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Radiative neutron capture on a proton at big-bang nucleosynthesis energies
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The total cross section for radiative neutron capture on a proton, np → dγ , is evaluated at big-bang
nucleosynthesis (BBN) energies. The electromagnetic transition amplitudes are calculated up to next-to-leading-
order within the framework of pionless effective field theory with dibaryon fields. We also calculate the dγ → np

cross section and the photon analyzing power for the d �γ → np process from the amplitudes. The values of
low-energy constants that appear in the amplitudes are estimated by a Markov Chain Monte Carlo analysis using
the relevant low-energy experimental data. Our result agrees well with those of other theoretical calculations
except for the np → dγ cross section at some energies estimated by an R-matrix analysis. We also study the
uncertainties in our estimation of the np → dγ cross section at relevant BBN energies and find that the estimated
cross section is reliable to within ∼1% error.
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I. INTRODUCTION

Primordial nucleosynthesis happens between 1 and 102

seconds after the big bang at temperatures ranging from
T � 1 MeV to 70 keV. (These are the temperatures of weak
freeze-out and the end of the D bottleneck, respectively).
Predictions of primordial light element abundances, D, 3He,
4He, and 7Li, and their comparison with observations are
a crucial test of the standard big-bang cosmology. The
uncertainties in these predictions are dominated by the nuclear
physics input from reaction cross sections. Reaction databases
are continuously updated [1–3], with more attention now paid
to the error budget. To understand big-bang nucleosynthesis
(BBN) more clearly, it is essential to accurately measure these
reaction cross sections at the energies relevant for BBN.

The radiative neutron capture on a proton, np → dγ , is
one of the key reactions for BBN, because this process is the
starting point of the synthesis of the light elements (i.e., it
determines the end of the D bottleneck). The cross sections of
the np → dγ reaction have been measured by Suzuki et al. [4]
and Nagai et al. [5]. Its inverse process, the photodisintegration
of the deuteron, dγ → np, has had its cross section measured
near threshold by Hara et al. [6] and Moreh et al. [7]1, and the
photon analyzing power for the deuteron photodisintegration
are reported by Schreiber et al. [10] and Tornow et al. [11].
Although these data comprise an important data set, they
nevertheless only sparsely sample the energies relevant for
BBN. Hence an attempt at applying these experimental data
directly to the BBN predictions would make the uncertainties
larger.
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1We do not include the data from Bishop et al. [8] in this work

because of the wrong normalization factor of the data [9].

Theoretical calculations suggest that theory errors can be
sufficiently smaller than typical experimental uncertainties
(∼5%), and that they can provide a very useful discriminant
for theories and their perturbative schemes. BBN reaction
compilations adopt these theory-based cross sections because
they can provide more robust and accurate predictions than
experiment alone. However, the uncertainties from the recent
theoretical estimations of the cross section for np → dγ at
BBN energies are considerably different from each other;
4% [12], 2 ∼ 3% [13], and 1% [14]. These differences could
lead to different uncertainties in the BBN predictions, and
thus it is necessary to examine the relevant error budget for the
np → dγ process with a new method.

Effective field theories (EFTs) provide a model-
independent calculation and a systematic perturbation scheme
in terms of Q/� in calculations of various low-energy
hadronic processes [15,16], where Q is a typical momentum
scale of a reaction in question and � is a large scale
integrated out from an effective Lagrangian. Because the
energies relevant for BBN (T � 1 MeV) are significantly
smaller than the pion mass, we can consider the pions as heavy
degrees of freedom and integrate them out of the Lagrangian.
Pionless EFTs [17] have been intensively studied in various
two-, three-, and four-nucleon processes for the last decade
(see, e.g., Refs. [18,19] for reviews and references therein).
Convergence in the pionless EFT-based perturbative expansion
turns out to be rather slow for the deuteron channel due
to a relatively large expansion parameter, Q/� ∼ 1/3 [20].
This large expansion parameter essentially determines the
uncertainty estimates of the pionless EFT calculations. For
example, in the next-to-next-to-next-to leading-order (N3LO)
calculation of the np → dγ cross section at the BBN energies,
Chen and Savage found a (1/3)3 ∼ 4% error [12]. Rupak
pushed the calculation one order higher, i.e., up to N4LO,
and found a (1/3)4 ∼ 1% theoretical uncertainty in the cross
section [14].

It has been suggested that the convergence of the pionless
EFTs for the deuteron channel can be improved by adjusting
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the deuteron wave function so as to fit it to the asymptotic
S-state normalization constant Zd = γρd/(1 − γρd ) (γ =√

mNB, where B is the binding energy of the deuteron and
ρd is its effective range) [21–23]. By introducing dibaryon
fields that represent a resonance scattering state of the 1S0

channel and the deuteron bound state of the 3S1 channel, Beane
and Savage showed that the dibaryon EFT (dEFT) without
pions can naturally account for the long tail of the deuteron
wave function in the renormalized dibaryon propagator at the
deuteron pole [24].2 The slow convergence problem, however,
was not fully resolved in dEFT. For instance, as discussed
in detail in Ref. [28], when one includes the electromagnetic
(EM) interaction into the np system in the framework of dEFT,
vector(photon)-dibaryon-dibaryon (Vdd) vertices, which are
classified in the subleading order in the previous work [24],
give contributions comparable to those of the leading ones. In
Ref. [28], we suggested a simple prescription to extract a LO
contribution from the low-energy constants (LECs) of the Vdd
vertices (we mention it below), and this reordering of the Vdd
term has shown a satisfactory convergence rate similar to that
reported in other EFT calculations. We employ this modified
counting of the Vdd vertex and confirm that this machinery
is useful for the calculations of processes and observables
considered here.

In this work, we calculate the cross sections of the np → dγ

process at BBN energies, its inverse reaction dγ → np, and the
photon analyzing power for the d �γ → np process within the
framework of dEFT up to next-to-leading-order (NLO). Values
and uncertainties of LECs that appear in the amplitudes are
estimated by a Markov Chain Monte Carlo (MCMC) analysis
using the relevant low-energy experimental data; the total cross
section of the np scattering at the energies <∼5 MeV, the rates
of the np → dγ process, its inverse process dγ → np, and
the photon analyzing power in the d �γ → np process. Having
fitted the values of the LECs, we compare our results with the
experimental data mentioned above and find that our statistical
error bars of the np → dγ cross section are satisfactorily
improved compared to the experimental ones. We also compare
our result of the np → dγ cross section with other theoretical
estimations, the pionless EFT calculation up to N4LO [14],
a calculation with Argonne v18 (Av18) potential and the
meson exchange current [29], and the result of an R-matrix
analysis [30]. Our result agrees quite well with those of the
previous EFT and Av18 potential model calculations within
the uncertainties (∼1%) estimated by MCMC. However, we
find significant (∼4.6%) difference in the np → dγ cross
sections from the R-matrix theory estimated at E = 0.1 and
1 MeV, where E is the total two-nucleon kinetic energy in
the center-of-mass frame. Because the various theoretical
uncertainties from higher-order corrections in the pionless
EFT calculation have already been studied in Ref. [14] and
the slow convergence problem in the former pionless EFT
calculations has been resolved in dEFT, we discuss that the

2Recently, dEFT has been employed in studying, e.g., neutron-
neutron fusion [25], muon capture on the deuteron [26], and the
deeply-virtual Compton scattering dissociation of the deuteron and
the EMC effect [27].

theoretical estimations of the np → dγ cross section at the
BBN energies are reliable with an uncertainty of <∼1%.

This article is organized as follows. In Sec. II, we present
the pionless effective Lagrangian with dibaryon fields up to
NLO. We calculate the amplitudes with the S- and P-wave
np states and the cross sections for the np → dγ and dγ → np

processes and the photon analyzing power for the d �γ → np

process up to NLO in Sec. III. Utilizing a Markov Chain
algorithm, we determine the values and uncertainties of the
LECs in Sec. IV. In Sec. V, we compare the resulting
observables to the experimental data and other theoretical
estimations. In Sec. VI, we summarize our results and
give discussion. In Appendix A, we present the expressions
of the renormalized dibaryon propagator and the S-wave
NN-scattering amplitudes and show the relations between the
LECs in the strong sector and the parameters in the effective
range theory. In Appendix B, we describe in detail the MCMC
analysis in determining the LECs and cross sections.

II. PIONLESS EFFECTIVE LAGRANGIAN WITH
DIBARYON FIELDS

A pionless effective Lagrangian for nucleon and dibaryon
fields interacting with an external vector field can be written
as [24,28]

L = LN + Ls + Lt + Lst , (1)

where LN is the nucleon Lagrangian, Ls and Lt are the
Lagrangian for the dibaryon fields in 1S0 and 3S1 channels,
respectively. Lst is the Lagrangian that accounts for the
isovector EM interaction of the dibaryon fields.

LN in the heavy-baryon formalism reads

LN = N †
(

iv · D + 1

2mN

{
(v · D)2 − D2 − i[Sµ, Sν]

× [
(1 + κV )f +

µν + (1 + κS)f S
µν

]})
N, (2)

where vµ is the velocity vector satisfying v2 = 1; we take
vµ = (1, �0). Sµ is the spin operator 2Sµ = (0, �σ ). Dµ = ∂µ −
i
2 �τ · �Vµ − i

2VS
µ, where �Vµ and VS

µ are the external isovector

and isoscalar vector currents, respectively. f +
µν = �τ

2 · (∂µ
�Vν −

∂ν
�Vµ) and f S

µν = 1
2 (∂µVS

ν − ∂νVS
µ). mN is the nucleon mass

and κV (κS) is the isovector (isoscalar) anomalous magnetic
moment of the nucleon, κV = 3.706 (κS = −0.120).

Ls ,Lt , and Lst for the dibaryon and two nucleon fields read

Ls = σss
†
a

{
iv · D + 1

4mN

[(v · D)2 − D2] + 	s

}
sa

− ys

[
s†a

(
NT P (1S0)

a N
) + h.c.

]
, (3)

Lt = σt t
†
i

{
iv · D + 1

4mN

[(v · D)2 − D2] + 	t

}
ti

− yt

[
t
†
i

(
NT P

(3S1)
i N

) + h.c.
]

+
(

1 + κS

2mN

− 2l2

mNρd

)
iεijkt

†
i tjBk, (4)

025809-2



RADIATIVE NEUTRON CAPTURE ON A PROTON AT . . . PHYSICAL REVIEW C 74, 025809 (2006)

Lst =
[
−1 + κV

2mN

(
r0 + ρd

2
√

r0ρd

)
+ l1

mN

√
r0ρd

]

× (
t
†
i s3Bi + h.c.

)
. (5)

The covariant derivative for the dibaryon field is given by
Dµ = ∂µ − iCVext

µ , where Vext
µ is the external vector field and

C is the charge operator of the dibaryon fields; C = 0, 1, 2 for
nn, np, pp channels, respectively; and we have set e = 1. �B is
the magnetic field given by �B = �∇ × �Vext. σt (σs) is the sign
factor, 	t (	s) is the difference between the dibaryon mass mt

(ms) in the 3S1 (1S0) channel and the two-nucleon mass; mt,s =
2mN + 	t,s , and ys,t are the dibaryon-nucleon-nucleon (dNN)
coupling constants of the dibaryon spin singlet and triplet
channels. In Appendix A, these LECs in the strong sector are
related to the parameters of the effective range theory. l1 and
l2 are LECs of the Vdd vertices and can be fixed, for instance,
by the thermal np → dγ rate and the deuteron magnetic
moment, respectively. We note that we have separated the
leading contributions from the coefficients in the Vdd vertices
associated with l1 and l2 and fixed them mainly by one-body
interactions, i.e., the vector(photon)-nucleon-nucleon (VNN)
couplings, as suggested in Ref. [28]. Consequently, l1 and
l2 terms in this work give genuine NLO contributions. ρd

and r0 are the effective ranges for the deuteron and 1S0

scattering state, respectively. P
(S)
i is the projection operator

for the S = 2S+1LJ channel. For the S and P waves that are
dominant at low energies, the projection operators are given
as [31]

P
(3S1)
i = 1√

8
σ2σiτ2, P (1S0)

a = 1√
8
σ2τ2τa,

P (1P1)
a =

√
3

8
p̂ · �ετa,

(6)

P (3P0)
a = 1√

8
σ2 �σ · p̂τ2τa, P (3P1)

a =
√

3

4
εijkεi p̂j σ2σ

kτ2τa,

P (3P2)
a =

√
3

8
εij p̂iσ2σ

jτ2τa,

∫
d�p̂

4π
Tr

(
P

(S)†
i P

(S)
j

) = 1

2
δij ,

where εi and εij are J = 1 and 2 polarization tensor,
respectively, and σi (τa) with i(a) = 1, 2, 3 is the spin (isospin)
operator.

We adopt the standard counting rules of dEFT [24].
Introducing an expansion scale Q < � (� mπ ), we count
magnitude of spatial part of the external and loop momenta,
| �p| and |�l|, as Q, and the time component of them, p0

and l0, as Q2. Thus the nucleon and dibaryon propagators
are of Q−2 and a loop gives a factor of Q5 due to the
four-dimensional differential volume in the loop integration.
The scattering lengths and effective ranges are counted
as Q ∼ {γ, 1/a0, 1/ρd, 1/r0}. This ensures, as discussed in
the introduction, that one reproduces the long tail of the
deuteron wave function characterized by

√
Zd and thus

has good convergence [21–23]. Orders of vertices and dia-
grams are easily obtained by counting the numbers of these
factors.

(a) (b) (c)

FIG. 1. Diagrams contributing to np → dγ and dγ → np.
(a) and (b) LO, O(Q1/2); (c) LO and NLO terms, O(Q3/2). The
single lines, the double lines with a solid circle (see Fig. 6 as well),
and the wavy lines denote nucleons, renormalized dibaryons, and
photons, respectively. VNN vertex × in (a) and (b) and the LO part
of Vdd vertex × in (c) are proportional to (1 + κS) and (1 + κV ) for
the initial 3S1 and 1S0 channel, respectively. LECs l1 and l2 appear in
the NLO part of the Vdd vertex × in the diagram (c).

III. AMPLITUDES AND CROSS SECTIONS

Diagrams for np → dγ up to NLO are depicted in Fig. 1.
Diagrams (a) and (b) give only LO contributions. Diagram (c)
consists of LO and NLO fractions and the NLO contributions
from the diagram (c) stem from the LECs l1 and l2, as discussed
above.

Summing up the contributions of diagrams (a), (b), and (c)
in Fig. 1, we obtain the amplitudes for the initial 3S1 and 1S0

states as [24,28]

iA(a+b+c)(3S1
) = −i(�ε∗

(d) × �εi) · (�ε∗
(γ ) × k̂)

√
2πγ

1 − γρd

2

mN

× 1

−γ − ip + 1
2ρd (γ 2 + p2)

γ 2 + p2

mN

l2,

(7)

iA(a+b+c)
(

1S0
) = �ε∗

(d) · (k̂ × �ε∗
(γ ))

√
2πγ

1 − γρd

2

mN

× 1

− 1
a0

− ip + 1
2 r0p2

{
1 + κV

2mN

[
γ − 1

a0

− 1

4
(r0 + ρd )γ 2 + 1

4
(r0 − ρd )p2

]

+ γ 2 + p2

2mN

l1

}
. (8)

Here 2 �p is the relative momentum of the two-nucleon system,
and �k is the momentum of the outgoing photon; p = | �p|, k =
|�k|, and k̂ = �k/k. �ε∗

(d) and �ε∗
(γ ) are the polarization vectors

for the outgoing deuteron and photon, respectively. a0 is the
scattering length in the 1S0 channel. The LECs in the strong
sector have been renormalized by the effective range param-
eters. See Appendix A for details. We note that the isovector
M1 amplitude (the 1S0 channel), Eq. (8), has contributions
from both LO and NLO. Whereas the isoscalar M1 amplitude
(the 3S1 channel), Eq. (7), has no LO contribution due to the
orthogonality between the bound and scattering states for the
3S1 channel, but non-zero amplitude proportional to l2 appears
at NLO.
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From diagram (a) in Fig. 1, amplitudes with initial P waves
are obtained as follows

iA(a)
(

3P0
) = −i�ε∗

(γ ) · �ε∗
(d)

√
2πγ

1 − γρd

2

3

p

mN (γ 2 + p2)
, (9)

iA(a)(3P1) = −i�ε1 · (�ε∗
(γ ) × �ε∗

(d))

√
2πγ

1 − γρd

√
2

3

p

mN (γ 2 + p2)
,

(10)

iA(a)
(

3P2
) = ε

ij

2 ε∗i
(γ )ε

∗j

(d)

√
2πγ

1 − γρd

2√
3

p

mN (γ 2 + p2)
. (11)

We note that diagrams (b) and (c) in Fig. 1 do not contribute to
the P-wave amplitudes because the states of the renormalized
dibaryon propagator are only the S waves.

Having the amplitudes calculated above, we can easily
obtain the expressions of the cross sections of the np → dγ

and dγ → np processes and the analyzing power for the
d �γ → np process. The total cross section of the np → dγ

process in the center-of-mass frame reads [24,28]

σ = α(γ 2 + p2)

4p

∑
spin

|A|2, (12)

where α is the fine structure constant.3

The total cross section of the photodisintegration of the
deuteron, dγ → np, has a simple relation with the cross
section of its inverse process as [12]

σ (γ d → np) = 2mN (Eγ − B)

3E2
γ

σ (np → dγ ), (13)

where Eγ is the photon energy. Because we have already
obtained the np-capture cross section, the calculation of
σ (γ d → np) is straightforward.

The photon analyzing power �(θ ) with the linearly polar-
ized photons in the d �γ → np process is defined as �(θ ) ≡
(N‖ − N⊥)/(N‖ + N⊥), where N‖ and N⊥ are the number of
outgoing neutrons counted in and out of the horizontal γ -ray
polarization plane, respectively, and θ is the angle between
the incoming photon and outgoing neutron in the laboratory
frame. This quantity is related to the M1 and E1 contributions
to the total cross sections of the dγ → np process, σM1 and
σE1, respectively. The relation can be found, e.g., in Eq. (4) of
Ref. [10], which reads

�(θ ) =
3
2σE1sin2θ

σM1 + 3
2σE1sin2θ

. (14)

3In obtaining the total cross section, the following identities are
useful: ∑

spin

|i�ε∗
(d) · (k̂ × �ε∗

(γ ))|2 = 2,
∑
spin

|�ε∗
(γ ) · �ε∗

(d)|2 = 2,

∑
spin

|�ε1 · (�ε∗
(γ ) × �ε∗

(d))|2 = 4,
∑
spin

|εij

2 ε∗i
(γ )ε

∗j

(d)|2 = 10

3
.

We ignore the amplitude for the 3S1 channel in Eq. (7), as discussed
later.

σM1 and σE1 are easily calculated by using Eqs. (12) and (13)
and the expressions of the M1 and E1 amplitudes are obtained
in Eqs. (7)–(11).

IV. PARAMETER DETERMINATION FROM
EXPERIMENTAL DATA

In this section, we determine the values and uncertainties
of the LECs that appear in our results from the relevant
low-energy experimental data. The cross sections and photon
analyzing power obtained from the amplitudes in Eqs. (7)–
(11) depend on six parameters: a0, r0, γ, ρd, l1, and l2. γ

and l2 are precisely determined by the deuteron binding
energy B and magnetic moment µd , respectively. Using the
relation µd = 1 + κS + Zdl2, we have l2 = −0.0154 fm. It is
∼50 times smaller than the value of l1 in Table I (and the
expressions for the l1 and l2 terms in the amplitudes are
almost identical). We consider the error of the cross section at
the order of 0.1%, so we neglect the amplitude in Eq. (7)
from the 3S1 channel in the following calculations. Thus,
the parameters a0, r0, ρd , and l1 are determined from the
low-energy experimental data, whereas γ is fixed from B and
treated as a constraint in the fitting.

We fit these parameters to the low-energy np data with
a Markov Chain Monte Carlo (MCMC) analysis using the
Metropolis algorithm [32]. This method is more efficient in
exploring parameter space than creating a multidimensional
grid of parameter values and interpolating to find the underly-
ing likelihood distribution and favored parameter values. The
method is a random walk constrained to “walk” in regions
of low χ2. As the χ2 increases for a particular step, the
probability of the step being accepted into the chain decreases.
This “walk” explores the allowed parameter space and, if long
enough, will explore all channels of parameter degeneracy.
The resulting sample, then provides a direct probe of the
parameter likelihood and can be used to determine, e.g., the
means, standard deviations, and correlations of the parameters.
It also provides an accurate way to propagate the uncertainties
and correlations of the parameters into the cross-section
uncertainties, which depend nonlinearly on the parameters.

TABLE I. Values and correlations of the parameters. The values
of the parameters obtained are in units of fm. Values under Prev. meth.
are the adopted parameter values from previous works; of these a0, r0,
and ρd are from Ref. [40] and l1 from the thermal np capture rates [28].
MCMC is obtained by the MCMC analysis (χ 2 fit) by using the low
energy experimental data. Also shown are the parameter correlations.
They are defined by COR(i, j ) = COV(i, j )/[σstat.(i)σstat.(j )], where
COV(i, j ) is the covariance between the ith and j th parameters and
σstat.(i) is the statistical uncertainty of the ith parameter.

Prev. meth. MCMC Correlations

a0 r0 ρd l1

a0 −23.749±0.008 −23.745±0.008 1.000 0.433 0.464 0.496
r0 2.81±0.05 2.730±0.044 0.433 1.000 0.975 0.936
ρd 1.760±0.005 1.740±0.007 0.464 0.975 1.000 0.898
l1 0.782±0.022 0.893±0.038 0.496 0.935 0.898 1.000
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FIG. 2. Contour plots of two dimensional parameter spaces for five-dimensional probability distribution generated by the MCMC analysis.
We draw the contours of 1, 2, and 3 σ for each set of the parameters, a0, r0, ρd, and l1, whereas B is effectively fixed at the observed value and
uncorrelated with the other parameters, and thus not shown.

One drawback is that this method is not particularly efficient
at sampling multipeaked distributions. The random walk can
become trapped in a local minimum. For the case we are
considering, the five-dimensional likelihood distribution is
singly peaked (i.e., a unique solution exists).

We now list the low-energy experimental data employed
in our fitting. To include the high-precision measurements
of the deuteron binding energy, we adopt the value of

B = 2.2245671 ± 0.0000042 MeV4 [34] as the additional
constraint mentioned above. This accurate value of B gives the

4The quoted deuteron binding energy is a weighted average of the
available measurements. The error is the weighted dispersion about
the mean, recommended by Refs. [3,33] because standard techniques
underestimate uncertainties when data are discrepant.
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FIG. 3. Total cross section of n + p → d + γ in units of mb
multiplied by neutron speed in m/ns. Neutron energy En is in the
laboratory frame. Dashed and dotted curves are the M1 and E1
contributions to the total cross section, respectively. The experimental
data are from Suzuki et al. [4] and Nagai et al. [5].

uncertainty of γ in the order of 10−6, thus it is effectively fixed,
independent from the other constraints. The np-scattering
data are found on the NN-Online Web site [35]. We restrict
ourselves to the angle-integrated scattering cross sections
with center-of-mass energies <∼5 MeV and have Nsct = 2124
data points. We adopt the two thermal neutron capture cross
sections from Cox et al. [36] (334.2 ± 0.5 mb) and Cokinos
and Melkonian [37] (332.6 ± 0.7 mb)5 and also adopt the
np capture data of Suzuki et al. [4] and Nagai et al. [5], the
photo-dissociation cross section data by Hara et al. [6] and
Moreh et al. [7], and the photon analyzing power data from
Schreiber et al. [10] and Tornow et al. [11].

Using the experimental data mentioned above, we fit these
parameters employing the MCMC analysis. The steps in doing

5In a private communication mentioned in [38], the Cox et al.’s
thermal cross section is renormalized from 334.2 to 333.9 mb.
This likely indicates hidden systematics in the experiment and
subsequently larger (and unacknowledged) uncertainties, though we
adopt the original published number. In addition, the thermal np
capture rate, σ = (334 ± 3) mb, has been estimated by T.-S. Park
et al. in the calculation of pionful effective field theory [39].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2  2.5  3  3.5  4  4.5  5

σ 
(m

b)

Eγ (MeV)

Hara et al.
Moreh et al.

Total
M1
E1

FIG. 4. Total cross section for the d + γ → n + p process.
Dashed and dotted curves represent the M1 and E1 contributions
to the total cross section, respectively. The experimental data are
from Hara et al. [6] and Moreh et al. [7].
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FIG. 5. Photon analyzing power �(θ ) for the d + γ → n + p

process. We plot our results at θ = 90◦ and 150◦. The experimental
data are from Schreiber et al. (θ = 150◦) [10] and Tornow et al.
(θ = 90◦) [11].

the MCMC analysis are described in detail in Appendix B. We
initialize the Markov chain at the point in five-dimensional
parameter space that minimizes the χ2. After verifying that the
χ2 had only one minimum, we did not need to run more than
one Markov chain, making the analysis much more efficient.
We display, in Fig. 2, two dimensional contour plots of 1,
2, and 3 σ for each set of parameters, a0, r0, ρd, l1 from
our five-dimensional probability distribution generated from
the MCMC analysis. We note that because B is effectively
fixed and uncorrelated with the other parameters, contour
plots with B are not necessary. MCMC in Table I are the
average parameter values and standard deviations from this
analysis with the total number of the data Ntot = 2147 and
the minimum χ2, χ2

tot,min = 2303.00. (For more details, see
Table IV in Appendix B.) These parameter values agree well
with prior determinations shown under Prev. meth. in the same
table. The small ( <∼2%) differences between MCMC and Prev.
meth. could be interpreted as effects from either higher-order
corrections not included in our calculation or simply statistical
fluctuations. Also in Table I, we show the correlations of
the parameters. We find weak correlations of a0 with the
three parameters r0, ρd , and l1 and strong correlations among
these three parameters. Though we formally counted the four
parameters as in the same order in this work, this may indicate
the existence of a perturbative series that the contribution of a0

is the LO one and the three parameters are in the same order
(NLO), as already discussed in Ref. [20].

V. NUMERICAL RESULTS

First, we present our numerical results obtained by using
the fitted values of the parameters MCMC in Table I, and
compare them with the experimental data relevant to the BBN
energies. We plot in Fig. 3 the total cross section (in mb) of
np → dγ multiplied by the speed (in m/ns) of the neutron in
the laboratory frame as a function of the incident energy of the
neutron En. We also plot the M1 and E1 contributions to the
total capture cross section in Fig. 3, where the M1 contribution
comes from the amplitude of the initial 1S0 state in Eq. (8)
and the E1 contribution from the amplitudes of the initial
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TABLE II. Theoretical predictions of the total cross section of the n + p → d + γ process at the
BBN energies. E is the energy of two nucleons in the center-of-mass frame. See the text for details.

E (MeV) Cross section (mb)

MCMC Prev. meth. Rupak [14] Nakamura [29] Hale [30]

1.265 × 10−8 333.8(15) 333.7(15) 334.2(0) 335.0 332.6(7)
5 × 10−4 1.667(8) 1.666(8) 1.668(0) 1.674 1.661(7)
1 × 10−3 1.171(5) 1.171(5) 1.172(0) 1.176 1.167(2)
5 × 10−3 0.4979(23) 0.4976(21) 0.4982(0) 0.4999 0.4953(11)
1 × 10−2 0.3322(15) 0.3319(14) 0.3324(0) 0.3335 0.3298(9)
5 × 10−2 0.1079(5) 0.1079(4) 0.1081(0) 0.1084 0.1052(9)

0.100 0.0634(3) 0.0634(2) 0.06352(5) 0.06366 0.0605(10)
0.500 0.0341(2) 0.0343(1) 0.0341(2) 0.03416 0.0338(8)
1.00 0.0349(3) 0.0352(1) 0.0349(3) 0.03495 0.0365(8)

P-wave states in Eqs. (9)–(11). At very small energies, the M1
contribution overwhelms the E1 one. They become similar
at around En ∼ 0.45 MeV and after that, the cross section is
dominated by the E1 contribution.6 The experimental data
of np → dγ are compared with our result in Fig. 3. Our
results lie within the errors (5 ∼ 6%) of all the data by Suzuki
et al. and Nagai et al.. In Fig. 4, we plot our result of the
cross section of the dγ → np process and also separate the
contributions from the M1 and E1 transition amplitudes.
Recent measurement of the cross section at the BBN energies
is reported by Hara et al. [6]. An old datum by Moreh et al. [7]
is also included in the figure. Our result agrees well with these
experimental data within the error bars.7 In Fig. 5, we plot
our results of �(θ ) at θ = 90◦ and 150◦ where experimental
data are available [10,11]. We find good agreement between
our predictions and the experimental data. The error bars
estimated for these quantities, discussed in detail below, are
much improved compared to those of the experimental data.

Now, we compare our results with the predictions of the
np → dγ cross sections at the BBN energies from various
theories in Table II. Our results, MCMC and Prev. meth., in
Table II are calculated from the amplitudes in dEFT up to NLO
by a MCMC analysis and by using the values of the Prev.
meth. parameters in Table I, respectively. We note that the
values of the cross section under the column labeled MCMC
are the most likely cross-section values with 68.3% central
confidence limits. Thus we find that the error bars for the cross

6The contributions of M1 and E1 transitions to the total cross
section of np → dγ and dγ → np are not disentangled in the
measurements, but the role of each amplitude can be studied from the
measurement of �(θ ).

7One may notice a departure (more than 1%) of our estimation
from the center values of experimental data in Figs. 3 and 4. This is
because the curves plotted in the figures are mainly determined by the
other data: e.g., the np-scattering data have a prime role to determine
the energy dependence of the curves, whereas the accurate thermal
np capture rates determine the normalization of them. However, as
verified by the good χ 2, the curves are well within the experimental
error bars.

section are <∼1%.8 Values obtained by Rupak [14] in Table II
are from the pionless EFT (without dibaryon fields) up to
N4LO and those by Nakamura [29] are from the potential
model calculation using wave functions from the Argonne v18
potential and meson exchange currents. The results by Hale
are obtained from an R-matrix analysis [30]. There is good
agreement between our two results, MCMC and Prev. meth.,
up to 0.1 MeV, whereas they show small differences (∼0.6 and
0.9%) at E = 0.5 and 1 MeV. We also find good agreement
between the MCMC analysis with that of the pionless EFT
up to N4LO by Rupak ( <∼0.2%) and with that of the accurate
potential model, including the exchange current by Nakamura
( <∼0.5%), whereas the results of the R-matrix theory at E =
0.1 and 1 MeV significantly differ from the other estimations
by ∼4.6%.

Finally, we determine and present a thermal capture rate
and relative error taking the recommended cross section from
MCMC in Table II for use in BBN computer codes:

f = NA〈σv〉
= 44216.0[cm3s−1g−1]

(
1 + 3.75191T9 + 1.92934T 2

9

+ 0.746503T 3
9 + 0.0197023T 4

9 + 3.00491

× 10−6T 5
9

)/(
1 + 5.4678T9 + 5.62395T 2

9

+ 0.489312T 3
9 + 0.00747806T 4

9

)
, (15)

δf/f = 0.00449213
(
1 + 3.08947T9 + 0.13277T 2

9

+ 1.66472T 3
9

)/(
1 + 2.75245T9 + 1.40958T 2

9

+ 0.8791T 3
9

)
, (16)

where T9 is a dimensionless temperature defined by T9 =
T/(109K). Using the thermal rates for the np-capture reaction
from MCMC dEFT, Rupak, and Hale, we show in Table III
how the light element abundance predictions vary with the
different np-capture cross sections. We find little change

8One should note that the error bars of the 68.3% confidence limits
are different from (and larger than) those of the standard deviation in
multidimensional fits, whose typical error bars are <∼0.3% [41].
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TABLE III. The table shows how the light element abundance
predictions vary with different np-capture cross sections. The nuclear
rate compilation from [3] was adopted, varying only the np-capture
rate. In fact, these predictions follow the simple abundance scalings
(Eqs. (44)–(47) in Ref. [3]), using relative values of the np-capture
cross sections at the end of the D bottleneck (E ∼ 0.07 MeV).

np-capture rate Yp D/H × 105 3He/H × 106 7Li/H × 1010

MCMC dEFT 0.24852 2.5467 10.0921 4.4646
Rupak [14] 0.24853 2.5434 10.0920 4.4902
Hale [13] 0.24849 2.5580 10.0864 4.3632

for the mass fraction of 4He, Yp and the mole fractions
3He/H, a tiny (∼0.6%) change for D/H, and a small (∼2.9%)
change for 7Li/H in the predicted light element abundances.
Differences between the light element predictions are not
significant compared to the current estimated errors in the BBN
predictions. In fact, the error budget in the BBN predictions is
dominated by the errors in other reactions such as d(p, γ )3He
and 3He(α, γ )7Be (see, e.g., Ref. [3] for more details). We
have verified that the np-capture rate is not yet a major source
of uncertainty in the light element abundance predictions.

VI. CONCLUSIONS AND DISCUSSION

In this work, we calculated the total cross sections for the
np → dγ and dγ → np processes and the photon analyzing
power in the d �γ → np process at the energies relevant to
BBN. The pionless EFT that incorporates dibaryon fields
was employed, and the transition amplitudes were calculated
up to NLO. The values of the parameters (equivalently the
LECs in effective Lagrangian) and their uncertainties are
evaluated by a MCMC analysis (χ2 fit) using the relevant
low-energy experimental data. Comparing our results with the
experimental data and the previous theoretical estimations,
we find good agreement within the estimated uncertainties
( <∼1%) except for the np-capture rate estimated by the R-matrix
analysis at E = 0.1 and 1 MeV, where E is the initial energy
for two-nucleon in the center-of-mass frame. These two values
estimated by the R-matrix theory are considerably different
from the other theoretical estimations by ∼4.6%. Therefore, it
would be important to experimentally measure the np-capture
cross sections at these energies to resolve this significant
discrepancy.

Now we are in the position to discuss the uncertainties of
np → dγ cross section at BBN energies. As discussed earlier,
the EFT calculations provide model-independent expression
for the amplitudes with a systematic perturbative scheme.
In the pionless EFT calculation up to N4LO by Rupak,
various corrections in the higher order terms have been taken
into account and it has been concluded that the theoretical
uncertainty up to the N4LO calculation in the np → dγ cross
section is less than 1%. The effective range corrections are
resummed in dEFT, and so the convergence of dEFT is better
than the pionless EFTs. Thus we expect that the contributions
from the higher terms, i.e., the theoretical uncertainties in our
calculation, to be less than Rupak’s estimation. With the overall

good agreement between our MCMC analysis and the Rupak
and Nakamura calculations, the conclusion that the theoretical
uncertainties in the np → dγ cross sections is <∼1% is well
justified. The disagreement with the R-matrix analysis could be
inferred from problems that R-matrix theory has in describing
nonresonant reactions.

Most of the recent theoretical calculations, as seen in
Table II, predict similar results with similar uncertainties,
and the accuracy of the calculations is better than the
np-capture experimental results at present. This is the case
mainly because there are a lot of accurate experimental data
for the np scattering, and we could accurately constrain the
four effective range parameters from them. We had only one
additional LEC l1 to fit from the low-energy np → dγ and
dγ → np cross sections and the photon analyzing power for
the d �γ → np process. This situation, however, will change
once we start studying other processes involving more than
two nucleons for BBN, facing significant model dependence
and lack of experimental data. As discussed in Ref. [42],
the EFT approaches would be useful in studying few-body
nuclear astrophysical processes because it provides simple
model-independent expressions of the amplitudes with a finite
number of LECs as well as a systematic expansion scheme.9

We expect that the combination of dEFT and the MCMC
analysis can be a useful tool to estimate reliable uncertainties
of few-body nuclear reactions for BBN with the aid of relevant
low-energy experimental data.
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APPENDIX A

In this appendix we review the derivation of the renor-
malized dibaryon propagator from the low energy S-wave NN
scattering [24,28].

The LECs σs,t and ys,t in the effective Lagrangian, Eqs. (3)
and (4), can be fixed from the effective range parameters of the
np scattering in 1S0 and 3S1 states. First, we derive “dressed”

9Recently, the nd → 3Hγ process has been studied in the pionless
dEFT [43].
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= + + + ...

FIG. 6. Diagrams for “dressed” dibaryon propagator at leading
order. A double (single) line stands for a dibaryon (nucleon) field.

dibaryon propagators. LO diagrams for the dressed dibaryon
propagators in the S-wave channels are depicted in Fig. 6.
Because the insertion of the two-nucleon one-loop diagram
does not alter the order of the diagram, the two-nucleon
bubbles in the propagators should be summed up to infinite
order. Thus the inverse dressed dibaryon propagators for the
spin singlet (s) (1S0) and triplet (t) (3S1) channels in the
center-of-mass frame read

iD−1
s,t (p) = iσs,t (E + 	s,t ) + iy2

s,t

mN

4π
(ip)

= i
mNy2

s,t

4π

(
4πσs,t	s,t

mNy2
s,t

+ 4πσs,tE

mNys,t

+ ip

)
, (A1)

where we have calculated the two-nucleon one-loop diagram
using the dimensional regularization. p is the magnitude of the
nucleon momentum in the center-of-mass frame and E is the
total energy E � p2/mN .

The S-wave NN-scattering amplitudes for both spin chan-
nels obtained from Fig. 7 read

iAs,t = (−iys,t )[iDs,t (p)](−iys,t ) = 4π

mN

× i

−4πσs,t	s,t

/
mNy2

s,t − (4πσs,t )
/(

m2
Ny2

s,t

)
p2 − ip

,

(A2)

and they are related to the S-matrix via

Ss,t − 1 = e2iδs,t − 1 = 2ip

pcotδs,t − ip
= i

(pmN

2π

)
As,t , (A3)

where δs,t are the S-wave phase shifts. The effective range
expansion reads

pcot δs = − 1

a0
+ 1

2
r0p

2 + · · · ,
(A4)

pcot δt = −γ + 1

2
ρd (p2 + γ 2) + · · · ,

FIG. 7. Diagram for the NN scattering amplitudes. The dNN
vertex is proportional to ys,t and the propagator of the dressed
dibaryon field (a double line with a filled circle) is obtained from
the diagram in Fig. 6.

for the 1S0 and 3S1 channel, respectively. Comparing the
expressions of the amplitudes in Eqs. (A2) and (A3), one has
σs,t = −1 and

ys = 2

mN

√
2π

r0
, Ds(p) = mNr0

2

1
1
a0

+ ip − 1
2 r0p2

,

(A5)

yt = 2

mN

√
2π

ρd

,

(A6)

Ds(p) = mNρd

2

1

γ + ip − 1
2ρd (p2 + γ 2)

= Zd

E + B
+ · · · ,

where Zd is the wave-function normalization factor of the
deuteron around deuteron binding energy B. Ellipsis denotes
corrections that are finite or vanish at E = −B. Thus one has

Zd = γρd

1 − γρd

, (A7)

which is the same as the asymptotic S-wave normalization
constant.

APPENDIX B: RUNNING A MCMC

In this appendix we describe the steps in doing the MCMC
analysis for determining the D = 5 parameters and cross
sections.

1. Localizing the chain by minimizing the χ2

The evolution of a Markov chain is governed by the χ2

values at various points in parameter space. We adopt the
standard definition:

χ2 =
∑

i

[
σi(thry) − σi(expt)

δσi(expt)

]2

, (B1)

where σi(expt) and δσi(expt) are the experimentally measured
values (e.g., cross sections) and their total errors, respectively,
and σi(thry) is the evaluated theoretical value; the sum is over
all data points.

Before we evaluate the χ2, we should pick some reasonable
model space. Generally relying on previous works or positive
definiteness, one can place limits on the allowed parameter
space. Of course one can expand this model space if a
minimum is found at an edge of the parameter space.

We begin by selecting an initial set of parameters ( �p0) and
estimate step sizes ( �δp0) to be some fraction of the size of each
parameter space direction. Drawing a set of random numbers
�z with zero mean and unit variance (e.g., a Gaussian-normal
random number), one can determine a new set of parameters
via the relation:

p = p0 + δp0z. (B2)

Evaluating the χ2( �p) of this new set of parameters, and
comparing to the original χ2( �p0) we can determine if the
new parameter values better describe the data. If the new
χ2 is smaller we accept the new parameter values ( �p0 = �p),
otherwise keeping the original parameter values. We calculate
new parameter values and repeat. The parameter values will
gradually evolve to the minimum possible χ2, by incrementally
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TABLE IV. Parameter values at the minimum total χ2. The step sizes should not be confused with error
bars. Also evaluated about this point are the step-sizes for each parameter. The second and third columns
show the contribution to the minimum and average χ2 values from each of the types of data (cap = capture,
dis = dissociation, sct = scattering, anp = analyzing power, and tot = total χ2s, respectively) and the fourth
column shows the number of data points evaluated.

Best fit values/step sizes (fm) Minimum χ 2 〈χ 2〉±δχ 2 # data

a0±δa0 = −23.745±0.0070 χ 2
cap,min = 4.63 5.69±1.48 Ncap = 6

r0±δr0 = 2.732±0.0095 χ 2
dis,min = 4.55 4.55±0.48 Ndis = 9

ρd ±δρd = 1.740±0.0015 χ 2
sct,min = 2282.83 2285.99±2.63 Nsct = 2124

l1±δl1 = 0.894±0.0012 χ 2
anp,min = 10.99 10.99±0.25 Nanp = 8

χ 2
tot,min = 2303.00 2308.22±3.22 Ntot = 2147

decreasing the step size one can determine the best fit to some
desired accuracy.

2. Checking for convergence to unique minimum

By repeating this procedure with different starting parame-
ter values in our model space we can determine the uniqueness
of this minimum. This is particularly useful in testing the
boundaries of the chosen model space. If a minimum is found
on a boundary the parameter space must be enlarged. If any
two parameters are completely correlated, a unique minimum
will not be found (e.g., l1 and l′1)10 and one must reconsider
the allowed parameter space. We assume from now on that
there is only one minimum in our model space and that no two
parameters are completely correlated.

3. Determining an appropriate step size

To make the MCMC as efficient as possible, one needs to
determine an appropriate step size, �δp. A simple method of
estimating this is by varying individual parameter values away
from the minimum, until the difference χ2 − χ2

min is unity.
This choice makes for a good first estimate and generally is
smaller than or equal to the true parameter errors.

4. Running the chain(s). Enforced constraints

There are many ways to initiate a MCMC. Some choose to
pick an initial point randomly in the model space, whereas
others choose to initiate the chain at the minimum. The
latter method avoids the dependence on the prior probability
distribution the initial point is generated from and thus
reducing the overall convergence length of the chain.

Once the initial point of the chain is chosen, we follow
a procedure quite similar to that used in the minimization
algorithm. One generates a new set of parameters just as in
the minimization algorithm. There is then a set of criteria for

10l′1 is a LEC associated with a vector-dibaryon-nucleon-nucleon
vertex. The LECs l1 and l′l are almost redundant in the np-capture
cross section [28].

accepting or rejecting the new parameter set: (a) if 	χ2 =
χ2( �p) − χ2( �p0) < 0 we accept the new parameter values,
(b) otherwise there is a finite probability, P = exp (−	χ2/2)
for accepting the point.

For a reasonable step size choice, this allows for the
efficient exploration of the “tail” of the parameter likelihood
distribution. Whether or not one accepts the new point, a
new set of parameters is drawn and this step is repeated until
the chain has met its convergence criteria or some maximum
length.

5. Checking convergence to a “full” sample

A relatively simple method to check the convergence of a
single chain is to calculate the first- and second- order moments
of the chain of a specific length N . We thus calculate the means,
variances, and covariances of the D parameters:

�µ(N ) = 1

N

N∑
i

�pi, (B3)

C(N ) = 1

N − D

N∑
i

[ �pi − �µ(N )] ⊗ [ �pi − �µ(N )], (B4)

where the variances are the diagonal components of the
covariance matrix. As the MCMC converges, these moments
of the underlying likelihood distribution will plateau and the
fractional difference between the N th and (N + 1)th moments
[or functions of the moments, e.g., det(C)] should fall ∼1/N .
Thus, we choose N in such a way to reach a certain desired
fractional uncertainty.

One can also compare multiple chains and their moments.
One can then compare the variance of a single chain to the
variance of the chain means, adopting the convergence criteria
from Ref. [44]. However, because we are starting our chains at
the minimum, a single chain is all that is needed once the chain
has grown longer than the intrinsic correlation length of the
chain (typically about a few 100 steps) and the convergence
criteria for the single chain is all that is needed.

To meet convergence criteria, chains with length N ∼ 106

are required. The parameter step size is adjusted so that the
acceptance is between 25% and 50%. We find that a 40%
acceptance rate is most efficient.
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