron �n value increases from 1
2 to 13

2 .
The results are shown in Fig. 2. Given the simple Nilsson
wave functions for these unique parity orbits, specified by
C

p

j=11/2 = 1 ( 11
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−
[505] Nilsson orbit), Cn

j=13/2 ∼ 1 ( 1
2

+
[660],

3
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FIG. 3. Ground state proton (upper) and neutron (lower) Nilsson orbits occupied by the last proton and neutron for the nuclei in Fig. 1,
taken from the Nilsson assignments to the ground states of the neighboring A-1 odd-A nuclei.
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FIG. 4. Left, data on δVpn from Fig. 1 for
Er-W. Right, calculated values of the p-n inter-
action with a zero-range δ force between the last
occupied proton and neutron orbits. The results
are normalized to 172Yb.

hardly surprising that the diagonal terms 〈1h
p
11
2
, 1in13

2
, J |Vpn

|1h
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2
, J 〉 completely dominate.

The behavior is exactly as expected. The strongest inter-
action, by far, of the proton in the 11

2
−

[505] orbit is with the
13
2

+
[606] orbit, and the weakest is with the 1

2
+

[660] orbit.
There is a smooth and accelerating increase in the interaction
as the neutron orbits change from �- 1

2 to 13
2 .

To proceed with realistic calculations (within our simplified
model) for the nuclei in Fig. 1, we first give, in Fig. 3, the
ground state proton and neutron orbits for these nuclei obtained
from the level schemes of the neighboring odd-A nuclei. Then,
using Eq. (2) we calculate the δpn-function interactions. Given
the simplicity of the present approach, no serious attempt
was made to include pairing correlations. However, as a step
in this direction, in those cases where an excited Nilsson
orbit was found in the neighboring odd Z or N nucleus at
an excitation energy <80 keV, the interactions for that orbit
and the ground state orbit were averaged. This affects only a
few calculated δVpn values by about 50 keV and a few others
by amounts of ∼10 keV. The results are shown in Figs. 4
and 5.

Overall, despite their extreme simplicity (zero-range
δpn interaction, virtually no pairing correlations taken into
account, assumption of constant deformation), the calculations
reproduce the data rather well. For the heavier isotopes
(Er–W), the calculations (see Fig. 4) exhibit an upward
slope similar to the empirical δVpn values. For those cases
where the data extend to large enough neutron numbers,
they even reproduce the dropoff in δVpn. The only important

discrepancies are that the calculated δVpn values peak for Er
a little early and that there is no falloff for Yb with N = 104.
In contrast, the calculations for Gd and Dy are only in fair
agreement with the data, although the overall magnitude is
about right (See Fig. 5). At least in the case of Gd, it is clear
why the calculated δVpn values are constant: from Fig. 3, we
see that exactly the same orbits are occupied for the three
successive isotopes with N = 92, 94, and 96.

The reason that this occurs, of course, is the crossing of
Nilsson orbits as the deformation grows in these transitional
nuclei. For Gd, we have also calculated δVpn for N = 98
even though the orbit for the last proton is not known
experimentally. However, the existing data for the Eu isotopes
show that the ground state proton orbit, 5

2

+
[413], is rather

stable. Moreover, calculations [12] suggest that that orbit
likely remains the ground state for larger neutron numbers.
Making the assumption that this continues for N = 98, we
see, interestingly, that the calculations do show a sharp rise
(for N = 98), albeit delayed relative to the data.

To summarize, empirical p-n interactions of the last proton
with the last neutron show a remarkably simple and regular
pattern of parallel tracks against neutron number. A simple
explanation, in which the neutrons in specific Nilsson orbits
have increasingly higher overlaps with mid-shell proton orbits
as N increases from 92 toward the mid-neutron shell, is tested
by calculations of the p-n interaction matrix elements, using a
zero-range δ interaction and transforming the matrix element
into a spherical single-particle basis. Good overall agreement,
in a constant deformation model, is obtained for Er, Yb, Hf,
and W. For Gd and Dy the calculations give the right general

FIG. 5. Left, Data on δVpn from Fig. 1 for
Gd and Dy. Right, Calculated values. The results
are normalized to the value for 172Yb in Fig. 4.

027304-3



BRIEF REPORTS PHYSICAL REVIEW C 74, 027304 (2006)

magnitude (recall that there is only one normalization for all
the nuclei in Figs. 4 and 5), but the detailed trends in the
data are not reproduced. It would be interesting to measure
δVpn for 162Gd (only the mass of 160Sm is needed for this)
to see whether the empirical value does increase as in the
calculations.

Of course, with such a simple approach, one would not ex-
pect better agreement than we have obtained. It would be very
interesting to see if rigorous, self-consistent calculations with
realistic interactions can reproduce the data more accurately

while still capturing essentially the same underlying physics
interpretation. Work along such lines is in progress [13].
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