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Pentaquark �+ production via γ N → K̄ ∗�+(3/2±)
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We study the photoproduction of the exotic pentaquark �+ baryon with the vector kaon, assuming that the
quantum numbers of the �+ to be J P = 3/2± and J P = 1/2+. Scalar meson κ(800) exchange is also taken into
account. In contrast with the γN → K̄�+(3/2±) process, the large suppression from the proton target is not
observed in the total cross sections. We also suggest a method to determine which meson exchange is the most
dominant by analyzing the polarizations of incident photon and outgoing K∗. We find that κ exchange turns out
to be prominent when the polarizations of the photon and K∗ are aligned to be parallel, whereas K exchange
predominates when they are perpendicular to each other.
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I. INTRODUCTION

Since Diakonov et al. predicted the mass and width of the
pentaquark baryon �+ [1], there has been a great deal of
works to clarify its existence and properties. Although various
experiments have reported the existence of �+ after the first
observation by the LEPS collaboration [2], the situation is not
yet settled down primarily due to the relatively low statistics
of the low-energy experiments. Furthermore, in almost all
high-energy experiments, the �+ has not been seen (see, for
example, a recent review [3–5] for the compilation of the
experimental results).

Recently, the CLAS collaboration has reported null results
for finding the �+ in the reactions γp → K̄0K+n [6], γ d →
p̄K−K+n [7], and γ d → �̄nK+ [8]. The upper limits of the
cross sections of producing �+ were estimetaed to be, for in-
stance, σ (γp → K̄0�+) ∼ 0.8 nb, σ (γ n → K̄−�+) ∼ 3 nb.
Though these experiments had high statistics, their results
do not yet lead to the absence of �+ immediately, because
the updatd positive evidences also seem rather convincing. In
the LEPS, they observe a peak for the �+ in the reaction
γ d → �̄(1520)nK+ [9] when the �(1520) is detected in
the forward angle region. DIANA reported further evidence
in the reaction K+n → K0p on a neutron bound in the
Xenon nucleus [10]. The statistical significance of the DIANA
measurement is 4.3 ∼ 7.3 σ . Moreover, KEK-PS E522 exper-
iment has reported a measurement of the �+ via the reaction
π−p → K−X [11], although the statistical siginificance is not
large enough.

Experimentally, the two similar experiments from CLAS
and LEPS are not in contradiction, because they measure
different regions; CLAS detects final particles in the region
where the scattering angle is not small, whereas the LEPS
observes the forward angle region, and their measuring regions
have little overlap.
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Theoretically, it was suggested that the production rate of
the �+ from the proton target is considerably suppressed as
compared to the case of the neutron target, if the spin of �+

is 3/2 [12]. Furthermore, in this case, the cross section of
the neutron target that is larger than the proton case is strongly
forward peaking. These may explain the different observations
of the CLAS and LEPS. Interestingly, a similar suppression is
found in the �(1520) photoproduction [13], though in this case
the suppression takes place for the neutron target. Therefore,
it should be fair to say that the existance of the �+ is not yet
excluded.

Motivated by the previous work [13], we continue to
investigate the �+ photoproduction with the vector kaon
K∗, based on the effective Lagrangian approach with phe-
nomenological form factors. Here, we consider the cases with
JP = 3/2± and JP = 1/2+ for the �+ baryon. Scalar meson
κ(800, 0+) exchange is also taken into account, in addition
to pseudoscalar K and vector K∗ exchanges. We note that
κ exchange in the t channel does not appear in the γN → K̄�+
reaction process because the γ κK coupling is not allowed [12],
whereas κ exchange is possible in the present reaction process
according to the existence of the γ κK∗ coupling. The role
of κ may be interesting if it is dominated by a tetraquark
component that has been suggested to have a strong coupling
to exotic baryons [14].

One of the interesting features of the present reaction
process is that there are two polarizations in the initial and
final states: the polarizations of the incident photon and the
outgoing K∗. By making a proper combination of these two
polarizations, one can determine which meson exchange in the
t channel dominates the reaction process.

The outline of the present work is as follows: In Sec. II, we
define the effective Lagrangians for the γN → K̄∗�+(3/2±)
reaction and calculate the invariant amplitudes with phe-
nomenological form factors. The numerical results are given
and discussed for the �+(3/2±) and �+(1/2+) in Sec. III.
Section IV is devoted to a reaction analysis via the photon
and K∗ polarizations. We summarize our results and draw
conclusions in the final section.
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FIG. 1. Born diagrams calculated in the effective Lagrangian
approach. P/V/S in the t channel stand for the pseudoscalar kaon,
vector kaon, and scalar κ exchanges, respectively.

II. FORMALISM

We investigate the reaction γN → K̄∗�+ at the tree level,
i.e., in the Born approximation. The relevant Feynman dia-
grams are drawn in Fig. 1, where we define the four-momenta
of the particles involved in the process. For convenience, we
denote the spin 3/2 and 1/2 �+ with the subscripts 3 and 1,
respectively.

The effective Lagrangians pertinent to the present work are
given as follows: First, we consider the vertices of photon-
meson-meson couplings:

LγKK∗ = gγKK∗εµνσρ(∂µAν)(∂σK)K∗ρ + h.c., (1)

LγK∗K∗ = ie[K∗†
ν (∂µK∗ν) − K∗

ν (∂µK∗†ν)]Aµ, (2)

where K,K∗, and Aµ denote the pseudoscalar kaon, vector
kaon, and photon fields, respectively. We employ the effective
Lagrangian taken from Refs. [15–18]. Note that to maintain
gauge invariance of the reaction amplitudes, we introduce a
vector-meson exchange model using the γK∗K∗ vertex as
shown in Eq. (2), which was suggested by Refs. [19,20]. This
vertex represents three vector particle coupling that manifests
the nature of the non-Abelian gauge fields.

The baryon electromagnetic couplings for the nucleon and
the spin 3/2 and 1/2 �+ are defined as follows:

LγNN = −eN̄

[
/A + κN

4MN

σµνF
µν

]
N + h.c., (3)

Lγ�1�1 = −e�̄1

[
/A + κ�

4M�

σµνF
µν

]
�1 + h.c., (4)

Lγ�3�3 = −e�̄
µ

3 gµν

[
/A + κ�

4M�

σσρF
σρ

]
�ν

3 + h.c., (5)

where N,�
µ

3 , and �1 stand for the nucleon, the spin 3/2
Rarita-Schwinger (RS) �+ [21] and spin 1/2 �+, respectively.
The same structures of the Lagrangians are used for the
nucleon and spin 1/2 �+ [Eqs. (3) and (4)]. Following
Ref. [22], we construct the effective Lagrangian for the
electromagnetic coupling of the spin 3/2 �+ in Eq. (5).
Here, being different from Ref. [22], because the electric
quadrapole (E2) and magnetic octupole (M3) form factors
are expected to be small, compared to the charge and magnetic
dipole form factors of spin 3/2 baryons, we consider only the
E0 and M1 electromagnetic interactions. Concerning other
possible structures of the electromagnetic couplings, it is worth

mentioning that, as indicated in Ref. [21], the electromagnetic
coupling for the spin 3/2 �+ can be reconstructed equivalently
with the terms such as �̄µFµν�

ν and others.
The K(K∗)N� vertices for the spin 3/2 and 1/2 �+

baryons are defined as follows [13,23]:

LKN�3 = gKN�3

MK

�̄
µ

3 ∂µK�5N + h.c., (6)

LKN�1 = igKN�1�̄1�5γ5KN + h.c., (7)

LK∗N�3 = − igK∗N�3

MK∗
�̄3,µγνF

µν

K∗ �5γ5N + h.c., (8)

LK∗N�1 = gV
K∗N�1

�̄1γµ�5K
∗µN − gT

K∗N�1

2(M� + MN )

× �̄1�5σµνF
µν

K∗ N + h.c., (9)

where �5 denotes 14×4 in the positive-parity and γ5 for the
negative-parity �+, respectively, for both cases of the spin 3/2
and spin 1/2. F

µν

K∗ stands for ∂µK∗ν − ∂νK∗µ. As for the spin
1/2 �+, we consider only the pseudoscalar coupling scheme
for the KN� vertex due to the approximate equivalence
between the pseudoscalar and psedovector schemes [24].
On the contrary, only pseudovector (derivative) coupling is
possible for the case of the spin 3/2 due to the constraint
γµ�µ = 0. Concerning the K∗N� vertex of Eqs. (8) and
(9), we consider the Lagrangian structures that are necessary
minimally for maintaining the gauge invariance when we
construct reaction amplitudes. Note that, as for the spin 1/2
case, we have the vector and tensor terms in the Lagrangian of
Eq. (9). Here, we use the value of gT

K∗N�1
= |gV

K∗N�1
| as a trial

because no experimental data are available now. However, the
strength of gT

K∗N� can be estimated from the recent calculations
of the transition magnetic moment of γN8N

∗̄
10, where κγN8N

∗̄
10

was found to be 0 ∼ 0.5 [25–27]. Here, N ∗̄
10 is a nucleon

partner of the antidecuplet pentaquark. Assuming the vector
dominance and flavor SU(3) symmetry, we expect that the
ratio |gT

K∗N�/gV
K∗N�| is less than unity. Thus, our choice of

gT
K∗N�1

= |gV
K∗N�1

| can be almost its upper bound.
Finally, we introduce the photon coupling in the K∗N�

vertex by minimal substitution, ∂µ → ∂µ + iQ̂Aµ where Q̂ is
the charge matrix acting on the matter fields.

LγK∗N�3 = egK∗N�3

MK∗
�̄

µ

3 γ ν[AµK∗
ν − AνK

∗
µ]�5γ5N + h.c.,

(10)

LγK∗N�1 = − iegT
K∗N�1

2(M� + MN )

× �̄1�5σµν(AµK∗ν − AνK∗µ)N + h.c.. (11)

These interaction vertices are related to the Feynman diagram
of the contact term shown in Fig. 1. We note that the same
interactions of Eqs. (10) and (11) are obtained from the non-
Abelian terms of the covariant field tensor ∂µVν − ∂νVµ −
i[Vµ, Vν] with Vµ being an SU(3) vector meson field, and by
using the vector dominance.

In Table I, we list the parameters (elecgromagnetic and
strong couplings) that are used for numerical calculation.
The nucleon magnetic moments κN and the γK∗K coupling
constants are taken from experiments [28]. For gKN�, we
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TABLE I. Parameters of the couplings used in the numerical calculations.

κN gγKK∗ gKN�3 gV
K∗N�3

gKN�1 gV
K∗N�1

gT
K∗N�1

n −1.91 Neutral 0.388/GeV π (�) = +1 0.53 0.91 = 0.53
√

3 1
√

3
√

3
p 1.79 Charged 0.254/GeV π (�) = −1 4.22 2.0 — — —

assume ��→KN = 1 MeV and M� = 1540 MeV for both
spins 3/2 and 1/2 [28]. For gV

K∗N�, we assume the estimation in
the quark model gV

K∗N� = √
3gKN� for the positive-parity �+

[29], whereas we used the results of Ref. [30] for �+(3/2−).
As for the value of the anomalous magnetic moment of �+,
we set it to be unity for both spins as a trial. We show later
that the dependence on κ� is negligible, because the u-channel
contributions turn out to be very small. Because we verified
that the sign of gV

K∗N� does not influence much on the results
as shown in the previous work [12], we consider only the
plus sign form. The case of �(1/2−) is not studied because we
verified that it behaves very similarly to that of �(1/2+) except
for the only obvious difference in the order of magnitudes
being smaller by factor about 10 [24]. We note that in the
present work, we do not consider nucleon resonance (N∗)
contributions. In other words, we only take into account the
minimally possible reaction diagrams as shown in Fig. 1.

Thus, the reaction amplitudes for spin 3/2 (M3) and 1/2
(M1) can be written as follows. Furthermore, we have checked
that the amplitudes calculated from the Lagrangians satisfy the
Ward-Takahashi identity with the form factors:

iM3,s = − iegK∗N�

MK∗
ū(p2)[(k2 · ε�)/εK∗

− (ε� · εK∗ )k/2]�5γ5
(p/1 + MN )Fc + k/1Fs

q2
s − M2

N

k/1u(p1)

− ieκNgK∗N�

2MNMK∗
ū(p2)[(k2 · ε�)/εK∗ − (ε� · εK∗ )k/2]

×�5γ5
(q/s + MN )Fs

q2
s − M2

2

/εγ k/1u(p1),

iM3,u = − iegK∗N�

MK∗
ū(p2)/εγ

(p/2 + M�)Fc + k/1Fu

q2
u − M2

�

× [(k2 · ε�)/εK∗ − (ε� · εK∗ )k/2]�5γ5u(p1)

− ieκ�gK∗N�

2M�MK∗
ū(p2)/εγ k/1

(q/u + M�)Fu

q2
u − M2

� (12)× [(k2 · ε�)/εK∗ − (ε� · εK∗ )k/2]�5γ5u(p1),

iM3,t(P ) = −gγKK∗gKN�

MK

ū(p2)�5u(p1)

q2
t − M2

K

× [
(ε� · qt )εµνσρk

µ

1 εν
γ qσ

t ε
ρ

K∗
]
Ft ,

iM3,t(V ) = − iegK∗N�

MK∗
ū(p2)

2εγ · k2

q2
t − M2

k∗
[(qt · ε�)/εK∗

− (ε� · εK∗ )q/t ]�5γ5u(p1)Fc,

iM3,c = − iegK∗N�

MK∗
ū(p2)[(εγ · ε�)/εK∗

− (ε� · εK∗ )/εγ ]�5γ5u(p1)Fc

and

iM1,s = iegV
K∗N�1

ū(p2)/εK∗�5
(p/1 + MN )Fc + k/1Fc

q2
s − M2

N

× /εγ u(p2) + ieκNgV
K∗N�1

2MN

ū(p2)/εK∗�5

× (q/s + MN )Fs

q2
s − M2

N

k/1/εγ u(p2) + iegT
K∗N�1

2(M� + MN )

× ū(p2)�5(k/2/εK∗ − /εK∗k/2)
(p/1 + MN )Fc + k/1Fs

q2
s − M2

N

× /εγ u(p2) − ieκNgT
K∗N�1

4MN (M� + MN )
ū(p2)�5(k/2/εK∗

− /εK∗k/2)
p/1 + k/1 + MN

q2
s − M2

N

/εγ k/1u(p2)Fs,

iM1,u = iegV
K∗N�1

ū(p2)/εγ

(p/s + M�)Fc − k/1Fu

q2
u − M2

�

× /εK∗�5u(p1) + ieκ�gT
K∗N�1

4M�(M� + MN )
ū(p2)k/1/εγ

× (q/u + M�)Fs

q2
u − M2

�

/εK∗�5u(p1) + iegT
K∗N�1

2(M� + MN )
(13)

× ū(p2)/εγ

(p/2 + M�)Fc − k/1Fu

q2
u − M2

�

�5

× (k/2/εK∗ − /εK∗k/2)u(p2) − ieκ�gT
K∗N�1

4M�(M� + MN )

× ū(p2)k/1/εγ

p/2 − k/1 + M�

q2
u − M2

�

�5

× (k/2/εK∗ − /εK∗k/2)u(p2)Fu,

iM1,t(P ) = gKN�1gγKK∗
ū(p1)�5γ5u(p1)

q2
t − M2

K

εµνρσ k
µ

1 εν
γ ε

ρ

K∗q
σ
t Ft ,

iM1,t(V ) = −2iegK∗N�1 ū(p1)
k2 · εγ /εK∗�5

q2
t − M2

K∗
u(p1)Fc

+ ieκNgT
K∗N�1

M� + MN

ū(p2)�5(q/t/εK∗ − /εK∗q/t )

× k2 · εγ

q2
t − M2

K∗
u(p1)Fc,

iM1,c = iegT
K∗N�1

2(M� + MN )
ū(p2)�5(/εγ /εK∗ − /εK∗/εγ )u(p1)Fc.

The subscripts s, u, t(P ), t(V ), and c of M indicate s, u,
pseudoscalar K exchange, vector K∗ exchange, and the contact
term, respectively. qs = p1 + k1, qt = k1 − k2, and qu = p1 −
k2 are the momentum transfers for each kinematical channel.
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The Mandelstam variables s, t , and u are defined in a standard
way: s = q2

s , u = q2
u , and t = q2

t . For spin 3/2 �+, we need to
take into account Ms,E,M,Mu,E,M , and Mt(P ) for the proton
target and Ms,M,Mu,E,M,Mt(P ),Mt(V ), and Mc for the
neutron one, where E and M stand for the terms including
electric (proportional to e) and magnetic (proportional to
eκN,�) interactions. εγ and εK∗ are the polarization vectors of
the photon and the vector kaon, respectively. ε� is the spin-1
component of the Rarita-Schwinger field for the �+ [13]. We
simplify the spin 3/2 RS propagator by that of spin 1/2 baryon.
It was shown that this simplification worked qualitatively well
in the low-energy regions [13]. The evaluation of the invariant
amplitudes for the spin 1/2 is also performed similarly to that
of spin 3/2.

In the present work, we also take into account scalar meson
κ(800, 0+) exchange in addition to K and K∗ exchange. The
relevant effective Lagrangians are defined as follows:

Lγ κK∗ = gγκK∗FµνF
µν

K∗ κ,

LκN�3 = gκN�3

Mκ

�̄
µ

3 (∂µκ)�5γ5N, (14)

LκN�1 = igκN�1�̄1�5κN,

where κ indicates the scalar meson field with its physical
mass ∼800 MeV [28]. Because there is no information of the
coupling constants gγκK∗ and gκN�3 , we estimate them for
both the spin 3/2 and 1/2 �+ as follow as a trial:

gγκK∗ = |gγKK∗ | and gκN�3 = |gKN�3 |.
We note that the signs of these coupling constants are

unknown and not estimated by flavor SU(3) symmetry.
However, we verified that the signs of these coupling constants
do not make significant differences in the numerical results.
Hence, we consider only plus signs for the coupling constants.
The reaction amplitudes for κ exchange [t(S)] can be written
as follows:

iM3,t(S) = −2gγκK∗gκN�3

Mκ

ū(p2)�5γ5u(p1)

q2
t − M2

κ

[ε� · qt ]

× [(k1 · k2)(εγ · εK∗ ) − (εγ · k2)(k1 · εK∗ )]Ft(S),

(15)

iM1,t(S) = −2igγ κK∗gκN�1

ū(p2)�5u(p1)

q2
t − M2

κ

[(k1 · k2)(εγ · εK∗ )

− (εγ · k2)(K1 · εK∗ )]Ft(S).

As shown in Eqs. (12), (13), and (15), we employ the four-
dimensional form factors [13] defined as follows:

Fx(q2) = �4

�4 + (
x − M2

x

)2 , x = s, t(P/V/S), u,

Fc = Fu + Ft(V ) − FuFt(V ) for neutron, (16)

Fc = Fs + Fu − FsFu for proton,

where Mx is the mass of the interchanged particle in the
x channels. We verified that the inclusion of the form factor
maintains the gauge invariance. We make use of the cutoff
value � = 750 MeV as in Refs. [12,13].

III. NUMERICAL RESULTS

We present in this section the numerical results of the total
and differential cross sections, asymmetries, and momentum-
transfer t dependences for the neutron and proton targets. Here,
the asymmetry is defined as follows:

Asymmetry = (dσ/d�)⊥ − (dσ/d�)‖
(dσ/d�)⊥ + (dσ/d�)‖

. (17)

The notations ‖ and ⊥ in Eq. (17) stand for the photon
polarizations that are parallel and perpendicular to the reaction
plane, respectively.

In Fig. 2, we show various contributions to the total cross
sections for each kinematical channel separately as functions
of photon energy in the laboratory frame (Elab

γ ). The upper
two panels represent the results for the �+(3/2+), where
we see that the contact and psuedoscalar K-exchange terms
are main contributions for the neutron target, whereas the
K-exchange term dominates the reaction for the proton one.
Because the γK∗K coupling constants for the proton and
neutron targets differ by gγK0K̄∗0/gγK+K∗− ∼ 1.5, we obtain
the contribution of K exchange to the total cross sections for
the proton target about two times larger than the neutron
one. Being different from �+(3/2+), κ and K exchanges
govern the reaction for the �+(3/2−) as demonstrated in
the lower two panels. The total cross sections of K exchange
for �+(3/2−) becomes much larger than those of �+(3/2+)
due to the d-wave coupling for the KN�3 vertex. The
large contribution of κ exchange can be understood by that
we assumed larger coupling constants gκN� and gκγK∗ for
�+(3/2−) than those of �+(3/2+). However, even if we
ignore κ exchange, the qualitative tendency σ3/2+ < σ3/2− is
not altered, because K exchange is more dominant than the
contributions from the κ exchange. Moreover, though we can
see a difference of about two or three times in magnitudes of the
total cross sections between the neutron and proton targets, the
difference is much smaller than that of the �∗ photoproduction
associated with the pseudoscalar kaon as shown in the previous
work [12].

In Fig. 3 we show the total (upper left) and differential
(upper right) cross sections, the asymmetry (lower left) due to
the different photon polarizations and the momentum transfer
t dependence (lower-right) for �+(3/2+). The total cross
sections from the neutron (solid line) and proton (dashed
line) targets differ by little; the proton case is slightly larger
due to the ratio gγK0K̄∗0/gγK+K∗− ∼ 1.5. The differential cross
sections are calculated at two different photon energies, i.e.,
Elab

γ = 3.0 GeV (thin curves) and 3.5 GeV (thick curves).
The angle θ denotes the one between the incident photon and
outgoing K∗ in the center-of-mass frame. It is clearly shown
that the differential cross section in the forward direction is
strongly enhanced; it is mainly due to K exchange. We also
find that κ exchange increases the differential cross section
in the forward direction. The asymmetry behaves similarly
in general for the proton and neutron targets as shown in
the lower-left panel of Fig. 3. The sign of the asymmetry
is negative when K exchange dominates the process. The
momentum transfer t dependences are drawn in the lower-right
panel. The t dependences show again the strong enhancement
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FIG. 2. Various contributions to the total cross sections from different kinematical channels. The labels are defined by s (s channel),
u (u channel), t (P) (pseudoscalar kaon exchange in t channel), t (V) (vector kaon exchange in t channel), t (S) (scalar κ exchange in t channel)
and c (contact term). We show the four different cases, i.e., �+(3/2+) from the neutron (upper left) and proton (upper right) targets, and
�+(3/2−) from the neutron (lower left) and proton (lower right) ones.

in forward scattering. Also, we verified that the dependence
on the coupling constants gγκK∗ and gκN�3 is not significant,
because the contribution of κ [t(S)] is small as shown in the
upper-left panel of Fig. 2. Even for the case that we use
gγκK∗ = 2|gγKK∗ | and gκN�3 = 2|gKN�3 |, only 25% or less
difference appears in the order of magnitudes of the total cross
sections. Furthermore, other observables are not changed much
by this choice.

Now, we turn to the results for the �+(3/2−) depicted
in Fig. 4. The total cross sections turn out to be about
a few 10s of times larger than those for the �+(3/2+).
The angular distributions (differential cross sections and the
momentum transfer t dependence) are rather similar to those
for �+(3/2+), because the contributions of K and κ exchanges
enhance the forward scattering. However, the asymmetries
are distinguished clearly from the case of the �+(3/2+).
The asymmetries for the �+(3/2−) production are in general
positive when κ exchange dominates. However, if κ exchange
is switched off, the asymmetries becomes similar to those
for the �+(3/2+) production with negative sign due to
K exchange dominance, which indicates that κ exchange plays
a key role in distinguishing �+(3/2−) from the positive-parity
one.

We note that, however, the dependence on the couplings
of scalar κ in the case of the negative-parity is not ignored,
being different from the previous case of positive-parity.
This aspect can be easily verified by the curves shown in
the lower-left panel of Fig. 2 in which the κ exchange in
the t channel, t(S), is the dominant contribution. Thus, the
choice of gγκK∗ = 2|gγKK∗ | and gκN�3 = 2|gKN�3 | enhances
the magnitudes of the total cross sections by a factor more
than ∼10. For instance, we obtain ∼420 nb at Eγ = 3.0 GeV
for the �+(3/2−) photoprodution from the neutron target.
Despite the strong dependence on these coupling constants,
the angular distributions are not much affected and show
the strong forward enhancement. The asymmetry defined in
Eq. (17) becomes all positive for the neutron and proton
targets with a similar shape as shown in the lower-left panel of
Fig. 3.

From here, we compare the results of spin 1/2 �+ with
the spin 3/2 �+ photoproduction in Fig. 5. Here, we consider
only the case of the positive-parity �+, because the cross
sections for the negative-parity one are in general about
10 times smaller than those for the positive-parity �+ (see, for
example, Ref. [24]). However, we note that the contribution of
κ exchange was not considered in the former studies [24]. The
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FIG. 3. The total (upper left) and differential (upper right) cross sections, the asymmetry (lower right), and the momentum-transfer
t dependence (lower right) for �+(3/2+). The solid and dashed curves represent the results from the neutron and proton targets, respectively.
Thin curves denote those calculated at Elab

γ = 3.0 GeV, whereas thick ones stand for those at Elab
γ = 3.5 GeV.

total cross sections are of a few nanobarns similarly to and
slightly larger than that of �+(3/2+). We also observe that
the angular distribution is enhanced strongly in the forward
direction. The sign of the asymmetry depends on the type
of the target; for the proton target it is positive, whereas
for the neutron one negative. We have checked that the
contribution from the tensor terms proportional to gT

K∗N�1

makes the cross sections larger only by ∼10% [see Eq. (9)]
when gT

K∗N�1
= |gV

K∗N�1
|. It also turns out that the effects from

the tensor terms on the angular distribution and asymmetry are
negligible. However, again, rather strong dependence on the
coupling constants of gγκK∗ and gκN�3 are observed as shown
in the case of �+(3/2−). Especially, the asymmetry becomes
all positive having peaks at ∼70◦ for the neutron and proton.

IV. REACTION ANALYSIS VIA THE PHOTON AND
K ∗ POLARIZATIONS

Last but not least, we discuss the analysis of the polar-
izations of the photon and the vector K∗ meson. because
the K∗ meson can decay into the pseudoscalar kaon and
pion, it is possible to determine the polarization state of
K∗ by the measured azimuthal distribution of the kaon and
pion. By doing this, we can tell what meson exchange in the

present reaction plays a dominant role. Similar analysis can
be extended to other spin 3/2 as well as spin 1/2 baryon
productions.

For this purpose, we first fix the photon polarization to be
perpendicular to the reaction plane. Then, as clearly shown in
Eq. (13), the K∗ exchange contribution disappears, because
it is proportional to k2 · εγ , in which k2 and εγ denote
the outgoing K∗ momentum and photon polarization vector,
respectively. Now, let us set the polarization vector of K∗, εK∗ ,
to be parallel to the direction of εγ . In this case, examining
the εµνσρ structure of K exchange in Eq. (13), one can easily
see that the contribution of K exchange vanishes. Thus, as
shown in the panels on left side of Fig. 6, only κ exchange
survives for both the positive (in the upper panel of Fig. 6)
and negative (in the lower panel of Fig. 6 parity �+). We also
observe that κ exchange dominates the reaction even when
we include all channels, as depicted by the curve labeled
Total in Fig. 6. However, we note that the strengths of the
κ exchange contribution depends on the unknown κN� and
γ κK∗ coupling constants.

We now proceed to examine the case when the two
polarization vectors are perpendicular to each other. As in
the parallel case, the photon polarization vector is fixed to
be perpendicular to the reaction plane so that K∗ exchange
can be eliminated. The corresponding results are shown
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FIG. 4. The total (upper left) and differential (upper right) cross sections, the asymmetry (lower right), and the momentum-transfer
t dependence (lower right) for �+(3/2−). The solid and dashed curves represent the results from the neutron and proton targets, respectively.
Thin curves denote those calculated at Elab

γ = 3.0 GeV, whereas thick ones stand for those at Elab
γ = 3.5 GeV.

in the right side of Fig. 6. The amplitude of κ exchange
turns out to be zero, because the term in the bracket of
Eq. (15) vanishes. Therefore, the contribution comes only from
pseudoscalar K exchange. Experimentally, the comparison of
the two polarization combinations, εγ ⊥ εK∗ and εγ ‖ εK∗ ,
provide information of the strengths of the KN� and κN�

coupling constants.
The bump or the increase in the differential cross sections

for θ >∼ 60◦ as shown in the right side of Fig. 6 is mainly due
to the contact term contribution. The total contributions do not
differ much from the cases with the K-exchange contribution
only. Interestingly, the results for the two different parities
of �+ are rather similar each other except for the order of
magnitudes, because the polarization dependence arises only
from the structure of the γK∗M(K,K∗, κ) coupling, but not
from that of MN�+, which carries the information of the
parity of �+.

The polarization analysis of the photon and vector K∗ sheds
light on determining which meson exchange is dominant in the
present reaction. Though we do not show the results for the
�+(1/2+)-photoproduction explicitly here, we verified that
the similar conclusion was drawn. We notice that this analysis
may also be of great use in determining which meson is the
most prominent in general γN → M(1−)B reactions, because

the method discussed here is based only on the structure of the
photon-meson-meson vertices, but not of vertices including
baryons.

V. SUMMARY AND CONCLUSION

We have investigated the photoproduction of the exotic
pentaquark baryon �+ via the reaction process γN →
K̄∗�+, assuming that �+ has spin 3/2. The effective
Lagrangian approach was employed with phenomenologi-
cal form factors [12,13]. We used the coupling constant
for the K∗N�(3/2) vertex estimated from the constituent
quark model. We also considered scalar meson κ(800, 0+)
exchange. We assumed the following relations for the cou-
pling constants; gγκK∗ = gγKK∗ and gκN� = gKN� as a trial.
The main results of the present work are summarized in
Table II.

In the present work, we did not find large difference
between the total cross sections from the neutron and proton
targets, which is different from the conclusion of the previous
work of γN → K̄�+(3/2) [12]. The reason lies in the
fact that the contact term in the present case does not
provide a large contribution to the cross sections, compared
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FIG. 5. The total (upper left) and differential (upper right) cross sections, the asymmetry (lower right), and the momentum-transfer
t dependence (lower right) for �+(1/2+). The solid and dashed lines represent the results from the neutron and proton targets, respectively.
Thin lines are for the results calculated at Elab

γ = 3.0 GeV, whereas thick lines for done at Elab
γ = 3.5 GeV.

to other meson exchange. These differences between the
�+ photoproductions with the pseudoscalar K and with the
vector K∗ can be useful to determine the spin quantum number
of the �+ baryon. We estimated the total cross sections for the
present reaction qualitatively as follows: σ3/2+ ∼ 1.5 nb and
σ3/2− ∼ 50 nb for the energy regions of Eth <∼ Elab

γ
<∼ 3.5 GeV

for both the neutron and proton targets. We notice that there
is the model dependence due to the coupling constants of
κ exchange, in particular, in the case of �+(3/2−). However,
the tendency σ�+(3/2+) < σ�+(3/2−) is rather stable, because
psuedoscalar K exchange, which has less dependence on
the model parameters, is the most dominant contribution in
the present reaction.

In angular distributions, we observed a large enhance-
ment in the forward region due to the t-channel dominance

(K and κ exchanges) for both the spin 1/2 and spin 3/2 cases.
From these observations, we expect that in the laboratory
frame, there must be even stronger forward enhancement
for the outgoing K∗. The asymmetry shows relatively clear
difference between the positive and negative parities of the
�+(3/2), though there is one caveat: once we know the
strengths of the coupling constants gγκK∗ and gκN�. We also
compared the present results to those from the reaction with
the �+(1/2+).

Finally, an analysis was proposed to determine which
meson exchange is dominant in the t-channel, with the photon
and K∗ polarizations being explicitly considered. It was
observed that scalar meson κ exchange only survives when
the polarizations of the photon and K∗ are parallel. On the
contrary, when these polarizations are perpendicular to each

TABLE II. Main results of the �+-photoproduction via γN → K̄∗�+.

J P 3/2+ 3/2− 1/2+
Target

n p n p n p

σ at Elab
γ = 3.0 GeV ∼2.5 nb ∼3.2nb ∼40 nb ∼90 nb ∼4 nb ∼5.5 nb
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FIG. 6. Differential cross sections when the photon and K∗ are polarized in parallel (left) and perpendicular (right) to each other. We
consider the states of J P = 3/2+ (upper panels) and 3/2− (lower panels).

other, pseudoscalar K exchange turns out to be dominant.
This analysis may be applied to a general reaction γN →
M(1−)B.

We note that the coupling constants gγκK∗ and gκN�, being
important in the present investigation, are not known well.
Especially, the asymmetry is affected much by the different
choices of the coupling constants for the cases of �+(3/2−)
and �+(1/2+), whereas the cross sections are changed only
in the order of the magnitudes. Considering the rather small
values shown in Table II, it might be rather difficult to
observe a clear peak from the present reaction process in
the present experimental facilities. However, because we once
again observed strong forward scattering enhancement that
could be measured most appropriately by LEPS, it is expected

that different experimental setup may obtain sizable statistics
for the indication of �+ for the present reaction process.
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