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The α particle as a canonically quantized multiskyrmion
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The rational map approximation to the solution to the SU(2) Skyrme model with baryon number B = 4
is canonically quantized. The quantization procedure leads to anomalous breaking of the chiral symmetry,
and exponential fall-off of the energy density of the soliton at large distances. The model is extended to
SU(2) representations of arbitrary dimension. These soliton solutions capture the double node feature of the
empirical α particle charge form factor, but as expected lead to a too compact matter distribution. Comparison to
phenomenology indicates a preference for the fundamental representation.
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I. INTRODUCTION

The chiral topological soliton model developed by Skyrme
[1], which represents a dynamical realization of the large N
limit of QCD, describes many of the key qualitative features of
of baryons and nuclei [2–4]. The model describes baryons and
nuclei as spatially extended topologically stable solitons of
the chiral meson field. The soliton solutions of the equation of
motion are characterized by the winding number or topological
charge of the mapping S3 → S3, which is interpreted as the
baryon number B. Numerical study has shown that the shape
of the ground state field configuration for nuclei with B > 1
has an intriguing geometrical structure [5]. For B = 2 the
ground state solution is toroidal and for B = 4 the structure it
is octahedral. Higher baryon number solutions are associated
with more complicated symmetric polyhedral shapes. Such
shapes also appear as variational solutions to interaction part
of the nuclear Hamiltonian [6].

The rational map (RM) ansatz proposed for the SU(2)
Skyrme model in Ref. [7] provides a remarkably accurate
analytic approximation to the ground state solution of the
model. This ansatz preserves the essential symmetries of
the numerical solutions of the exact Skyrme model equations.
The identification of the topological number with baryon
number also leads to solitonic fullerene structures in light
atomic nuclei [8]. The RM ansatz has been generalized to
the SU(3) Skyrme model as well [9].

The rational map ansatz for the SU(2) skyrmion for B = 2,
which represents the deuteron, has been canonically quantized
in Ref. [10] for representations of arbitrary dimension of
the Skyrme model Lagrangian. The canonically quantized
deuteron solutions and their physical characteristics depend
on the dimension of the representation in contrast to the
semiclassically quantized solution.
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The matter density of the canonically quantized skyrmion
soliton falls off exponentially at long range in contrast to
the power law fall-off of the classical soliton without a pion
mass term [10,11,18,20]. In the case of the B = 1 skyrmion
the inverse of the length scale of this exponential fall-off
for corresponds to the pion mass, which arises because of
the anomalous breaking of chiral symmetry by the canonical
quantization procedure [11]. In the case of the α-particle it
should correspond to 2

√
mE0, where M is the nucleon mass

and E0 is the binding energy [12]. Numerical calculation
shows that the RM approximation leads to exponential falloff
at a somewhat smaller rate than this. This feature may be
traced to the fact that the Skyrme model represents a large
N approximation to QCD, in which the kinetic energy term for
the nucleons vanish. The ground state solution to the Skyrme
model therefore corresponds to the variational solution to the
interaction part of the nuclear Hamiltonian, as the kinetic
energy terms vanish in the large N limit.

Below the static observables and the charge form factor
of 4He are calculated from the the quantum solution of
the B = 4 skyrmion obtained with the rational map in
SU(2) representations of arbitrary dimension. The calculated
charge form factor has the same two-node structure as the
experimental form factor, but the two zeros appear at smaller
values of momentum transfer than in the empirical form
factor. This shows that the ground state solution of the
Skyrme model has an unrealistically compact structure, as
expected. It is instructive to compare the results to those
previously obtained with the product ansatz for the soliton
field [13]. The product ansatz describes the asymptotic long
range four-skyrmion structure of the solution, and leads to
a charge form factor for 4He, where nodes of the calculated
form factor in contrast occur at too large values of momentum
transfer. It is then natural to conjecture, that as the empirical
form factor is bracketed by the form factor calculated with
the too compact rational map approximation and with the too
extended asymptotic product ansatz, a more realistic solution
of the Skyrme model might provide an adequate description
of the observed form factor.
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The organization of this paper is the following. In Sec. II
the RM ansatz for the classical soliton of octaedral symmetry
is generalized to representations of arbitrary dimension. In
Sec. III canonical quantization of the soliton is developed
in the collective coordinate approach. The numerical results
for the properties of the quantized solution are compared to
the observables of 4He in Sec. IV. Finally a summarizing
discussion is given in Sec. V.

II. THE CLASSICAL SOLITON OF OCTAEDRAL
SYMMETRY

The Skyrme model is a Lagrangian density for a unitary
field U (x, t) that belongs to the representation of SU(2) group.
In a general reducible representation U (x, t) may be expressed
as a direct sum of Wigner’s D matrices for irreducible
representations as

U (x, t) =
∑

j

⊕Dj (α(x, t)). (1)

The Dj matrices are functions of three unconstrained Euler
angles α = (α1, α2, α3).

The chirally symmetric Lagrangian density of the Skyrme
model has the form

L(U (x, t)) = −f 2
π

4
Tr {RµRµ} + 1

32e2
Tr {[Rµ,Rν]2}. (2)

Here the “right” current is defined as

Rµ = (∂µU )U †, (3)

and fπ (the pion decay constant) and e are parameters.
The rational map ansatz [7] is an approximation to the

ground state solution of the Skyrme model with baryon number
B > 1 takes the following form in a representation of arbitrary
dimension:

UR(r) = exp (2i n̂aĴ(a)F (r)). (4)

Here Ĵ(a) are SU(2) generators in a given representation. The
unit vector n̂ may be defined in terms of a rational complex
function R(z) as

n̂R = 1

1 + |R|2 {2�(R), 2�(R), 1 − |R|2}. (5)

For baryon number B = 4 the function,

R(z) = z4 + 2
√

3iz2 + 1

z4 − 2
√

3iz2 + 1
, (6)

has been found to be a suitable choice [7]. Here z = tan(θ/2)eiϕ

is a complex coordinate that is parametrized by azimuthal and

polar angles θ and ϕ. The circular components of the unit
vector n̂R are

n̂+1 = − 1√
2

+
√

3 sin2 θ (
√

3sin2 θ − i(1 + cos2 θ ) cos 2ϕ)

2
√

2(1−sin2 θ + sin4 θ (1 − sin2 ϕ + sin4 ϕ))
,

n̂0 =
√

3 sin2 θ cos θ sin 2ϕ

1 − sin2 θ + sin4 θ (1 − sin2 ϕ + sin4 ϕ)
, (7)

n̂−1 = 1√
2

+
√

3 sin2 θ (−√
3 sin2 θ − i(1 + cos2 θ ) cos 2ϕ)

2
√

2(1 − sin2 θ + sin4 θ (1 − sin2 ϕ + sin4 ϕ))
.

The rational map (6) has cubic symmetry. The orientation is
fixed below so that the z-direction is that of the third component
of the angular momentum.

Differentiation of n̂ yields the relation

(−1)s(∇−srn̂m)(∇srn̂m′) = n̂mn̂m′ + I((−1)mδ−m,m′

− n̂mn̂m′), (8)

which proves to be useful in the explicit calculation of
Lagrangian density (2). Here ∇s are the circular components
of the nabla operator. The symbol I here denotes the function:

I =
(

1 + |z|2
1 + |R|2

∣∣∣∣dR

dz

∣∣∣∣
)2

, (9)

the explicit form of which is

I = 12 sin2 θ (1 − sin2 θ + sin4 θ sin2 ϕ cos2 ϕ)

(1 − sin2 θ + sin4 θ (1 − sin2 ϕ + sin4 ϕ))2
. (10)

Integrals of powers of I over θ and φ can be regarded as Morse
functions [7].

The baryonic charge density takes the following form in the
irrep j:

B(r, θ, ϕ) = ε0k
mTrRkR
Rm

= −8j (j + 1)(2j + 1)I F ′(r) sin2 F

r2
. (11)

Because of the presence of the I function in this expres-
sion, there is no need to modify usual boundary conditions
F (0) = π ; F (∞) = 0 for the chiral angle. The baryon number
therefore takes the standard expression:

B = 1

24Nπ2

∫ ∞

0
dr

∫ 2π

0
dϕ

∫ π

0
dθB r2 sin θ, (12)

with the normalization factor N = 2
3j (j + 1)(2j + 1), as

expected [11]. The normalization factor is chosen to be unity in
the fundamental representation of SU(2). The present choice of
boundary conditions ensures that the integral of the I function
is proportional to the baryon number:

∫ 2π

0
dϕ

∫ π

0
dθ I sin θ = 4πB. (13)
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Substitution of the rational map ansatz (4) into the
Lagrangian density (2) leads to the classical Skyrme model
density:

Lcl(r, θ, ϕ) = −N

(
f 2

π

(
F ′2(r)

2
+ I sin2 F

r2

)

+ 1

e2

I sin2 F

r2

(
F ′2(r) + I sin2 F

2r2

))
. (14)

Note, that the symmetry of the Lagrangian density (14) in the
θ, ϕ space is completely determined by the function I and its
(more symmetric) powers.

It is useful to introduce dimensionless coordinates r̃ =
efπr . Variation of Lagrangian then yields the following
differential equation for chiral angle:

F ′′(r̃)
(

1 + 2B sin2 F (r̃)

r̃2

)
+ 2F ′(r̃)

r̃
+ F ′2(r̃)B sin 2F (r̃)

r̃2

− B sin 2F (r̃)

r̃2
− I2 sin2 F (r̃) sin 2F (r̃)

r̃4
= 0. (15)

Here we have used the abbreviation

I2 = 1

4π

∫ 2π

0
dϕ

∫ π

0
dθI2 sin θ. (16)

In the limit r̃ → ∞, the Eq. (15) reduces to simple asymptotic
form

F ′′(r̃) + 2F ′(r̃)

r̃
− 2BF (r̃)

r̃2
= 0. (17)

From this the asymptotic large distance solution, which
satisfies physical boundary conditions, can easily be obtained
as

F (r̃) = C1r̃
− 1+√

1+8B
2 . (18)

Here C1 a constant to be determined later by continuous joining
of the numerical small distance solution onto the analytic
asymptotic solution. For B = 4, the power of r̃ in Eq. (18) is
≈−3.37. Note that Eqs. (14)–(18) are valid for all B, provided
that the corresponding function I is used.

III. CANONICAL QUANTIZATION IN THE COLLECTIVE
COORDINATE APPROACH

The quantization of the Skyrme model in a general represen-
tation [11] can be carried out by means of collective rotational
coordinates that separate the variables, which depend on the
time and spatial coordinates [14]:

U (r, q(t)) = A (q(t)) UR(r)A† (q(t)) . (19)

Here the three real Euler angles q(t) = (q1(t), q2(t), q3(t))
are quantum variables. These are sufficient for the α particle
ground state, for which S = T = 0.

The canonical quantization with constraints procedure em-
ployed here was originally suggested by Dirac [15], and further
developed in Refs. [16,17]. In this formalism the Skyrme
Lagrangian (2) is considered quantum mechanically ab initio
in contrast to the conventional semiclassical quantization of
the Skyrmion as a rigid body. In the SU(2) case canonical
quantization implies that the three independent generalized

coordinates q(t) and the corresponding velocities q̇(t) satisfy
the following commutation relations [19]:

[q̇a, qb] = −if ab(q). (20)

Here f ab(q) are functions of generalized coordinates q only,
the explicit forms of which are determined self-consistently
upon imposition of the quantization condition. The tensor f ab

is symmetric with respect to interchange of the indices a and
b by the relation [qa, qb] = 0.

The commutation relation between a generalized velocity
component q̇a and an arbitrary function G(q) is given by

[q̇a,G(q)] = −i
∑

r

f ar (q)
∂

∂qr
G(q). (21)

Here Weyl ordering of the operators has been employed:

∂0G(q) = 1

2

{
q̇α,

∂

∂qα
G(q)

}
. (22)

The curly brackets denote an anticommutator. With this choice
of operator ordering no further ordering ambiguity appears.

To derive the Lagrangian the expression (19) is substituted
into the Lagrangian density (2). Consider first the term that is
quadratic in the generalized velocities. After integration over
the spatial coordinates the Lagrangian takes the form

L(q, q̇, F ) = 1

N

∫
d3rL(r, q(t), F (r))

= 1

2
q̇αgαα′ q̇α′ + O(q̇0). (23)

Here the momentum of inertia tensor is

gαα′ = C ′(b)
α (q)E(b)(b′)C

′(b′)
α′ (q). (24)

Here E(b)(b′) is defined as

E(b)(b′) = − 1
2 (−1)bab(F )δb,−b′ (no summation over b).

(25)

Here a1 = a−1. The soliton momenta of inertia are given as

a0(F ) = ã0

e3fπ

= 4π

∫ ∞

0
r2 sin2 F

×
(

(1 − N2)

(
f 2

π + 1

e2
F ′2

)
+ 2

3

B

e2

sin2 F

r2

)
dr,

(26)

a1(F ) = ã1

e3fπ

= 2π

∫ ∞

0
r2 sin2 F

×
(

(1 + N2)

(
f 2

π + 1

e2
F ′2

)
+ 4

3

B

e2

sin2 F

r2

)
dr.

The symbol Nk in this expression denotes the angular integrals:

Nk = 1

4π

∫ π

0
dθ

∫ 2π

0
dϕ sin θn̂k

0. (27)

For baryon number B = 1 and B = 2 the integrals may be eval-
uated in closed form to yield N2(nucleon) = 1

3 ; N4(nucleon) =
1
5 and N2(deuteron) = −1 + π

2 , N4(deuteron) = −1/3 + π
4 .

For B = 4 the numerical values of the corresponding integrals
are N2 ≈ 0.218897 and N4 ≈ 0.118382. The other integrals,
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which explicitly enters calculation of the inertia tensor (25),
may be evaluated analytically by the following expression:∫ (

1 + |z|2
1 + |R|2

∣∣∣dR

dz

∣∣∣)2 (
1 − |R|2
1 + |R|2

)m
2idzdz̄

(1 + |z|2)2

=
∫ π

0
dθ

∫ 2π

0
dϕ sin θIn̂m

0

= 2πB
(−1)m + 1

m + 1
, m ∈ Rationals; m � 0. (28)

The validity of expression has been verified numerically for
a number of randomly chosen rational maps with different
baryon numbers B to a very high degree of precision. There is
good reason to conjecture that the integrals are topologically
conserved quantities valid for all rational maps. Note that the
relation (13) is a particular case (m = 0) of Eq. (28). Here the
function I plays an intriguing role as an “integrating” factor.

The coefficients C ′(b)
α and their inverses C ′α

(b) are functions
of the dynamical variables, which appear in the differentiation
of the Wigner D matrices:

∂

∂αk
Dj

mn(α) = − 1√
2
C

′(a)
k (α)Dj

mm′(α)〈jm′|J(a)|jn〉. (29)

The conventional quantum mechanical commutation re-
lations [pα, qβ ] = −iδαβ for the momenta pα = ∂L

∂q̇α =
1
2 {q̇β , gαβ} then leads to the following expression for the tensor
f αβ [Eq. (20)]:

f αβ(q) = g−1
αβ (q). (30)

It is convenient to introduce the following angular momentum
operators on the hypersphere S3 (the manifold of the SU(2)
group):

Ĵ ′
(a) = − i√

2

{
pα,C ′α

(a)

}
. (31)

It is readily verified that the operator Ĵ ′
a is a Dj (q) “right

rotation” generator that has the well defined actions

Ĵ ′2
∣∣∣ 

ms,mt

〉
= 
(
 + 1)

∣∣∣ 

ms,mt

〉
;

(32)
Ĵ ′2

0

∣∣∣ 

ms,mt

〉
= m2

t

∣∣∣ 

ms,mt

〉
;

on the normalized state vectors with fixed spin and isospin 
:∣∣∣ 

ms,mt

〉
=

√
2
 + 1

4π
D


ms,mt
(q) |0〉 . (33)

The explicit form of the function f ab(q), in turn, leads to
to an explicit expression of the Skyrme model Lagrangian
density (2) in the collective coordinate approach. Lengthy
manipulation and use of computer algebra [21] yields the result

Lqt(r) = −N

(
f 2

π

{
F ′2

2
+ I sin2 F

r2
− sin2 F

8

[(
1

a0
+ 3

a1

)
C|

− 2

a1

(
1

a0
+ 1

a1

)
+ (2j − 1)(2j + 3) sin2 F

5

×
(

3 C| 2 − 4

a1
C| + 4

a2
1

)]}

+ 1

e2

[
I sin2 F

r2

(
F ′2 + I sin2 F

2r2

)

− sin2 F

8

(
I sin2 F

r2

[(
1

a0
+ 1

a1

)
C| − 2

a0a1

]

+F ′2
[(

1

a0
+ 3

a1

)
C| − 2

a1

(
1

a0
+ 1

a1

)]

+ (2j − 1)(2j + 3)

5

{
−I sin2 F

r2

[
3 C| 2

− 2

(
2

a0
+ 5

a1

)
C| + 2

a1

(
4

a0
+ 3

a1

) ]

+F ′2
(

3C| 2 − 4

a1
C| + 4

a2
1

− 2C| 2 sin2 F

)})])
.

(34)

Here the following notation has been introduced:

C| = 1

a0
+ 1

a1
−

(
1

a0
− 1

a1

)
n̂2

0. (35)

The expression (34) does not contain the operator component.
Integration of the latter (operator component) yields matrix
elements, which depend on spin and isospin 
:

〈



ms,mt

∣∣∣ ∫ ∞

0
dr

∫ π

0
sin θdθ

∫ 2π

0
dϕ

(
f 2

π + 1

e2

[ I
r2

sin2 F

+F ′2(r)

])(
1

a2
1

Ĵ′2(q) +
(

1

a2
0

− 1

a2
1

)
Ĵ ′2

0 (q)

−
[

1

a1
(Ĵ′(q) · n̂) +

(
1

a0
− 1

a1

)
Ĵ ′

0(q)n̂0

]2) ∣∣∣ 

ms,mt

〉

= m2
t

(
1

a0
− 1

a1

)
+ 
(
 + 1)

a1
. (36)

This expression vanishes in the case of 4He for which mt =

 = 0.

Integration and subsequent variation of Lagrangian density
(34) then leads to the following integrodifferential equation
for the quantum chiral angle in the dimensionless coordinate
r̃ = efπr:

F ′′(r̃)

(
4r̃2 + 8B sin2 F (r̃) + e4r̃2 sin2 F (r̃)

[
4µ̃2

+ (2j − 1)(2j + 3)

5
(A + 2B| + (A + B| ) cos 2F (r̃))

])

+F ′2(r̃)

(
4B sin 2F (r̃) + e4r̃2 sin 2F (r̃)

[
2µ̃2

+ (2j − 1)(2j + 3)

10
(B| + 2(A + B| ) cos 2F (r̃))

])

+ r̃F ′(r̃)

(
8 + e4 sin2 F (r̃)

[
8µ̃2 + 2(2j − 1)(2j + 3)

5
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× (A + 2B| + (A + B| ) cos 2F (r̃))

])

− sin 2F (r̃)

(
4B + 4I2 sin2 F (r̃)

r̃2

+ e4r̃2

(
2µ̃2 + (2j − 1)(2j + 3)

5
(2A + 3B| ) sin2 F (r̃)

)

+ 2e4B sin2 F (r̃)

{
2µ̃2

0 + 1

3ã2
1

+ 2

3ã0ã1

+ (2j − 1)(2j + 3)

5

(
− 8

15ã2
0

+ 6

15ã0ã1
− 13

15ã2
1

+ 4π (−1 + 3N2)

9

(
1

ã0
− 1

ã1

) [ (
3

ã2
0

+ 2

ã0ã1
+ 1

ã2
1

)

×
∫

r̃2 sin2 2F (r̃)dr̃

+ 8

(
1

ã2
0

+ 1

ã0ã1
+ 1

ã2
1

)∫
r̃2 sin4 F (r̃)F ′2(r̃)dr̃

])})
.

(37)

Here

A = − 4

ã2
1

+ 4

ã1
(−1 + N2)

(
1

ã0
− 1

ã1

)
, (38)

B| = (−1 + 2N2 − N4)

(
1

ã0
− 1

ã1

)2

. (39)

Above µ̃2 denotes the following integral:

4µ̃2

e4
= (−1 + 4mt )(−1 + N2)

ã2
0

− ã0(1 + N2)

ã3
1

+ 2(1 + (1 + N2)(1 + mt − 
(
 + 1)))

ã2
1

+ 8πB

3ã1

(
2(−1 + N2)

ã2
0

− 1 + N2

ã0ã1
− 1 + N2

ã2
1

)

×
∫

sin4 F (r̃)dr̃ + (2j − 1)(2j + 3)

5

×
(

3(−1 + N2)

ã2
0

(
N4 − 5 − 2ã1(−1 + N4)

ã0

)

+ 2(1 + 2N2 − 3N4)

ã0ã1

+ 1 + N2

2ã2
1

(
3N4 + 9 + ã0(1 + 3N4)

ã1

)

+ 16π

(
−1 + N2

ã2
0

(
1 − 2N2 + N4

ã0
− −1 + N4

ã1

)

+ 1 + N2

2ã2
1

(−1 + N4

ã0
− 1 + 2N2 + N4

ã1

))

×
∫

r̃2 sin4 F (r̃)F ′2(r̃)dr̃

+ 8πB

15

(
−1 + N2

ã2
0

(−1 + 45N4

ã0
− −31 + 45N4

ã1

)

+ 1 + N2

2ã2
1

(−31 + 45N4

ã0
− 29 + 45N4

ã1

) )

×
∫

sin4 F(r̃) dr̃ + 2π

(
−1 + N2

ã2
0

(
3(1 − 2N2 + N4)

ã0

+1 + 2N2 − 3N4

ã1

)
− 1 + N2

2ã2
1

(
1 + 2N2 − 3N4

ã0

+ 3 + 2N2 + 3N4

ã1

) )∫
r̃2 sin2 2F (r̃)dr̃

)
. (40)

The symbol µ̃2
0 represents the special case of µ̃2 integral, when

N2 = 1
3 .

At large distances Eq. (37) reduces to the asymptotic form

r̃2F ′′(r̃) + 2r̃F ′(r̃) − (2B + µ̃2r̃2)F (r̃) = 0. (41)

From this asymptotic equation it follows that the quantity µ̃

describes the fall-off rate of the chiral angle at large distances:

F (r̃) = C1e−µ̃r̃

(
µ̃

r̃
+ B

r̃2

)
. (42)

The related quantity µ = efπ µ̃ describes the asymptotic fall-
off exp(−2µr) of the soliton mass density for the dimensional
coordinate r. Note the appearance of µ̃2 in all the higher
derivative terms in Eq. (37), which is a nontrivial result.
Eqs. (26), (28), (34), (37), and (40) are conjectured to be valid
for all rational maps R(z).

Because of the isospin of 4He is zero, the charge distribution
is proportional to the baryon density (11). The charge form
factor then is the usual Fourier transform:

Fc(q) = 1

2

∫
d3j0(qr)B(r, θ, ϕ), (43)

where j0 denotes the spherical Bessel function of zero order.

IV. NUMERICAL RESULTS

The RM ansatz represents an approximation, which gives
energies that fall above the numerically computed ground
state energy by only a few percent [8]. Calculation of the
static properties and the charge form factor of 4He from the
RM with B = 4 should therefore be expected to give a good
approximation to those for the exact ground state solution.
In the present numerical calculation the parameters fπ end e
in the Skyrme model Lagrangian were determined so as to
reproduce the calculated static observables of the nucleons in
the different representations j considered in Ref. [11].

The quantum integrodifferential equation (37) was solved
numerically by the shooting method. In the initialization of
the algorithm trial values for all the integrals (a0, a1, µ

2, . . .)
that appear in the equation had to be specified. For these
estimates were obtained by employment of the semiclassical
chiral angle of the B = 1 skyrmion. Shooting from the point
r̃max, [where F (r̃) assumed to be of the form Eq. (42)] to
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FIG. 1. 4He (solid), deuteron (long-dashed) and nucleon (short-
dashed) chiral angle profile functions in SU(2) representation 1

2 .

the point r̃min (here F (r̃) = F (r̃min) − (r̃min − r̃)F ′(r̃min)) and
varying the only unknown constant C1 in (42) leads to a
continuous function C2 that satisfies the required boundary
conditions F (0) = π and F (∞) = 0.

Typically r̃max ≈ 6 and r̃min ≈ 10−2 (the equation has a
singularity at the origin). The chiral angle function found by
this method is then used to recalculate all required integrals
and procedure is iterated until the integrals converge to a stable
value. The convergence proved to be rapid, and faster than in
the case of the nucleon. Every iteration increases the absolute
integral precision approximately by one decimal point. Thus
typically 10–15 iterations are enough to achieve an accurate
solution for the chiral angle.

The canonical quantization of the B = 1 skyrmion, which
describes the nucleon, was presented in Ref. [11]. Variation
of the quantized energy functional revealed the existence of
stable solutions for the nucleon. In that work the parameters
were determined by the isoscalar radius (0.72 fm) and mass
(939 MeV) of the nucleon. The same parameter values for fπ

and e in the Skyrme model Lagrangian were employed here
for the solution of the B = 4 soliton, which describes the 4He
nucleus in different representations. Figure 1 shows the chiral
angle profile functions for different baryon numbers 1, 2 and
4 B. Here the rational map ansätze were used in the case of
B = 2 and B = 4. It is notable that the exponential falloff
rate of the chiral angle becomes slower and smoother with
increasing baryon number.

The calculated values of the static observables of 4He are
listed in Table I. The best agreement between the calculated
and the empirical values for the charge radius 〈r2

E〉1/2 and
the corresponding binding energy E0 values is found for
the reducible representation 1 ⊕ 1

2 ⊕ 1
2 as in the case of the

nucleon [11]. For the higher irreps no binding is found at all
with these parameter values.

While the finite pion mass is conventionally introduced
by adding an explicitly chiral symmetry breaking pion mass
term to the Lagrangian density of the model [14], the canonical
quantization procedure by itself gives rise to a finite pion mass.
This realizes Skyrme’s original conjecture that “This (chiral)
symmetry is, however, destroyed by the boundary condition

TABLE I. The predicted static 4He nuclei observables in different
representations with fixed empirical values for the nucleon isoscalar
radius 0.72 fm and nucleon mass mN = 939 MeV [11]. The momenta
of inertia, ãi , are in units of 1/(e3fπ ).

j 1/2 1 3/2 1 ⊕ 1
2 ⊕ 1

2 Exp.

fπ 59.8 58.5 57.7 58.8 93 MeV
e 4.46 4.15 3.86 4.24
m 3585 3759 3975 3701 3728.55 MeV
µ 33.1 45.2 50.4 41.8 229 MeV
〈r2

E〉1/2 1.39 1.52 1.65 1.49 1.676 fm
E0 −171 +3 +219 −55 −28.11 MeV
ã0 157.1 154.6 152.9 155.2
ã1 130.1 128.1 126.8 128.6

(U (∞) = 1), and we believe that the mass (of pion) may arise
as a self consistent quantal effect” [25].

The “quantal effect” (the exponential falloff rate of the
mass density of 4He, e−2 µr ) which we find in Eq. (42) is,
however, much smaller than the value that is obtained for a
four-nucleon system with the empirical binding energy: µ =√

mE0, where m denotes nucleon mass. The reason for this
is that the rational map ansatz gives an approximation to the
ground state solution, which does not contain the vibrational
modes. This conclusion is also supported by comparison to the
semiclassical approximation to the B = 4 skyrmion given in
Ref. [22], which did take into account the vibrational modes,
and obtained both a smaller binding energy (79 MeV) and
concomitantly a larger radius (1.50 fm). Alternatively it may
be viewed as natural consequence of the implied large N limit
of the model, in which there is no kinetic energy contribution
from the constituent nucleons.

The nonrelativistic charge form factors (see Fig. 2) which
are calculated from fixed empirical values of nucleon [11]
have the same qualitative features as the empirical form factor
values taken from Refs. [23,24], with two nodes. The best
agreement with experimental data is found for the fundamental
representation j = 1

2 .

V. DISCUSSION

The main result derived above is the demonstration of
the utility of the rational map approximation for the B = 4
skyrmion, which allows the complete canonical quantization
of the soliton to be carried out in closed form in a way similar
to, even though calculationally more cumbersome than, that
used for the hedgehog solution for the B = 1 skyrmion.

From the phenomenological perspective the main result
is however the explicit demonstration that the empirical
charge form factor of the α-particle is bracketed between
the form factor derived here by the rational map ansatz,
which approximates the ground state, and the form factor
that is obtained with the product ansatz [13], and which
asymptotically approaches the configuration of four separated
B = 1 skyrmions. This then suggests that there exists a smooth
path between these two limiting configurations, and that a
physically more realistic solution may eventually be found on
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FIG. 2. Comparison of 4He electric form
factors in different representations of SU(2) with
experimental data [23,24]. The form factors
are calculated with parameters that yield the
experimental nucleon mass mN = 939 MeV and
radius r = 0.72 fm [11].

this path. That is yet another example of the remarkably wide
field of baryonic phenomenology, for which the Skyrme model
provides a qualitative description.

In the case of the B = 4 skyrmion it was found that the
calculated observables in the fundamental representation lead
to a better qualitative agreement with the empirical values than
those obtained in representations of larger dimension. In the
case of the B = 1 and B = 2 skyrmions there is no such clear
preference for the fundamental representation [10].

The quantization of the deuteron (the B = 2 skyrmion) is
of particular interest due to the different values of spin S = 1
and isospin T = 0. This implies that quantization with three
quantum variables as in Eq. (19) is not sufficient. In Ref. [10]
six independent degrees of freedom—ie right and left chiral
transformations were therefore employed. This allowed the
construction of quantum states with different values of spin and
isospin. Such a quantization of classical states with predefined
symmetry, n̂ should be applicable to a wide class of nuclei.

As noted above the canonical quantization procedure
generates a pion mass term as originally conjectured by
Skyrme [25]. In work based on the conventional semiclassical
quantization the pion mass term has in contrast to be introduced
by way of an explicit chiral symmetry breaking term. In that

method the requirement of rotational stability requires a value
for the pion mass that is considerably larger than the empirical
value [26]. With such large values for the pion mass the
chiral symmetry breaking term leads to spatial configurations
for the ground state solution of the Skyrme model with
baryon number larger than 4, which differ significantly from
those obtained in the chiral limit [27]. It should be worth-
while to explore how the features implied by the overly large
pion mass term in the semiclassical approximation are be
modified once the mass term, which arises dynamically in
consistent canonical quantization procedure are taken into
account. The canonical quantization procedure here applied
cannot, however, be directly applied to this question as it keeps
the angular dependence of the ansatz fixed.
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[18] A. Acus, E. Norvaišas, and D. O. Riska, Nucl. Phys. A614, 361
(1997).

[19] K. Fujii, K. Sato, N. Toyota, and A. Kobushkin, Phys. Rev.
Lett. 58, 651 (1987); K. Fujii, A. Kobushkin, K. Sato, and
N. Toyota, Phys. Rev. D 35, 1896 (1987).
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