
PHYSICAL REVIEW C 74, 025808 (2006)

Neutron star properties and the equation of state of neutron-rich matter
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We calculate total masses and radii of neutron stars for pure neutron matter and nuclear matter in β

equilibrium. We apply a relativistic nuclear matter equation of state derived from Dirac-Brueckner-Hartree-Fock
calculations. We use realistic nucleon-nucleon interactions defined in the framework of the meson exchange
potential models. Our results are compared with other theoretical predictions and recent observational data.
Suggestions for further study are discussed.
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I. INTRODUCTION

One of the most important and challenging problems in both
theoretical and experimental nuclear physics is to understand
the properties of matter under extreme conditions of density
and pressure. The determination of the equation of state
(EOS), namely, the relationship between pressure and density,
associated with such matter is a nontrivial problem which
has attracted significant effort over the last few decades.
Concerning terrestrial systems, detailed knowledge of the
EOS is important, for instance, for understanding heavy-ion
collision dynamics. On the other hand, the EOS is crucial for
determining the properties of one of the most exotic objects
in the universe—neutron stars. Neutron star (NS) properties
depend on the knowledge of the EOS over a wide range of
densities—from the density of iron at the stellar surface up to
several times the density of normal nuclear matter in the core
region of the star [1].

Neutron stars are the smallest and densest stars known to
exist. Like all stars, neutron stars rotate—some at a rate of
a few hundred revolutions per second. Such a fast rotating
object will experience enormous centrifugal force which must
be balanced by another force, gravity in this case, to prevent
the star from falling apart. The balance of the two forces sets
the lower limit on the stellar density [2]. Some neutron stars
are in binary orbit with a companion, and, in some cases, the
application of orbital dynamics allows an assessment of the
masses to be made. So far, six neutron star binaries are known,
and all of them have masses in the range 1.36 ± 0.08M� [3].
Clearly, observations of NS masses and radii impose important
constraints on the EOS of dense matter, as the latter constitutes
the basic input quantity that enters the structure equations of a
neutron star [1,4,5].

Although considerable progress has been made, the EOS
of dense matter remains uncertain at densities above ρn �
3 × 1014 g/cm3 [6]. For the reason stated above, this places
uncertainty on the calculated NS properties. Determining the
high-density stellar matter EOS is a tremendous task. While
at densities ρ � ρ0 (ρ0 � 0.17 fm−3 is the normal nuclear
density), matter consists mainly of nucleons and leptons;
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at higher densities, several other species of particles are
expected to appear due to the rapid rise of the baryon chemical
potentials with density [7]. Among these are strange baryons,
such as the �,�, and � hyperons. In addition, pion-nucleon
resonances may appear in stellar matter along with pion and
kaon condensations. Moreover, at super high densities, nuclear
matter is expected to undergo a transition to quark-gluon
plasma. The value of the transition density may be obtained
from QCD lattice calculations at finite baryon densities, but it
is presently still uncertain [7].

After the first theoretical calculations of neutron star
properties performed by Oppenheimer and Volkoff [8] and
independently by Tolman [9], many theoretical predictions ap-
peared in literature. Nonrelativistic and relativistic approaches
have been used. A number of early theoretical investigations
on NS properties were done within the nonrelativistic Skyrme
framework. The reader is referred to the work of Douchin
and Haensel [10]. The conventional Brueckner theory with
a continuous choice for the single-particle potential and
three-body forces was applied in Ref. [11]. Numerous pre-
dictions allow hyperons together with nucleons and leptons in
generalized β equilibrium to be included in the stellar interior.
The Brueckner-Hartree-Fock (BHF) scheme was extended
to include these contributions [12,13] and applied in NS
calculations [7]. Since the Walecka model [14] was proposed
and applied to nuclear matter properties, the relativistic mean
field approach has been widely used in determining NS total
masses and radii [15,16]. The Dirac-BHF (DBHF) approach
was used to compute NS properties in Refs. [6,17].

In general, the EOS of stellar matter is considerably model
dependent and, as a result, predictions of NS properties are
quite different from model to model. Among the sources
of model dependence are [1] (1) the many-body framework
used to determine of the EOS, (2) the model used for the
bare nucleon-nucleon (NN ) interaction, (3) the kinds of
hadrons/leptons included in the description of electrically
neutral NS matter, (4) the treatment of pion and kaon
condensations, (5) including the effects of fast rotation, and (6)
allowing for a phase transition from confined hadronic matter
to deconfined quark matter. The possibility of such transition
has attracted great interest over the last 30 years [18–21]. It
is generally agreed that the high pressure found in the core
of a neutron star creates an ideal physical environment for
hadrons to transform into quark matter—a state of matter of
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practically infinite lifetime. Nevertheless, until recently, no
empirical evidence had been reported. To a certain extent,
this may signify that the occurrence (or not) of a transition
to quark matter in the NS interior has only a minor impact
on the overall static properties (range of possible masses,
radii, limiting rotational periods) of the star [1]. The situation,
however, could be completely different for the timing structure
of a pulsar (its braking behavior as it evolves) which is expected
to diverge significantly from the normal pulsar behavior if
the star converts a fraction of its core matter to pure quark
matter [1].

Recently, we have been concerned with probing the
behavior of the isospin-asymmetric EOS [22]. In our work
on neutron skins [23], we have studied applications of the
EOS at densities typical for normal nuclei. In Ref. [24], we
discussed the one-body potentials for protons and neutrons
from DBHF calculations of neutron-rich matter (in particular
their dependence upon the degree of asymmetry in proton
and neutron concentrations). More recently, we applied our
microscopic approach in calculations of effective in-medium
NN cross sections [25]. It is also important and timely to
look into systems that are likely to constrain the behavior
of the EOS at higher densities, where the largest model
dependence is observed. This is the main purpose of the
present paper, where we report predictions for masses and
radii of static (nonrotating) neutron stars. Aside from minor
adjustments, the framework is the one described in Ref. [22].
We apply a relativistic (DBHF-based) EOS and perform our
calculations for two distinct cases: (1) pure neutron matter,
and (2) baryon/lepton matter in β equilibrium. It is also
our objective to provide an overview of the present status
of both theory and experimental constraints. Together with
systematic calculations based on our microscopic model, this
broad outlook will help us gauge the quality of our tools and
determine the importance of potentially missing mechanisms.

This work is organized in the following way: after the
introductory notes in this section, we briefly review our
theoretical framework (Sec. II); the relativistic (DBHF-based)
EOS for both neutron matter and β-stable matter is discussed
in Sec. III; our numerical results are presented and discussed
in Sec. IV; we conclude in Sec. V with a short summary
and suggestions for further studies.

II. FORMALISM

To provide the reader with a self-contained report, in this
section we outline briefly the formalism used to derive the
isospin-asymmetric EOS. A more extensive discussion can be
found in Ref. [22] and references therein.

A. Realistic nucleon-nucleon interactions

The starting point of any microscopic calculation of nuclear
structure or reactions is a realistic free-space NN interaction.
A realistic and quantitative model for the nuclear force that has
a reasonable basis in theory is the one-boson-exchange (OBE)
model [26]. In this framework, bosons with masses below the
nucleon mass are typically included. The model we apply in the

present study consists of six bosons, four of which are of major
importance: (1) The pseudoscalar pion with a mass of about
138 MeV is the lightest meson and provides the long-range
part of the NN potential and most of the tensor force. (2) The
ρ vector meson has a 2π P -wave resonance with a mass of
about 770 MeV and spin 1. Its major role is to cut down the
pion tensor force at short range. (3) The ω vector meson has a
3π resonance of about 783 MeV and spin 1. It creates a strong
repulsive central force of short range and the short-ranged
spin-orbit force. (4) The isoscalar-scalar σ boson with a mass
of about 550 MeV. It provides the intermediate-range attraction
necessary for nuclear binding and can be understood as a
simulation of the correlated S-wave 2π exchange.

The mesons are coupled to the nucleon through the
following meson-nucleon Lagrangians for the pseudoscalar
(ps), scalar (s), and vector (υ) fields, respectively:

Lps = − fps

mps
ψ̄γ 5γ µψ∂µφ(ps), (1)

Ls = gsψ̄ψφ(s), (2)

Lυ = −gυψ̄γ µφ(υ)
µ − fυ

4m
ψ̄σµνψ

(
∂µφ(υ)

ν − ∂νφ
(υ)
µ

)
, (3)

with ψ the nucleon and φ(α)
µ the meson fields (notation and

conventions as in Ref. [27]). For isovector (isospin 1) mesons
(such as ρ and π ), ψ (α) is replaced by τ · φ(α), with τ the usual
Pauli matrices.

From the above Lagrangians, the OBE amplitudes can be
derived (see, for instance, Ref. [26]). The OBE potential is
defined as the sum of the OBE amplitudes of all exchanged
mesons.

In this work, we use the Bonn A, B, and C parametrizations
of the OBE potential formulated in the framework of the
Thompson equation. The main difference between these three
potentials is in the strength of the tensor force as reflected in the
predicted D-state probability of the deuteron PD [28]. Bonn
A has the weakest tensor force with PD = 4.5% (see Table 2
in Ref. [28]). The Bonn B and C potentials predict 5.1% and
5.5%, respectively. It is well known that the strength of the
tensor force is a crucial factor in determining the location of
the nuclear matter saturation point on the Coester band [29].

B. Conventional Brueckner theory

We review here the main steps leading to the self-consistent
calculation of the energy per particle in infinite nuclear matter,
with or without isospin asymmetry, within the BHF approach.
This is mainly to provide a baseline for the next subsection
where we describe its relativistic extension (which is the
method we actually apply). For a complete description of the
BHF method, the reader is referred to Refs. [30–32]. For a
review, see, for example, Ref. [26].

Nuclear matter is characterized by its total density or Fermi
momentum kF (and the degree of isospin asymmetry, in case of
unequal proton and neutron densities). With k1 and k2 being the
momenta of two nucleons with respect to nuclear matter, it is
customary to formulate the problem in terms of their relative
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momentum, K = 1
2 (k1 − k2), and one-half of the center-of-

mass momentum, P = 1
2 (k1 + k2). (Clearly, k1,2 = P ± K.)

The effective nucleon-nucleon interaction in nuclear matter
is described in terms of the reaction matrix, or the Brueckner
G matrix, which satisfies the in-medium scattering equation
(the Bethe-Goldstone equation)

Gij (P; K, K0) = Vij (K, K0) −
∫

d3K ′

(2π )3
Vij (K, K′)

×Qij (K′, P; kF )Gij (P; K′, K0)

ε∗
ij (P, K′) − (ε∗

ij )0(P, K0)
, (4)

where ij = nn, pp, or np, and the asterisk signifies that
medium effects are applied to these quantities. K0, K, and
K′ are the initial, final, and the intermediate momenta, respec-
tively. Vij is the two-body OBE potential briefly discussed in
the previous subsection. ε∗

ij is the energy of the two-nucleon
system, and (ε∗

ij )0 is the starting energy. Thus,

ε∗
ij (P, K) = e∗

i (P, K) + e∗
j (P, K), (5)

with e∗
i,j the total energy of a single nucleon in nuclear matter.

The G-matrix equation [Eq. (4)] is density dependent
because of the presence of the Pauli projection operator Q,
which prevents scattering into occupied states and is defined
as

Qij (K, P, kF ) =
{

1 if k1 > ki
F and k2 > k

j

F ,

0 otherwise.
(6)

Detailed expressions for the (angle-averaged) Pauli operator
can be found, for instance, in Ref. [22] for the case of unequal
proton and neutron Fermi momenta.

Equation (4) is density dependent also through the single-
particle energy,

e∗
i = Ti(p) + Ui(p), (7)

with Ti(p) the kinetic energy and Ui(p) the potential energy
due to the interaction of the nucleon with all the others in the
medium. We define

Ui(p) = 〈p|Ui |p〉 = Re


 ∑

q�kn
F

〈pq|Gin|pq − qp〉

+
∑

p�k
p

F

〈pq|Gip|pq − qp〉

 (8)

with |p〉 and |q〉 single-particle momentum, spin, and isospin
states. Schematically, Eq. (8) has the form

Un = Unn + Unp, (9)

Up = Upp + Upn, (10)

for neutrons and protons, respectively. Together with the
G-matrix equation, Eqs. (9) and (10) constitute a coupled,
self-consistency problem, which is solved using the “effective
mass approximation” [31].

To demonstrate the self-consistency procedure, we take the
nonrelativistic single-particle energy [31] and set

p2
i

2mi

+ Ui(pi) = p2
i

2m∗
i

+ U0,i , (11)

which amounts to parametrizing the potential Ui(p) in terms of
the nucleon effective mass m∗

i and the constant U0,i (i = n, p).
Equation (11) implies

Ui(p) = 1

2

mi − m∗
i

mim
∗
i

p2 + U0,i . (12)

Hence in the nonrelativistic case, the single-particle potential
Ui(p) has been fitted with a quadratic function of p. (The
subscript “i” signifies that the parameters are different for
neutrons and protons.) Starting with some initial values of m∗

i

and U0,i , the G-matrix equation is solved and a first solution
for Ui(p) is obtained. These solutions are then parametrized in
terms of a new set of constants, and the procedure is repeated
until convergence is reached (that is, until differences between
the parameters from successive iterations are within the desired
accuracy). Once the single-particle potential is available, we
calculate the (average) energy per particle (to lowest order in
the G matrix).

As is well known, nuclear matter calculations based on the
BHF approach fail to predict correctly the saturation properties
of nuclear matter. The typical trend is that the saturation density
is too high for reasonable energies. Different calculations
based on the conventional BHF approach differ somewhat in
their predictions of nuclear matter saturation properties, but
all of them fail to predict simultaneously the correct saturation
energy and density [26]. For this reason, it has become popular
to implement nonrelativistic calculations with contributions
from phenomenological three-body forces.

On the other hand, more than two decades ago physicists
realized that the explicit treatment of the lower component
of the Dirac spinor in the medium could provide the missing
saturation mechanism. This observation started what became
known as the DBHF approach. We review some of the main
points in the next section.

C. The Dirac-Brueckner-Hartree-Fock approach

For a detailed description see, for example, Refs. [33–35].
The essential point of the DBHF approach is to use the Dirac
equation for the single-particle motion in nuclear matter

(p/i − mi − Ui(p))ui(p, s) = 0, (13)

where the most general Lorentz structure for Ui(p) is approx-
imated as [33]

Ui(p) ≈ US,i(p) + γ0U
0
V,i(p). (14)

Here US,i is an attractive scalar field and U 0
V,i is the timelike

component of a repulsive vector field. The fields US,i and U 0
V,i

are in the order of several hundred MeV and strongly density
dependent [36]. With the definitions m∗

i (p) = mi + US,i(p)
and (p0

i )∗ = p0
i − U 0

V,i(p), the Dirac equation in nuclear
matter can be written as

(p/∗
i − m∗

i )ui(p, s) = 0. (15)
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The positive energy solution of Eq. (15) is given by

ui(p, s) =
(

E∗
i (p) + m∗

i

2m∗
i

)1/2
(

1
σ ·p

E∗
p,i+m∗

i

)
χS, (16)

with χS a Pauli spinor, and E∗
i (p) = (m∗

i
2 + p2)1/2. We notice

that this is formally identical to the free-space spinor, but with
mi replaced by m∗

i .
The single-particle potential is then calculated from the

operator given in Eq. (14) and properly normalized Dirac
spinors. Namely,

Ui(p) = m∗
i

E∗
i

〈p|US,i(p) + γ 0U 0
V,i(p)|p〉. (17)

The quantities US,i and U 0
V,i are momentum dependent, but to

a good approximation can be taken as constant [33,35]. Hence,
for the single-particle potential, one can write

Ui(p) = m∗
i

E∗
i (p)

US,i + U 0
V,i , (18)

which, as in Eq. (12), again amounts to parametrizing the
single-particle potential in terms of two constant quantities (for
each type of nucleon). In analogy with the usual Hartree-Fock
definition of the single-particle potential [see Eq. (8)], we also
write

Ui(p) = Re


 ∑

q�kn
F

m∗
i m

∗
n

E∗
i (p)E∗

n(q)
〈pq|gin|pq − qp〉

+
∑
q�k

p

F

m∗
i m

∗
p

E∗
i (p)E∗

n(q)
〈pq|gip|pq − qp〉


 ,

(19)

where gij satisfies the relativistic scattering equation

gij (P, K, K0) = ν∗
ij (K, K0) −

∫
d3K ′

(2π )3
υ∗

ij (K, K′)

×m∗
i m

∗
j

E∗
i E

∗
j

Qij (K′, P; kF )gij (P; K′, K0)

ε∗
ij (P, K′) − (ε∗

ij )0(P, K0)
.

(20)

Using the definitions Gij = m∗
i

E∗
i

gij
m∗

j

E∗
j

and V ∗
ij = m∗

i

E∗
i

υ∗
ij

m∗
j

E∗
j

,

Eq. (20) can be rewritten as

Gij (P; K, K0) = V ∗
ij (K, K0) −

∫
d3K ′

(2π )3
V ∗

ij (K, K′)

×Qij (K′, P; kF )Gij (P; K′, K0)

ε∗
ij (P, K′) − (ε∗

ij )0(P, K0)
, (21)

which is formally identical to the nonrelativistic G-matrix
equation (4). We are then in a situation that is technically
equivalent to the nonrelativistic case, except for the Dirac
structure of the single-particle energy. Namely, Eqs. (19) and
(21) [where the potential V ∗

ij is written in terms of in-medium
spinors, Eq. (16)] must be solved self-consistently for Gij and
the single-particle potential Ui(p) with the help of the chosen
parametrization, Eq. (18). We then proceed to calculate the
energy per particle.

In summary, the most significant difference between the
BHF and DBHF schemes is that in the latter case the nucleon
wave function is obtained self-consistently, while in the BHF
approach the free-space solution is used. This difference turns
out to be an important one; as a result of the reduced nucleon
mass in the medium, the lower component of the nucleon
spinor is larger than in free space. This is well known to
produce a density-dependent, repulsive many-body effect, with
the result that the predicted saturation density and energy
are consistent with the empirical values [33]. Physically, the
description of the nucleon in nuclear matter with a Dirac
spinor as in Eq. (16) can be regarded as effectively taking
into account some many-body force contributions [37] (hence,
the reduced need for inclusion of three-body forces in the
relativistic scheme).

D. Relativistic stellar structure equations

In this section we discuss the structure equations of static
(nonrotating) neutron stars. These are objects of such highly
compressed matter that the geometry of spacetime is changed
considerably from that of flat space. Thus, models of such
stars need to be constructed within the framework of general
relativity combined with theories of superdense matter. The
connection between these two branches of physics is provided
by Einstein’s field equations

Gµν = 8πGT µν(ε, P (ε)), (22)

which couple the Einstein curvature tensor Gµν to the energy-
momentum density tensor T µν of stellar matter. The tensor T µν

contains the equation of state in the form P (ε) (pressure P as
a function of the energy density ε), and G is the gravitational
constant.

Einstein’s field equations are completely general and simple
in appearance. However, they are exceedingly complicated
to solve because of their nonlinear character and because
spacetime and matter act upon each other. In only a few
cases can solutions be found in closed form. One of the most
important closed-form solutions is the Schwarzschild metric
outside a spherical star. Another is the Kerr metric outside a
rotating black hole.

Starting from Einstein’s field equations, one can derive
the structure equations of a static, spherically symmetric,
relativistic star. For an explicit treatment and derivation, see,
for example, the work of Fridolin Weber in Ref. [1]. These
equations are generally known as Tolman-Oppenheimer-
Volkoff (TOV) equations. In a system of units where c =
G = 1, the TOV equations can be written as

dP

dr
= −ε(r)m(r)

r2

[
1 + P (r)

ε(r)

]

×
[

1 + 4πr3P (r)

m(r)

] [
1 − 2m(r)

r

]−1

, (23)

dm(r)

dr
= 4πε(r)r2dr. (24)

To proceed to the solution of these equations, it is necessary
to provide the EOS of stellar matter in the form P (ε). Starting
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from some central energy density εc = ε(0) at the center
of the star (r = 0), and with the initial condition m(0) = 0,
the above equations can be integrated outward until the
pressure vanishes, signifying that the stellar edge is reached.
Some care should be taken at r = 0 since, as seen above, the
TOV equations are singular there. The point r = R where
the pressure vanishes defines the radius of the star, and
M = m(R) = 4π

∫ R

0 ε(r ′)r ′2dr ′ its gravitational mass.
For a given EOS, there is a unique relationship between the

stellar mass and the central density εc. Thus, for a particular
EOS, there is a unique sequence of stars parametrized by the
central density [or equivalently the central pressure P (0)].

In this work, we apply a standard fifth-order Runge-Kutta
numerical scheme [38] to integrate the TOV equations, which
are supplemented by the EOS in numerical form. In the next
section, we discuss the features of the EOS applied in this
study.

III. EQUATION OF STATE

We apply here the relativistic equation of state. For a
detailed discussion of the isospin-dependent EOS, we refer
the reader to Ref. [22]. In the present study, we calculate
neutron star properties considering either pure neutron matter
or asymmetric matter in β equilibrium.

A. Neutron matter EOS

The degree of isospin asymmetry is represented by the
asymmetry parameter, α = ρn−ρp

ρ
with ρn,p the neutron/proton

densities and ρ = ρn + ρp the total density. (Clearly, α = 0 for
symmetric nuclear matter, and α = 1 for pure neutron matter.)
The isospin-dependent EOS can be written as [22]

ē(kF , α) = (1 + α)ēn + (1 − α)ēp

2
(25)

with ēn,p the average energy per neutron/proton and ē(kF , α)
the energy per particle as a function of the total Fermi
momentum and the asymmetry parameter. The total Fermi
momentum kF is related to the total density ρ in the usual way

ρ = 2k3
F

3π2
. (26)

We start with showing the isospin-dependent EOS for
neutron and symmetric matter, see Fig. 1. In both cases,
predictions are shown for DBHF and BHF calculations and
all three NN potentials referred to in Sec. II A. For the case of
pure neutron matter (upper frame of Fig. 1), we see essentially
no differences among the predictions from the three potentials.
As already discussed, a main source of differences among
the three versions of the Bonn potential is in the strength
of the tensor force, which is mostly reflected in the (T = 0)
3S1 − 3D1 coupled states. In neutron matter (T = 1), however,
this partial wave does not contribute, and thus the model
dependence is dramatically reduced [39]. Consistent with these
observations, we see in symmetric matter significant differ-
ences among the three potentials, see lower panel of Fig. 1.
Notice that our EOSs are considerably more attractive than
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FIG. 1. (Color online) EOS for neutron (α = 1.0) and symmetric
matter (α = 0.0).

those shown in Ref. [26] and also calculated with Bonn A, B,
and C. For details on the differences between our respective
calculations, we refer the reader to Ref. [23].

For solving the TOV equations, one needs to compute
energy density and pressure, both of which are simply related
to the EOS. As previously outlined, in our self-consistent
calculation of the EOS we fit the single-particle potential
with its effective mass approximation. Although chosen on
reasonable theoretical grounds, the ansatz we use has a finite
domain of validity (for which reliable convergence of the
self-consistent procedure can be obtained). On the other hand,
for NS calculations, one needs to supply the relationship
between energy density and pressure over a very wide range of
densities. The EOSs at the lowest / highest densities have been
derived with different methods, usually coupling available
parametrizations of different EOSs [6,17]. Here, in an effort
to keep internal consistency as much as possible, we first
obtain nucleon effective masses by interpolating the available
predictions to the free-space value (to cover the small low-
density part, approximately ρ < 0.03 fm−3) and extrapolat-
ing to the higher densities (approximately ρ > 0.6 fm−3).
With the masses thus generated, we then proceed to the
usual (microscopic) calculation of the energy per particle
everywhere in the needed range. Notice that the calculation
of the G matrix, and ultimately of the energy per particle, can
proceed as long as effective masses are provided, because the
momentum-independent part of the single-nucleon potential in
Eq. (18) [or Eq. (12)] drops out from the energy denominator
in Eq. (4).

The effective masses are shown in Fig. 2 for both symmetric
and neutron matter. We note the weaker density dependence
at the higher densities, a behavior that is already reflected
in the self-consistent calculation and appears reasonable on
physical grounds. The nucleon effective masses originate from
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FIG. 2. (Color online) Effective nucleon masses in neutron
(α = 1.0) and symmetric (α = 0.0) matter as a function of density.
For α = 0.0, the solid (black), dotted (dark blue), and dashed
(light blue) curves correspond to Bonn A, B, and C, respectively.
No differences can be seen among the predictions from the three
potentials in the case of neutron matter.

the (attractive) scalar potential in the Dirac equation, which,
in turn, is sensitive mostly to the scalar meson σ . As density
increases, short-range contributions become dominant over
the intermediate-range attraction. This results in the observed
lesser sensitivity of the effective masses to increasing density.
(Further discussion on the high-density behavior of the EOS
will be presented in Sec. III C.)

The energy density ε is defined as

ε(ρ, α) = ρ
[
ē(ρ, α) + mfree

N

]
, (27)

where ē(ρ, α) is the energy per nucleon and mfree
N is the nucleon

rest mass. The pressure in nuclear matter is defined in terms
of the energy per particle and the baryon number density as

P (ρ, α) = ρ2 ∂ē(ρ, α)

∂ρ
. (28)

In the upper frame of Fig. 3 we show the energy density ε

as a function of the baryon number density ρ calculated with
the Bonn A, B, and C potentials. The pressure P as a function
of ρ is shown in the lower panel of Fig. 3. We also note
that our predictions are reasonably consistent with most recent
constraints on neutron and symmetric matter pressure obtained
through medium-energy heavy ion collisions [40]. For the
reasons discussed earlier, hardly any model dependence is seen
in the pure T = 1 system. Accordingly, very small differences
can be expected among the NS properties computed from pure
neutron matter using the three potentials under consideration.
(We reiterate that this is due to the relationship among
these potentials in particular, and does not imply model
independence in general.) Next we discuss the EOS for
β-stable matter.

B. β-stable matter EOS

The density dependence of the symmetry energy determines
the proton fraction in β equilibrium, and, in turn, the cooling
rate and neutrino-emitting processes.

First, we consider a system of nucleons and electrons only.
From the β-stability condition, the chemical potential of the
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FIG. 3. (Color online) EOS for pure neutron matter. Upper panel
shows the energy density, and the lower panel the pressure, as a
function of the baryon number density.

electrons is written as

µn − µp = µe. (29)

Deriving the EOS of β-stable matter requires knowing the
corresponding proton fraction, Yp = ρp

ρ
. The equilibrium par-

ticle concentrations, Yi = ρi

ρ
(i = e, n, p), can be calculated

via Eq. (29) combined with the charge neutrality condition
ρe = ρp (i.e., Ye = Yp) and ρ = ρn + ρp (i.e., 1 = Yn + Yp).
To compute the various chemical potentials,

µi = ∂etot

∂Yi

, (30)

we write etot as

etot(ρ, Yp, Yn, Ye) = ē(ρ, Yp) + ρp

ρ
mpc2 + ρn

ρ
mnc

2 + Ee

A
.

(31)

Here ē(ρ, Yp) is the energy per nucleon and Ee

A
is the

contribution to the total energy from the electrons. Similarly
to what is done in Ref. [41], we assume a simple model for
electrons and treat them as a gas of extremely relativistic
noninteracting fermions. That is, for electrons we set

c
(
p2 + m2

ec
2)1/2 ≈ pc, (32)

which appears reasonable since the electron mass me is small
compared to its chemical potential at typical nuclear density.
Integrating over all momentum states (and summing over spin
states), it is easy to show that the electron energy density (or
energy per volume) becomes

Ee

V
=

(
ke
F

)4

4π2
= (3π2ρYe)4/3

4π2
, (33)

where ke
F is the electron Fermi momentum.
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In Ref. [22], we verified that the energy per nucleon can be
written as

ē(kF , α) = ē(kF , 0) + esym(kF )α2, (34)

with ē(kF , 0) the energy per particle for symmetric matter and
esym the symmetry energy defined by

esym(kF ) = 1

2

∂2ē(kF , α)

∂2α

∣∣∣∣
α=0

. (35)

With the definition α = 1 − 2Yp, Eq. (34) becomes

ē(ρ, Yp) = ē
(
ρ, Yp = 1

2

) + esym(ρ)(1 − 2Yp)2. (36)

Thus, etot is written as

etot(ρ, Yp, Yn, Ye) = ē
(
ρ, Yp = 1

2

) + esym(ρ)(1 − 2Yp)2

+Ypmpc2+Ynmnc
2 + h̄c

(3π2Ye)4/3

4π2
ρ1/3,

(37)

where the last term can be obtained trivially from Eq. (33)
divided by the density. Knowing the total energy allows one to
evaluate the chemical potentials, which, in turn, are inserted
into Eq. (29) (combined with the constraint Yp = Ye) to give
a simple algebraic equation for Yp

− 4esym(ρ)(1 − 2Yp) + (mp − mn)c2 + h̄c(3π2ρ)1/3Y 1/3
p = 0.

(38)
The solution of this equation is inserted into Eq. (36) to provide
the EOS of nuclear matter in β equilibrium with electrons.

Just above the density of normal nuclear matter, the electron
chemical potential µe exceeds the muon mass mµ and the
reaction n ↔ p + µ− becomes energetically allowed [42].
Under these circumstances, the β-stability condition and
charge neutrality require

µe = µµ, (39)

and
ρp = ρe + ρµ, (40)

and thus, Yp − Ye − Yµ = 0. Equation (31) needs to be
modified to include the muon contribution to the total energy,

etot(ρ, Yp, Yn, Ye, Yµ) = ē(ρ, Yp) + Ypmpc2 + Ynmnc
2

+Ee

A
+ Eµ

A
. (41)

We will treat muons as a gas of noninteracting nonrela-
tivistic fermions [43], a reasonable approximation given the
relatively large muon mass (compared to its Fermi momentum
at typical muon concentrations in β equilibrium). It can then
be shown that the muon energy density is [2]

Eµ

V
≈ ρµmµ + (3π2ρµ)5/3

10π2mµ

(42)

(in units where c = h̄ = 1). Thus, Eq. (41) becomes

etot(ρ, Yp, Yn, Ye, Yµ) = ē
(
ρ, Yp = 1

2

) + esym(ρ)(1 − 2Yp)2

+Ypmpc2 + Ynmnc
2

+ h̄c
(3π2Ye)4/3

4π2
ρ1/3 + Yµmµc2

+ (h̄c)2

2mµc2

(3π2Yµ)5/3

5π2
ρ2/3, (43)

where the muon contribution to the total energy per particle
is obtained from Eq. (42) divided by ρ. As done in the
case of nucleons and electrons only, evaluating the chemical
potentials, combined with Eqs. (39) and (40), leads to the
following algebraic equations for the equilibrium particle
concentrations (Yi):

− 4esym(ρ)(1 − 2Yp) + (mp − mn)c2+ h̄c(3π2ρ)1/3Y 1/3
e = 0,

(44)

mµc2 + (h̄c)2 (3π2)5/3

6π2mµc2
ρ2/3Y 2/3

µ − h̄c(3π2ρ)1/3Y 1/3
e = 0,

(45)

Yp − Ye − Yµ = 0. (46)

Once Yp is obtained from the above equations, it is inserted
in Eq. (36) to provide again the EOS of β-stable matter. The
energy density of baryon/lepton matter in β equilibrium is then
used as the new input for the TOV equations .

In Fig. 4, we compare EOSs for neutron matter and β-stable
matter (for both e− and e− plus µ− cases), obtained with the
Bonn B potential. We observe only very small differences
among the various predictions, although the β-stable EOSs
are slightly “softer” than the one for pure neutron matter
(at intermediate densities), a trend that is independent of the
particular NN potential being used. This is to be expected,
since a system with some T = 0 component is generally more
attractive (mostly through the 3S1 partial wave) than a pure
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FIG. 4. (Color online) EOS for neutron matter and baryon/lepton
matter in β equilibrium. Predictions are obtained with the
Bonn B potential. Upper panel shows the energy density, and the
lower panel the pressure, as a function of the baryon number density.
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FIG. 5. (Color online) Symmetry energy esym and proton fraction
in β equilibrium YP . Upper panel shows the symmetry energy, and
the middle/lower panels the proton fraction, as a function of density.

T = 1 system. This point will be looked at more closely in the
next subsection.

The symmetry energy and proton fraction in β-stable matter
are displayed in Fig. 5. We observe that the symmetry energy
(upper frame) tends to saturate and eventually it decreases
with density, a behavior qualitatively similar to the one seen
in the proton fraction (middle frame). From the lower panel of
Fig. 5, we see that the addition of muons increases the proton
fraction noticeably. In particular, the maximum proton fraction
increases from 0.11 to about 0.13 (with Bonn B). We recall
that a proton fraction larger than approximately 1/9 would
allow a critical cooling mechanism for the neutron star via
the direct URCA processes [44]. On the other hand, because
of the behavior of the predicted symmetry energy (the crucial
player in the determination of the proton fraction), our proton
concentrations remain very small, and thus the EOS is only
mildly impacted by the inclusion of leptons.

In Fig. 6, we show the different particle concentrations as a
function of density. The presence of muons becomes possible
only at higher densities, due to the energetic constraints
mentioned earlier. Also, their concentration remains substan-
tially below the electron fraction.
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FIG. 6. (Color online) Concentrations of various particle species
(Yi = ρi/ρ) in β-stable matter as a function of the baryon number
density in units of ρ0.

In closing this section, we stress that the high-density
behavior of the symmetry energy is very poorly constrained
and theoretically controversial, with different models often
yielding dramatically different predictions. A more detailed
discussion on this and related issues is presented next.

C. High-density equation of state and the meson model:
Further discussion

In this subsection, we take a more in-depth look at how the
observed features of the EOS and the symmetry energy can
be understood in relation to the physical components of our
model.

First, we observe that from Eq. (34) one can write

ē(kF , α = 1) − ē(kF , α = 0) = esym(kF ), (47)

which clearly displays the significance of the symmetry energy
as the energy shift between neutron and symmetric matter.
Thus, the behavior of esym reflects the relationship between
ē(kF , α = 1) and ē(kF , α = 0) as a function of density. What
we observe in the present calculation is that the energy per
particle in symmetric matter becomes more and more repulsive
with increasing density, eventually approaching the energy
of neutron matter. Within the meson model, this can be
understood in terms of the competing roles of the intermediate-
range attraction (provided by the scalar meson σ and the
iterated one-pion exchange) and the short-range repulsion
(generated by the vector meson ω), as we describe next.
Neutron matter is generally a more repulsive system because
it lacks the contribution from T = 0 waves, some of which are
very attractive at normal nuclear densities (hence, for instance,
the crucial role of the 3S1 state in nuclear binding). On the other
hand, as density increases, short-range repulsion becomes the
dominant contribution to the NN interaction. Furthermore, in
the DBHF calculations, the (repulsive) spin-orbit interaction
is strongly enhanced because of the relativistic effective mass
in the OBE potential. Therefore, keeping in mind that only
T = 1 states contribute to the energy of neutron matter while
both isospin states contribute to the energy of nuclear matter,
if major T = 0 partial waves become increasingly repulsive
at short distances, it is possible for the energy of symmetric
matter to grow at a faster rate and eventually approach the
neutron matter EOS. This is just what we observe in our
model, as can be seen from Fig. 7, where we compare the
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FIG. 7. (Color online) Energy per nucleon for neutron (α = 1.0)
and symmetric (α = 0.0) matter.

energy per particle in symmetric and neutron matter up to very
high densities. (These arguments also explain why the EOSs
for neutron matter and β-stable matter are very close to each
other, cf. Fig. 4.)

To explore this further as well as check internal consistency,
we performed some diagnostic tests and found that the
contributions to the average potential energy of symmetric
matter from only 1S0 are −18.75,−22.75, and 5.554 MeV at
kF = 1.4, 2.0, and 2.5 fm−1, respectively. Similarly, including
only the 3S1 and 3D1 states, we found (for the same Fermi
momenta) −18.74,−10.04, and 18.16 MeV. A correct way to
state the result of the above tests is to say that, in the presence
of repulsive forces only (a scenario simulated by the presence
of high density), nuclear matter would be a more repulsive
system than neutron matter (for the same kF ).

At some critical density, signaled by the symmetry energy
turning negative, it would then be possible for a pure neutron
system to become more stable than symmetric matter, a
phenomenon referred to as isospin separation instability [45].
Clearly, the value of such critical density depends upon the
relative degrees of attraction and repulsion in the particular
model under consideration. (Figure 5 suggests that in the
present model this would happen at densities well above ten
times nuclear matter density.)

It is of course possible that contributions not included in
our model would soften the EOS in such a way as to alter
the balance between the curves shown in Fig. 7 and, in turn,
the high-density behavior of the symmetry energy. This is
precisely among the aspects we wish to learn about through this
and future studies (namely, domain of validity of the meson-
theoretic picture, density dependence of the repulsive core,
etc.). Systematic calculations based not on phenomenology
but on a consistent theoretical framework (in spite of its
inherent limitations), together with stringent constraints, can
help achieve that purpose. Our main conclusion at this point
is that empirical constraints specifically on the high-density
behavior of the symmetry energy would provide some clear
and direct information on the short-range nature of the nuclear
force.

IV. RESULTS FOR NEUTRON STAR
TOTAL MASSES AND RADII

In Fig. 8, we show the total masses and radii versus the
stellar central density ρc. As expected in light of our previous
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FIG. 8. (Color online) NS total masses and radii. In all frames,
solid (black) curve corresponds to the DBHF calculation for pure
neutron matter, short-dashed (red) curve to the DBHF calculation
for β-stable matter of nucleons and electrons only, and long-dashed
(blue) curve to the DBHF calculation for nucleons, electrons, and
muons in β equilibrium.

discussion, the NS properties computed from the EOS of
neutron matter are essentially the same for all three potentials
applied here. Consistent with the observations contained in
Sec. III C, the β-stable matter EOS, being only slightly softer
than the pure neutron matter EOS, yields similar predictions,
although radii tend to be smaller at higher central densities. In
summary, the neutron matter EOS from DBHF calculations
yields a maximum mass Mmax � 2.25M� at radius R �
11.01 km and central density ρc � 0.98 fm−3. The relativistic
EOS for β-stable matter yields maximum masses in the range
Mmax ≈ (2.238–2.241)M� at radii R ≈ 10.74–10.87 km and
central densities ρc ≈ 0.998–1.013 fm−3. Including muons in
the description of β-stable matter does not alter significantly
the predicted NS properties from the electrons-only case.
Table I provides an overview of our predictions. Figure 9
displays the mass-radius relation for the NS models shown
in Fig. 8.

Before we proceed with our discussion, we recall (see
Sec. III) that an extrapolation is applied to the nucleon effective
mass at those densities where a self-consistent solution for
the single-particle potential is not available. Of course, every
numerical extrapolation/interpolation involves uncertainties of
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TABLE I. NS maximum masses, radii, and central densities (from
DBHF calculations).

Potential model Composition Mmax(M�) R(km) ρc(fm
−3)

Bonn A n 2.2456 11.00 0.979
Bonn B n 2.2453 11.01 0.979
Bonn C n 2.2439 11.02 0.978

Bonn A n, p, e− 2.2414 10.78 1.007
Bonn B n, p, e− 2.2413 10.83 1.002
Bonn C n, p, e− 2.2399 10.87 0.998

Bonn A n, p, e−, µ− 2.2401 10.74 1.013
Bonn B n, p, e−, µ− 2.2399 10.79 1.008
Bonn C n, p, e−, µ− 2.2384 10.83 1.003

some degree. To investigate to what extent the NS properties
are sensitive to variations of m∗, we performed numerous
tests, all of which verify that the predicted NS masses and
radii are not affected significantly by moderate variations of
the nucleon effective mass. For instance, uncertainty of 20%
in the high-density effective mass results in approximately
2.9% variation in the NS maximum mass, 1.54% in the
radius, and about 0.31% in the central density [e.g., Bonn B,
DBHF, neutron matter: Mmax = (2.2457 ± 0.0659)M�, R =
11.001 ± 0.17 km, ρc = 0.979 ± 0.003 fm−3]. Very similar
conclusions apply for the case of β-stable matter. (Sensitivity
tests are performed in the following way: the highest density
mass in Fig. 2 is varied by up to 20% and the self-consistently
calculated values are then joined to it by interpolation. In this
way the applied mass variation increases gradually as we move
to higher densities, where the uncertainty should be largest.)

Our findings are generally consistent with previous ones
obtained from similar theoretical frameworks [6,11,17]. In
Ref. [6], for instance, both BHF and DBHF approaches
are used together with the Bonn A potential. Using the
relativistic EOS, the authors predict a maximum mass Mmax ≈
2.37M� with a radius R ≈ 12.2 km at a central density
of ρc ≈ 0.8 fm−3. We must keep in mind that the radius
of a neutron star is mostly sensitive to the difference in
pressure between neutron and symmetric matter [46] (the same
mechanism that pushes neutrons out in the skin of a large
nucleus). We also recall that, although our EOSs are rather
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FIG. 9. (Color online) Mass-radius relation. Curves are labeled
as in Fig. 8.

repulsive (a feature generally shared by DBHF predictions),
for the reasons discussed in Sec. III C, the symmetry energy
does not keep on growing with increasing density. As a conse-
quence, the radii we predict are smaller than, for instance,
those reported in Ref. [6]. From Fig. 9, we observe that our pre-
dictions are compatible with recent findings from analysis of
heavy-ion collision observables [46] which constrain the ra-
dius of a 1.4M� neutron star to be between 11.5 and 13.6 km.

The ultimate upper limit of the NS mass can be deduced
theoretically on the basis [47] that (1) general relativity is
the correct theory of gravity, (2) the EOS of stellar matter
is known below some matching density, and (3) the EOS of
NS matter satisfies both (i) the causality condition ∂P

∂ε
� c2

and (ii) the microscopic stability condition ∂P
∂ε

� 0 (known as
Le Chatelie’s principle). Under the above assumptions, the
upper mass limit was found to be 3.2M�. It is generally
accepted that stars with masses above 3.2M� collapse to black
holes. On the other hand, there is a practical theoretical lower
limit for the NS gravitational mass. The minimum possible
mass is evaluated to be about (1.1–1.2)M� and follows from
the minimum mass of a proto-neutron star. This is estimated by
examining a lepton-rich configuration with a low-entropy inner
core of approximately 0.6M� and a high-entropy envelope
[48]. This argument is in general agreement with the theoretical
results of supernova calculations in which the inner collapsing
core material comprises at least 1.0M� [49].

On the experimental side, the masses of neutron stars
are mainly deduced by observations of NS binary systems.
Precise measurements of the masses of the binary pulsar
PSR 1936 + 16 yield 1.344M� and (1.444 ± 0.008)M� [50].
Recently a few other binary pulsars have been observed, all
having masses in the narrow range (1.35 ± 0.04)M� [3]. In
addition, several x-ray binary masses have been measured to
be well above the average of 1.4M�. The nonrelativistic pulsar
PSR J1012 + 5307 is believed to have a mass of approximately
(2.35 ± 0.85)M� [51]. Also, the mass of the Vela X-1 pulsar
has been deduced to be approximately (1.9 ± 0.2)M� [52].
Another object of the same type is Cygnus X-2 with a mass of
(1.78 ± 0.23)M� [53]. More recently, the mass of the binary
millisecond pulsar PSR J0751 + 1807 has been measured (by
relativistic orbital decay) to be (2.1 ± 0.2)M� [54], which
makes this neutron star the most massive ever detected.

Although accurate masses of several neutron stars are
available, precise measurements of the radii are not yet
available. (As mentioned earlier, terrestrial nuclear laboratory
data are presently being used to obtain constraints on NS
radii.) It has been shown that the causality condition can be
used [55] to set the lower limit of the radius to about 4.5 km.
In general, estimates of NS radii from observations have given
a wide range of results. Perhaps the most reliable estimates
can be done on the basis of thermal emission observations
from neutron star surfaces which yield values of the so-called
radiation radius

R∞ = R(
1 − 2GM

Rc2

) 1
2

, (48)

a quantity related to the redshift of the star’s luminosity and
temperature [49]. The authors of Ref. [56] give values of
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R∞ � 9.5 km for a black-body source and R � 10.0 km for
an object with a magnetized H atmosphere. The quasiperiodic
oscillations discovered from x-ray emitting neutron stars in
binary systems provide a possible way of constraining the
NS masses and radii. Einstein’s general relativity predicts
the existence of a maximum orbital frequency which yields
a mass of approximately 1.78M� at a radius of about 8.86 km.
Including corrections due to stellar rotation induces small
changes in these numbers [57]. Recently, a radio pulsar
spinning at 716 Hz, the fastest spinning neutron star to date,
has been discovered [58]. The authors of Ref. [58] conclude
that if the pulsar has a mass less than 2M�, then its radius
is constrained by its spin rate to be <16 km. Finally, the
latest observations from EXO 0748-676 are reported to be
consistent with the constraints 2.10 ± 0.28 M� and 13.8 ±
1.8 km for mass and radius, respectively, which favor relatively
stiff equations of state [60].

In view of the above survey of presently available ex-
perimental constraints and/or estimates, we may conclude
that our relativistic predictions are reasonable, although our
values for the maximum masses are on the high side of the
presently accepted range. On the other hand, it must be kept in
mind that mechanisms not included in the present calculation
but generally agreed to take place in the star interior would
further soften the EOS, thus decreasing the computed NS
mass and radius. Among these mechanisms are pion and kaon
condensations, increase in the hyperon population due to rising
chemical potentials with density, and transition to quark matter.
All these phenomena tend to lower the energy per particle
and decrease the NS mass and radius while raising the stellar
central density. Considering the effect of rotation in the NS
properties calculation would increase the mass (by about 15%),
and so this repulsive contribution may be in part “cancelled”
by any of the attractive mechanisms mentioned above. In
summary, it seems that the inclusion of additional degrees
of freedom would, overall, move our DBHF predictions in the
right direction. Our conclusions are summarized in the next
section.

V. CONCLUSIONS

We have presented systematic calculations of NS limiting
masses and radii using relativistic EOSs. We have considered
the case of pure neutron matter and nuclear matter in
β equilibrium. The NS properties obtained in each case are
very similar to each other, a behavior closely related to
the predicted density dependence of the symmetry energy
and the proton fraction in chemical equilibrium. The present
analysis helped us establish a clear correlation between the
high-density behavior of the symmetry energy and the nature
of the repulsive core as it manifests itself in specific partial

waves. We have discussed this issue in considerable detail and
stressed the importance of reliable experimental information
to set stringent constraints for theoretical predictions of the
symmetry energy at high density.

After overviewing presently available empirical informa-
tion, we conclude that our DBHF-based predictions of NS
maximum masses are somewhat high, indicating that repulsion
in the high-density EOS should be reduced (again, keeping
in mind that the difference in pressure between neutron and
symmetric matter will primarily control the radii).

It is likely that other mechanisms, not included in the
present hadronic model, may take place in the stellar interior
which are likely to soften the EOS. Pions and kaons may be
likely to condensate in the interior of neutron stars [59–62].
It is generally agreed that pion/kaon populations increase
the proton fraction and might cause a rapid cooling via the
direct URCA process. The stellar matter EOS could soften
considerably due to pion/kaon condensations, since these
mechanisms tend to lower the symmetry energy. In addition,
at higher densities, different species of hyperons appear in
the NS composition which also results in a softening of the
stellar matter EOS. The expected transition to quark matter at
higher densities would lower the energy and soften the EOS.
Therefore, the present set of results gives us confidence that
our relativistic microscopic approach is a reasonable baseline
from which to proceed.

Another important issue is the effect magnetization may
have on the EOS, namely, how the energy per particle changes
if matter in the stellar interior becomes spin polarized. As a
next step toward a better and more complete understanding
of the physics of neutron stars, we are presently extending
our framework to include the description of spin-polarized
neutron/nuclear matter.

Finally, the observations of compact stars will be greatly
improved in the future by the square kilometer array (SKA).
The SKA is an internationally sponsored project with the
goal of constructing a radiotelescope with a total receiving
surface of one million square meters. The SKA is a facility
with a potential to detect from 10 000 to 20 000 new pulsars,
more than 1000 millisecond pulsars, and at least 100 compact
relativistic binaries [63]. These future endeavors will provide
a tool capable of probing the NS matter EOS at the extreme
limits.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the
U.S. Department of Energy under Grant No. DE-FG02-
03ER41270.

[1] F. Weber, Pulsars as Astrophysical Laboratories for Nuclear
and Particle Physics (IOP, Bristol, 1999).

[2] N. K. Glendenning, Compact Stars, Nuclear Physics, Particle
Physics, and General Relativity (Springer-Verlag, New York,
1997).

[3] S. E. Thorsett and D. Chakrabarty, Astrophys. J. 512, 288 (1999).

[4] P. Wang, S. Lawley, D. B. Leinweber, A. W. Thomas,
and A. G. Williams, Phys. Rev. C 72, 045801
(2005).

[5] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs,
and Neutron Stars, The Physics of the Compact Objects (Wiley,
New York, 1983).

025808-11



P. G. KRASTEV AND F. SAMMARRUCA PHYSICAL REVIEW C 74, 025808 (2006)

[6] G. Bao, L. Engvik, M. Hjorth-Jensen, E. Osnes, and E. Østgaard,
Nucl. Phys. A575, 707 (1994).

[7] M. Baldo, G. F. Burgio, and H.-J. Schulze, Phys. Rev. C 61,
55801 (2000).

[8] J. Oppenheimer and G. Volkoff, Phys. Rev. 55, 374 (1939).
[9] R. C. Tolman, Phys. Rev. 55, 364 (1939).

[10] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151 (2001).
[11] M. Baldo, G. F. Burgio, H. Q. Song, and F. Weber, in Proceeding

International Workshop XXVI on Gross Properties of Nuclei
and Nuclear Excitations, Hirshegg, Austria, Jan. 11–17, 1998
(unpublished).

[12] M. Baldo, G. F. Burgio, and H. -J. Schulze, Phys. Rev. C 58,
3688 (1998).

[13] H.-J. Schulze, A. Lejeune, J. Cugnon, M. Baldo, and
U. Lombardo, Phys. Lett. B355, 21 (1995); H. J. Schulze,
M. Baldo, U. Lombardo, J. Cugnon, and A. Lejeune, Phys. Rev.
C 57, 704 (1998).

[14] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).
[15] S. F. Ban, J. Li, S. Q. Zhang, H. Y. Jia, J. P. Sang, and J. Meng,

Phys. Rev. C 69, 045805 (2004).
[16] S. Lawley, W. Bentz, and A. W. Thomas, Nucl. Phys. Proc.

Suppl. 141, 29 (2005).
[17] K. Sumiyoshi, K. Oyamatsu, and H. Toki, Nucl. Phys. A595,

327 (1995).
[18] T. Endo, T. Maruyama, S. Chiba, and T. Tatsumi, Int. Summer

School and Workshop on Hot Points in Astrophysics and Cos-
mology, Dubna, Russia, August 2–13, 2004; hep-ph/0502216.

[19] G. F. Burgio, Nucl. Phys. A749, 337 (2005).
[20] G. F. Burgio, M. Baldo, P. K. Sahu, and H. -J. Schulze, Phys.

Rev. C 66, 025802 (2002).
[21] S. Pal, M. Hanauske, I. Zakout, H. Stöcker, and W. Greiner,
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