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Polarization effects in the reaction e+ + e− → d̄ + d have been investigated for the case of longitudinally
polarized electron beam and arbitrary polarization of the produced deuteron, with the aim of a determination of
the time-like complex deuteron electromagnetic form factors. General expressions of polarization observables are
derived and numerical estimations have been carried out by means of various models of deuteron electromagnetic
form factors, for kinematical conditions near threshold.
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I. INTRODUCTION

The electromagnetic form factors (FFs) of hadrons and
nuclei provide important information about the structure
and internal dynamics of these systems. Recent progress
in electron-scattering experiments has made it possible to
measure not only the cross sections but also various polar-
ization observables in the region of the momentum transfers
where these data can help to discriminate between different
theoretical predictions.

The deuteron, the only bound two-nucleon system, is one
of the fundamental systems of nuclear physics. Accordingly,
many studies, both experimental and theoretical, have been
devoted to it. Of particular interest today is the degree to which
the deuteron can be understood as a system of two nucleons
interacting via the known nucleon-nucleon interaction.

When addressing, more specifically, to the electromagnetic
properties of the deuteron, the main question concerns the
reliability to predict the three deuteron FFs starting from the
calculated deuteron wave function and nucleon FFs known
from electron-nucleon scattering. At low momentum transfers,
predictions and data agree quite well when accounting for one-
body terms only, whereas at the higher momentum transfers,
two-body contributions are known to be important. Whether
quark degrees of freedom do need to be taken explicitly into
account, is still a matter of debate. A status of the experimental
and theoretical research of the deuteron can be found in recent
reviews [1,2].

Elastic electron-deuteron scattering has been investigated
in many experiments, and cross section data today covers a
large range of momentum transfers (see review [2]). Some of
these data obviously are not very precise, other data, mainly
of more recent origin, have reached accuracies down to the
1% level. During the last years, it has become possible to
measure not only cross sections, but also spin observables,

due to the developments of polarized electron beams, polarized
deuteron targets and polarimeters. The knowledge of these
spin observables is unavoidable, if one wants to separate the
contributions of the different multipolarities to the A(Q2)
structure function. Large progress has been made from the
experimental side. In particular, recent polarization data for
electron-deuteron elastic scattering allowed the individual
determination of the deuteron charge and quadrupole FFs up
to a value of the momentum transfer squared −q2 = Q2 =
1.8 GeV2.

The deuteron charge FF GC is particularly interesting for
the understanding the deuteron structure, beyond the impulse
approximation. GC displays a node at Q2 = 0.7 GeV2, and the
position of this node is especially sensitive to the ingredients
of the models, in particular meson-exchange currents.

The experimental investigation of deuteron FFs should
help to determine the region where it is necessary to
introduce explicitly quark and gluon degrees of freedom,
for a correct description of the deuteron. At present, as it
was shown in Ref. [3], the overall experimental results on
elastic electron-deuteron cross sections are not consistent with
pQCD predictions. The best global descriptions of the existing
deuteron data are based on impulse approximation (including
eventually relativistic corrections, meson exchange currents,
� isobars, . . .).

The interaction of electrons with deuterons is usually as-
sumed to occur through the exchange of a virtual photon (one-
photon exchange approximation) due to the smallness of the
electromagnetic fine structure constant, which suppress two-
or more-photon exchange. However, a few decades ago it was
suggested [4] that the two-photon exchange mechanism may
be significant in the region of large momentum transfer. More
recently, the possible contribution of two-photon exchange
to the elastic electron-deuteron scattering was discussed in
Ref. [3].

0556-2813/2006/74(2)/025202(10) 025202-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.025202


G. I. GAKH et al. PHYSICAL REVIEW C 74, 025202 (2006)

As for the nucleon, the knowledge of electromagnetic FFs
in the time-like (TL) region of momentum transfer can give
additional important information about the internal composite
structure of the hadron. Deuteron FFs are real functions of
the momentum transfer squared, while they are complex in TL
region. This is the main difference between these two reactions.

The measurement of the differential cross section of unpo-
larized elastic electron-deuteron scattering allows to determine
the following combinations of FFs: G2

M and G2
C + (8/9)τ 2G2

Q.
For this aim, one has to measure the cross section for fixed Q2,
at different electron scattering angles. Therefore it is necessary
to change the energy of the initial electron beam to keep the q2

variable at a fixed value. In the case of the e+ + e− → d + d̄

one can also determine the |GM |2 and |GC |2 + (8/9)τ 2|GQ|2
combinations. But, in this case, it is sufficient to measure
the cross section at two different deuteron production angles
and the change of the energy of the initial beam is not
required.

The complex nature of the deuteron FFs in TL region
leads to non-zero single-spin observables (at the level of
the Born approximation) in the e+ + e− → d + d̄ reaction.
The component Py (orthogonal to the reaction plane) of the
deuteron polarization (all other particles are unpolarized) is
nonzero. The single-spin asymmetry Ay (when the deuteron
target is polarized) in the elastic ed-scattering vanishes in
the Born approximation. Ay can be non zero in case of the
interference between one-photon and two-photon exchange
amplitudes. The same arguments hold for the spin correla-
tion coefficient due to the longitudinal polarization of the
electron beam and to the tensor polarization of the deuteron,
Ryz.

To determine three deuteron FFs, in the case of the elastic
ed-scattering, it is necessary to measure the unpolarized cross
section and one polarization observable. In TL region the
deuteron FFs are complex and one has to determine not
only the moduli of the deuteron FFs but also their relative
phases. The measurements of a single polarization observable
is not sufficient for the e+ + e− → d + d̄ reaction, where,
besides the measurement of the unpolarized cross section, it is
necessary to measure four polarization observables.

Measurements are certainly very difficult in the TL region,
as shown in Ref. [5], where the total cross section of the
reaction e− + e+ → d + d̄ was predicted up to q2 = 30 GeV2,
using a model of deuteron FFs based on an extension of the
vector-meson-dominance model (VMD) of the electromag-
netic hadron interactions. However, other mechanisms, as the
presence of a two-photon contribution, could favor a larger
cross section.

After the challenging discovery of antideuteron [6], which
established the existence of nuclear antimatter, the production
of antideuteron was recorded in different reactions. Very
recently, the production of deuterons and antideuterons in
Au+Au collisions has been reported by the PHENIX experi-
ment at the BNL Relativistic Heavy Ion Collider (RHIC) [7]
and interpreted in terms of coalescence model. It was found
that the spectra of d and d̄ decrease less steeply than p (p̄)
spectra. The cross section for d̄ photoproduction was measured
at the DESY Hadron Electron Ring Accelerator (HERA), at
Wγp = 200 GeV [8]. The production of d̄ in e+e−-annihilation

at W = 10 GeV was measured at the DORIS II storage ring
(DESY) [9].

In the present paper we calculate the polarization observ-
ables in the reaction

e−(k1) + e+(k2) → d(p1) + d̄(p2), (1)

where the momenta of the particles are indicated in brackets.
We consider the case of unpolarized and longitudinally-

polarized electron beam with production of vector- and
tensor-polarized deuterons. The expressions of polarization
observables are given in terms of the deuteron electromagnetic
FFs. Such expressions are general and model independent.
Therefore they can be applied to the production of all spin one
particles, as, for example e− + e+ → ρ+ + ρ−, which is in
principle already presently accessible.

Not all models of FFs, which are mainly parametrizations
in the SL region, can be consistently applied to the TL
region. They should be built in order to satisfy the analytical
properties which are required by the symmetries of the
strong and electromagnetic interactions. However, numerical
estimations for the cross section and polarization observables
are tentatively given, on the basis of the analytic continuation
of existing parametrizations of the deuteron FFs, similarly
to the case of nucleon FFs in Ref. [10]. Although the Q2

range covered by the data is (relatively) small, the results
allow to evidence the sensitivity of the observables to the
models, and the similarity of the features which are related to
the reaction mechanism. At large Q2 it is expected that FFs
behave according to the asymptotic predictions from QCD.
Models based on vector meson dominance may be constructed
in order to contain such asymptotic behavior.

II. POLARIZATION OBSERVABLES

In the one-photon approximation, the differential cross
section of the reaction (1) in terms of the leptonic Lµν and
hadronic Wµν tensors contraction (in the Born approximation
we can neglect the electron mass) is written as

dσ

d�
= α2β

4q2

LµνWµν

q4
, (2)

where α = 1/137 is the electromagnetic constant, β =√
1 − 4M2/q2 is the deuteron velocity in the reaction center

of mass system (CMS), M is the deuteron mass and q is the
four-momentum of the virtual photon, q = k1 + k2 = p1 + p2

(note that the cross section is not averaged over the spins of
the initial beams).

The leptonic tensor (for the case of longitudinally polarized
electron beam) is

Lµν = −q2gµν + 2(k1µk2ν + k2µk1ν) + 2iλεµνσρk1σ k2ρ, (3)

where λ is the degree of the beam polarization (further we
assume that the electron beam is completely polarized and
consequently λ = 1).

The hadronic tensor can be expressed via the nucleon
electromagnetic current Jµ, describing the transition γ ∗ →
d̄d, as

Wµν = JµJ ∗
ν . (4)

025202-2



POLARIZATION EFFECTS IN e+ + e− → d̄ + d AND DETERMINATION . . . PHYSICAL REVIEW C 74, 025202 (2006)

As the deuteron is a spin-one nucleus, its electromagnetic
current is completely described by three FFs. Assuming the
P- and C-invariance of the hadron electromagnetic interaction
this current can be written as [11]

Jµ = (p1 − p2)µ

[
−G1(q2)U ∗

1 · U ∗
2 + G3(q2)

M2

(
U ∗

1 · qU ∗
2 · q

− q2

2
U ∗

1 · U ∗
2

)]
− G2(q2)(U ∗

1µU ∗
2 · q − U ∗

2µU ∗
1 · q),

(5)

where U1µ(U2µ) is the polarization four-vector describing the
spin one deuteron (antideuteron), and Gi(q2)(i = 1, 2, 3) are
the deuteron electromagnetic FFs. The FFs Gi(q2) are complex
functions of the variable q2 in the region of the TL momentum
transfer (q2 > 0). They are related to the standard deuteron
electromagnetic FFs: GC (charge monopole), GM (magnetic
dipole) and GQ (charge quadrupole) by

GM = −G2,

GQ = G1 + G2 + 2G3,
(6)

GC = − 2
3τ (G2 − G3) + (

1 − 2
3τ

)
G1,

τ = q2

4M2
.

The standard FFs have the following normalizations:

GC(0) = 1, GM (0) = (M/mn)µd, GQ(0) = M2Qd, (7)

where mn is the nucleon mass and µd = 0.857(Qd =
0.2859 fm2) is deuteron magnetic (quadrupole) moment.

When calculating the expression for the hadron tensor Wµν

in terms of the deuteron electromagnetic FFs, using the explicit
form of the electromagnetic current (5), the spin-density
matrices of the deuteron and antideuteron are

U1µU ∗
1ν = −

(
gµν − p1µp1ν

M2

)
+ 3i

2M
εµνρσ sρp1σ + 3Qµν,

(8)
U2µU ∗

2ν = −
(
gµν − p2µp2ν

M2

)
,

if the deuteron polarization is measured and the antideuteron
polarization is not measured. Here sµ and Qµν are the deuteron
polarization four-vector and quadrupole tensor, respectively.
The four-vector of the deuteron vector polarization sµ and
the deuteron quadrupole-polarization tensor Qµν satisfy the
following conditions:

s2 = −1, sp1 = 0, Qµν = Qνµ,

Qµµ = 0, p1µQµν = 0.

Taking into account Eqs. (4), (5), and (8), the hadronic
tensor in the general case can be written as the sum of three
terms

Wµν = Wµν(0) + Wµν(V ) + Wµν(T ), (9)

where Wµν(0) corresponds to the case of unpolarized deuteron
and Wµν(V )(Wµν(T )) corresponds to the case of the vector
(tensor) polarized deuteron. The explicit form of these terms
is Wµν(0):

Wµν(0) = W1(q2)g̃µν + W2(q2)

M2
p̃1µp̃1ν,

g̃µν = gµν − qµqν

q2
, p̃1µ = p1µ − p1q

q2
qµ,

(10)
W1(q2) = 8M2τ (1 − τ )|GM |2,
W2(q2) = 12M2

(
|GC |2 − 2

3
τ |GM |2 + 8

9
τ 2|GQ|2

)
.

The term for vector polarization Wµν(V ):

Wµν(V ) = i

M
S1(q

2)εµνσρsσ qρ + i

M3
S2(q2)[p̃1µενασρsαqσp1ρ

− p̃1νεµασρsαqσ p1ρ]

+ 1

M3
S3(q2)[p̃1µενασρsαqσp1ρ

+ p̃1νεµασρsαqσ p1ρ], (11)

S1(q2) = −3M2(τ − 1)|GM |2,
S2(q2) = 3M2

[
|GM |2 − 2 Re

(
GC − τ

3
GQ

)
G∗

M

]
,

S3(q2) = 6M2 Im (GC − τ

3
GQ)G∗

M.

The term for tensor polarization Wµν(T ):

Wµν(T ) = V1(q2)Q̄g̃µν + V2(q2)
Q̄

M2
p̃1µp̃1ν

+V3(q2)(p̃1µQ̃ν + p̃1νQ̃µ) + V4(q2)Q̃µν

+ iV5(q2)(p̃1µQ̃ν − p̃1νQ̃µ), (12)

where

Q̃µ = Qµνqν − qµ

q2
Q̄, Q̃µqµ = 0,

Q̃µν = Qµν + qµqν

q4
Q̄ − qνqα

q2
Qµα (13)

− qµqα

q2
Qνα, Q̃µνqν = 0, Q̄ = Qαβqαqβ.

The tensor structure functions Vi(q2) are combinations of
deuteron FFs as follows:

V1(q2) = −3|GM |2,
V2(q2) = 3

[
|GM |2 + 4

1 − τ
Re

(
GC − τ

3
GQ − τGM

)
G∗

Q

]
,

V3(q2) = −6τ
[|GM |2 + 2 Re GQG∗

M

]
, (14)

V4(q2) = −12M2τ (1 − τ )|GM |2,
V5(q2) = −12τ Im (GQG∗

M ).

Using the definitions of the cross-section (2), leptonic (3)
and hadronic (9) tensors, one can easily derive the expression
for the unpolarized differential cross section in terms of the
structure functions W1,2 (after averaging over the spins of the
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initial particles)

dσun

d�
= α2β

4q4

{
−W1(q2) + 1

2
W2(q2)

[
τ − 1 − (u − t)2

4M2q2

]}
,

(15)

where t = (k1 − p1)2, u = (k1 − p2)2.

In the reaction CMS this expression can be written as

dσun

d�
= α2β3

4q2
D,

D = τ (1 + cos2 θ )|GM |2

+ 3

2
sin2 θ

(
|GC |2 + 8

9
τ 2|GQ|2

)
, (16)

where θ is the angle between the momenta of the deuteron
( �p) and the electron beam (�k). Integrating the expression (16)
with respect to the deuteron angular variables one obtains the
following formula for the total cross section of the reaction (1)

σtot(e
+e− → d̄d) = πα2β3

3q2

[
3|GC |2 + 4τ (|GM |2

+ 2

3
τ |GQ|2)

]
. (17)

One can define also an angular asymmetry, R, with respect
to the differential cross section measured at θ = π/2, σ0

dσun

d�
= σ0(1 + R cos2 θ ), (18)

where R can be expressed as a function of the deuteron FFs

R = 2τ
(|GM |2 − 4

3τ |GQ|2) − 3|GC |2
2τ

(|GM |2 + 4
3τ |GQ|2) + 3|GC |2 . (19)

This observable should be sensitive to the different un-
derlying assumptions on deuteron FFs; therefore, a precise
measurement of this quantity, which does not require polarized
particles, would be very interesting.

One can see that, as in the space-like (SL) region, the
measurement of the angular distribution of the outgoing
deuteron determines the modulus of the magnetic form factor,
but the separation of the charge and quadrupole form factors
requires the measurement of polarization observables [12].
The outgoing-deuteron polarization can be measured in a
secondary analyzing scattering [12]. For vector polarization
up to a few GeV, an inclusive measurement on a carbon target
as d + C → one charged particle +X is sufficient, when the
charged protons from deuteron breakup are eliminated with
help of an absorber [13]. For tensor polarization, however,
only exclusive reactions as elastic d + p scattering [14] or
charge exchange [15] give sufficient efficiency and analyzing
powers.

As it was shown in Ref. [16], a nonzero phase difference
between FFs of two baryons (with 1/2 spins) leads to
the T-odd single-spin asymmetry normal to the scattering
plane in the baryon-antibaryon production e+e− → BB̄. It is
more convenient to derive polarization observables in CMS.
When considering the polarization of the final particle, we
choose a reference system with the z axis along the momentum
of this particle (in our case it is �p). The y axis is normal to

the reaction plane in the direction of �k × �p; x, y and z form a
right-handed coordinate system.

The cross section can be written, in the general case, as
the sum of unpolarized and polarized terms, corresponding
to the different polarization states and polarization directions
of the incident and scattered particles:

dσ

d�
= dσun

d�
[1 + Py + λPx + λPz + PzzRzz

+PxzRxz + Pxx(Rxx − Ryy) + λPyzRyz], (20)

where Pi (Pij ), i, j = x, y, z are the components of the po-
larization vector (tensor) of the outgoing deuteron, Rij , i, j =
x, y, z the components of the quadrupole polarization tensor

of the outgoing deuteron Qµν , in its rest system and
dσun

d�
is

the differential cross section for the unpolarized case.
The degree of longitudinal polarization of the electron

beam, λ, is explicitly indicated, in order to stress the origin
of the specific polarization observables.

Let us consider the different polarization observables and
give their expression in terms of the deuteron FFs.

(i) The vector polarization of the outgoing deuteron, Py ,
which does not require polarization in the initial state is

Py = −3

2

√
τ sin(2θ ) Im

[(
GC − τ

3
GQ

)
G∗

M

]/
D. (21)

(ii) The part of the differential cross section that depends on
the tensor polarization can be written as follows:

dσT

d�
= dσzz

d�
Rzz + dσxz

d�
Rxz + dσxx

d�
(Rxx − Ryy), (22)

dσzz

d�
= α2β3

4q2

3τ

4

[
(1 + cos2 θ )|GM |2

+ 8 sin2 θ
(τ

3
|GQ|2 − Re (GCG∗

Q)
) ]

, (23)

dσxz

d�
= −α2β3

4q2
3τ 3/2 sin(2θ ) Re (GQG∗

M ), (24)

dσxx

d�
= −α2β3

4q2

3τ

4
sin2 θ |GM |2, (25)

(iii) Let us consider now the case of a longitudinally polarized
electron beam. The other two components of the deuteron
vector polarization (Px, Pz) require the initial particle
polarization and are

Px = −3

√
τ

D
sin θ Re

(
GC − τ

3
GQ

)
G∗

M,

(26)

Pz = 3τ

2D
cos θ |GM |2.

From angular momentum and helicity conservations it
follows that the sign of the deuteron polarization component
Pz in the forward direction (θ = 0) must coincide with the sign
of the electron beam polarization. This requirement is satisfied
by Eq. (26).
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A possible nonzero phase difference between the deuteron
FFs leads to another T-odd polarization observable propor-
tional to the Ryz component of the tensor polarization of the
deuteron. The part of the differential cross section that depends
on the correlation between the longitudinal polarization of the
electron beam and the deuteron tensor polarization can be
written as follows:

dσλT

d�
= α2β3

4q2
6τ 3/2 sin θ Im (GMG∗

Q)Ryz. (27)

The deuteron FFs in the TL region are complex functions.
In the case of unpolarized initial and final particles, the
differential cross section depends only on the squared modulus
|GM |2 and on the combination G = |GC |2 + 8

9τ 2|GQ|2. So,
the measurement of the angular distribution allows one to
determine |GM | and the quantity G, as in the elastic electron-
deuteron scattering.

Let us discuss which information can be obtained by
measuring the polarization observables derived above. Three
relative phases exist for three FFs, which we note as follows:
α1 = αM − αQ, α2 = αM − αC, and α3 = αQ − αC, where
αM = ArgGM, αC = ArgGC, and αQ = ArgGQ. These
phases are important characteristics of FFs in the TL region
since they result from the strong interaction between final
particles.

Let us consider the ratio of the polarizations Pyz (let us
remind that it requires a longitudinally polarized electron
beam) and Pxz (when the electron beam is unpolarized). One
finds

R1 = Pxz

Pyz

= − cos θ cot α1. (28)

So, the measurement of this ratio gives us information about
the relative phase α1. The measurement of another ratio of
polarizations, R2 = Pxz/Pxx gives us information about the
quantity |GQ|:

R2 = Pxz

Pxx

= 8
√

τ cot θ cos α1
|GQ|
|GM | . (29)

This allows one to obtain the modulus of the charge FF, |GC |,
from the quantity G, known from the measurement of the
differential cross section. The measurement of a third ratio

R3 = Py

Px

= − cos θ
sin α2 − r sin α1

cos α2 − r cos α1
, r = τ

3

|GQ|
|GC | (30)

allows to determine the phase difference α2. And at last, if we
measure the ratio of the polarizations Pzz and Pxx

R4 = Pzz

Pxx

= − 1

sin2 θ

[
1 + cos2 θ

+ 8 sin2 θ
|GC ||GQ|

|GM |2 (r − cos α3)

]
(31)

we can obtain information about the third phase difference α3.
Moreover, one can verify the relation

α3 = α2 − α1.

Thus, the measurement of these polarization observables
allows to fully determine the deuteron FFs in TL region.

Note that using the ratio of two polarization components
that are simultaneously measured, greatly reduces systematic
uncertainties. It is not necessary to know neither the beam
polarization or the polarimeter analyzing power, since both of
these quantities cancel in the ratio.

This procedure can be considered as the generalization of
the polarization method proposed almost four decades ago
[17], which could be applied only recently to elastic electron
proton scattering [18].

Let us note here that, in principle, one should take into
account the problem of the two-photon-exchange contribu-
tion, which, as mentioned in the Introduction, may become
important at large momentum transfer, as it is expected
that the reactions mechanisms are similar for the crossed
channel (1). As it was shown in Ref. [19], if the detection
of the final particles does not distinguish between deuteron
and antideuteron, then the interference between one-photon
and two-photon amplitudes does not contribute to the cross
section of the reaction (1).

III. NUMERICAL ESTIMATIONS

In the previous section, the expressions of cross section
and polarization observables have been given, in terms of the
deuteron FFs. Numerical estimations require the knowledge
of such FFs, in TL region. Due to the hermiticity of the
electromagnetic current, FFs are real in the SL region, and
complex in the TL region. At our knowledge, most of the
existing parametrizations of these FFs are phenomenological
fits to SL data, and are useful for different estimations and
to plan corresponding experiments in that kinematical region.
However, their analytical expressions were not built to obey
fundamental properties of FFs. For example, their extension to
the TL region does not induce any phase (i.e., the imaginary
part of FFs is equal to zero).

Recent work in this direction [21] describes three different
parametrizations of deuteron FFs describing the world data.
The first one (parametrization I) is a sum of inverse polynomial
terms, where the first node of the corresponding FFs is
introduced as a global multiplicative term. The number of
free parameters, necessary to obtain χ2/ndf = 1.5, was 18.

The second parametrization is based on a previous work
[22]. It is an attempt to find a global description based on the
vector dominance model, satisfying the asymptotic conditions
predicted by QCD at large momentum transfer, and leads to a
12 parameters fit.

The third parametrization is a sum of gaussians, with some
physical constraints on the parameters, which are the width
and the position of the maximum of the gaussians. In total the
parametrization contains 33 parameters for χ2/ndf = 1.5.

In Ref. [23] a generalization of the nucleon model from
Ref. [24] has been successfully applied to the deuteron
case. Besides the fact that the VMD model [24] satisfies by
construction some of the basic properties of FFs, its extension
to the TL region is straightforward [25].

The basic idea of this parametrization is the presence of two
components in the hadron structure: an intrinsic structure, very
compact, characterized by a dipole (monopole) q2 dependence
and a meson cloud, which contains only the ρ, φ and ω
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(not the ρ) contributions, in the nucleon (deuteron) case.
A very good description of all known data on deuteron
electromagnetic FFs has been obtained, with as few as six
free parameters and few evident physical constraints.

In principle, all these parametrizations are not predictive
outside the kinematical domain where the experimental data
have been fitted. Therefore, the extrapolation to TL region is
just given for illustrative purposes. We give the predictions
from one of the parametrizations from Ref. [21] (Parametriza-
tion I), and of the model from Ref. [23]. Note that the analytical
form of all three parametrizations in Ref. [21] is such that only
real terms are present in TL region. An imaginary part arises

naturally from the analytical continuation of model [23], (for
q2 → −q2) due to the noninteger nature of the exponent of the
intrinsic part. Finite widths for the φ and ω meson contributions
would also give rise to complexity, but it was not necessary to
introduce them, for obtaining a good description of data in SL
region.

We also consider an updated version of the model [5], based
on unitarity and analyticity [26].

The q2 dependence of these models is illustrated in Fig. 1
for the moduli and in Fig. 2 for the real an imaginary parts of
the model from Ref. [23]. FFs show a slower decrease with Q2

in comparison with the SL region. One can see that the three
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FIG. 1. (Color online) q2-dependence of the GQ,GM, GC from top to bottom (moduli): from Ref. [26] (solid line), from Ref. [23] (dashed
line), and from parametrization I from Ref. [21] (dotted line). The kinematical threshold is indicated by the vertical line. The dashed area
emphasizes the SL region where data exist.
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FIG. 2. (Color online) q2-dependence of the GQ, GM,GC from top to bottom: from Ref. [23]: real part (solid line), imaginary part (dashed
line).

models coincide in the SL region, where they are constrained
by the experimental data (shaded area), but, outside this
kinematical region, they show very different behavior. In
particular, Parametrization I differs by few order of magnitude.
Parametrization I does not show any singularity in TL region.
Two poles coincide in TL region, for the models in Refs. [26]
and [23], as they correspond to the ω and φ contributions.
More resonances are built, by construction, in the model [26],
and occur in the unphysical region. These two models show
a similar trend, near the threshold, for the moduli of FFs,
however the sign, which is reflected in the relevant polarization
observables, may differ. Threshold, which corresponds to
q2 � 14 GeV2, is indicated by a vertical line.

From Fig. 2 one can see that in TL region, FFs from
Ref. [23] display an imaginary part which is an order of
magnitude smaller than the real part, as a consequence of the
exponent of the term corresponding to the intrinsic part. As
the model [26] fulfills by construction the unitary condition,
its imaginary part starts at the deuteron anomalous threshold,
q2 = 1.73m2

π � 0.02 GeV2. Concerning the model [23], the
imaginary part is different from zero for q2 > 0.08 GeV2.

The predictions for the different observables are shown
in Fig. 3, for E = 1.9 GeV, not far above threshold. The
three parametrizations, as expected, give very different results,
especially concerning the predictions for the cross section
[Fig. 3(a)], which just reflects the differences in the moduli of
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FIG. 3. (Color online) Predictions of the different observables, for the considered parametrizations of deuteron FFs, extrapolated to the TL
region. Notations as in Fig. 1.

FFs. In spite of this, the angular distributions are very similar
[Fig. 1(a)], as they are driven by the underlying assumption of
the one-photon exchange mechanism.

Evidently, the observables such as Py [Fig. 3(d)] and Pyz

[Fig. 3(i)] vanish, for parametrization I, as they depend only
on the imaginary part, see Eqs. (21) and (27), respectively.

In the physical region, the angular asymmetry, Eq. (19),
is very large in absolute value (over 90%) and negative, for
all the considered models, due to the fact that one FF, GQ, is
dominant.

It should be noted that the CMS threshold energy of
the reaction e+ + e− → d̄ + d is quite large, ET = 2M �
3.75 GeV. There are no data in this momentum range in SL
region, which could better constrain models and parametriza-
tions.

IV. CONCLUSIONS

Polarization observables have been derived for the pro-
duction of a deuteron antideuteron pair in electron-positron
annihilation. Although the cross section of this process is
expected to be very small, the search for the corresponding
events it is not excluded in future at high luminosity e+e−
rings.

In TL region, the electromagnetic structure of the deuteron
is characterized by three complex FFs. Generalizing the polar-
ization method, successfully applied to ep elastic scattering,
we derive the expressions for the relevant observables in
terms of the deuteron FFs and indicate the measurements
which are necessary for the full determination of the deuteron
structure.

Quantitative estimations require the knowledge of the
deuteron FFs, in the corresponding kinematical region. Data
are absent in the whole TL region, and also in SL region,
at large momentum transfer squared. Therefore, we used the
analytical continuations from the SL region of few existing
parametrizations and models, keeping in mind that they
are poorly constrained in the corresponding SL kinematical
region. The results show that polarization effects either vanish
or are large and measurable.

The formalism developed here is model independent and
based on symmetry properties of electromagnetic and strong
interactions. It allows to establish properties of observables
that should be satisfied by any model calculation. Moreover,
it applies as well to the annihilation reactions involving
the production of spin one particles in the final state, such
as e+ + e− → ρ+ + ρ−, e+ + e− → ω+ + ω−. The study of
these reactions will be the object of a future work.
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APPENDIX

In this appendix we give useful formulas describing the
polarization state of the deuteron for different cases. For
the case of arbitrary polarization,the deuteron is described by
the spin-density matrix (defined, in the general case, by eight
parameters) which, in the coordinate representation, has the
form

ρµν = −1

3

(
gµν − pµpν

M2

)
+ i

2M
εµνλρsλpρ + Qµν,

(A1)
Qµν = Qνµ, Qµµ = 0, pµQµν = 0,

where pµ is the deuteron four momentum, sµ and Qµν are the
deuteron polarization four-vector and the deuteron quadrupole
polarization tensor.

In the deuteron rest frame the above formula is written as

ρij = 1

3
δij − i

2
εijksk + Qij , ij = x, y, z. (A2)

This spin-density matrix can be written in the helicity
representation using the following relation:

ρλλ′ = ρij e
(λ)∗
i e

(λ′)
j , λ, λ′ = +,−, 0, (A3)

where e
(λ)
i are the deuteron spin functions which have the

deuteron spin projection λ on to the quantization axis (z axis).
They are

e(±) = ∓ 1√
2

(1,±i, 0), e(0) = (0, 0, 1). (A4)

The elements of the spin-density matrix in the helicity
representation are related to the ones in the coordinate
representation by such a way

ρ±± = 1

3
± 1

2
sz − 1

2
Qzz, ρ00 = 1

3
+ Qzz,

ρ+− = −1

2
(Qxx − Qyy) + iQxy,

ρ+0 = 1

2
√

2
(sx − isy) − 1√

2
(Qxz − iQyz), (A5)

ρ−0 = 1

2
√

2
(sx + isy) + 1√

2
(Qxz + iQyz),

ρλλ′ = (ρλ′λ)∗.

To obtain these relations we use Qxx + Qyy + Qzz = 0.

When the deuteron is used as a target, the spin matrix
is diagonal, and the polarization state is described by the
population numbers n+, n− and n0. Here n+, n− and n0 are
the fractions of the atoms with the nuclear spin projection
on to the quantization axis m = +1, m = −1 and m = 0,

respectively. If the spin-density matrix is normalized to 1, i.e.,
Trρ = 1, then we have n+ + n− + n0 = 1. Thus, the polariza-
tion state of the deuteron target is defined in this case by two
parameters, called V (vector) and T (tensor) polarizations

V = n+ − n−, T = 1 − 3n0. (A6)

Using the definitions for the quantities n±,0

n± = ρij e
(±)∗
i e

(±)
j , n0 = ρij e

(0)∗
i e

(0)
j , (A7)

we have the following relation between V and T parameters and
parameters of the spin-density matrix in the coordinate repre-
sentation (with the quantization axis directed along the z axis)

n0 = 1
3 + Qzz, n± = 1

3 ± 1
2 sz − 1

2Qzz, (A8)

or

T = −3Qzz, V = sz. (A9)
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