
PHYSICAL REVIEW C 74, 024908 (2006)

Analysis of pion elliptic flow and Hanbury-Brown–Twiss interferometry in a granular
quark-gluon plasma droplet model

Wei-Ning Zhang,1,2,3 Yan-Yu Ren,2 and Cheuk-Yin Wong3,4

1Department of Physics, Dalian University of Technology, Dalian, Liaoning 116024, People’s Republic of China
2Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150006, People’s Republic of China

3Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA

(Received 9 June 2006; published 30 August 2006)

In many simulations of high-energy heavy-ion collisions on an event-by-event analysis, it is known that the
initial energy density distribution in the transverse plane is highly fluctuating. Subsequent longitudinal expansion
will lead to many longitudinal tubes of quark-gluon plasma that have tendencies to break up into many spherical
droplets because of sausage instabilities. We are therefore motivated to use a model of quark-gluon plasma
granular droplets that evolve hydrodynamically to investigate pion elliptic flows and Hanbury-Brown–Twiss
(HBT) interferometry. We find that the data of pion transverse momentum spectra, elliptic flows, and HBT radii
in

√
sNN = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider can be described well by an

expanding source of granular droplets with an anisotropic velocity distribution.

DOI: 10.1103/PhysRevC.74.024908 PACS number(s): 25.75.Nq, 25.75.Gz

I. INTRODUCTION

Recently, there has been much progress in our under-
standing of the process of nucleus-nucleus collisions at the
BNL Relativistic Heavy Ion Collider [1–6]. Hydrodynamical
calculations agree well with the RHIC v2 data of the elliptic
flow at low transverse momentum p

T
< 2 GeV [7–11].

However, they cannot predict the saturation of v2 at higher
p

T
[8–11] and the RHIC Hanbury-Brown–Twiss (HBT) puzzle

of Rout/Rside ≈ 1 [12–15]. The HBT puzzle is contrary to many
earlier theoretical expectations [16–21]. Various models have
been put forth to explain the HBT puzzle [22–34]. There have
also been many attempts to provide a consistent explanation for
both the elliptic flow and HBT measurements at RHIC [35–41].

In Ref. [28], a granular particle-emitting source of quark-
gluon plasma (QGP) droplets evolving hydrodynamically was
put forth to explain the RHIC HBT puzzle. The suggestion
was based on the observation that in the hydrodynamical model
[16,42], the particle emission time scales with the initial radius
of the droplet. Particles will be emitted earlier if the radius
of the droplet is smaller, as in a source of many droplets.
An earlier emission time will lead to a smaller extracted
HBT radius Rout, whereas the extracted HBT radius Rside is
determined by the scale of the distribution of the droplets.
As a result, the value of Rout can be close to Rside for a
granular quark-gluon plasma source [28]. Further suggestions
of using the single-event intensity interferometry to search for
the signature for granular structures have also been presented
[43,44].

Motivated by the successes of our previous analysis of the
HBT puzzle using a granular droplet model, we examine in
this article the theoretical basis for the possible occurrence of
granular structure in the evolution of a quark-gluon plasma.
In addition, we wish to refine the granular source model of
Ref. [28] by considering more reasonable anisotropic velocity
distributions of the droplets instead of a constant radial velocity
assumed in Ref. [28]. We investigate the pion elliptic flows

as well as HBT radii as functions of the pion transverse
momentum. The agreement both of the v2 and HBT radii with
experimental data concurrently will gives strong constrains
for the granular model and its parameters and will provide
a useful insight into the initial state and the evolution of
the particle-emitting source produced in high-energy nucleus-
nucleus collisions.

II. GRANULAR INSTABILITY IN THE EVOLUTION
OF THE QUARK-GLUON PLASMA

Based on the recent results of high-energy heavy-ion
collisions at RHIC, the matter (presumably QGP) produced
in the collisions may be a strongly coupled medium with a
very high energy density [1–6]. They are thermalized within
about 1 fm/c [1–6]. It is of interest to study its subsequent
evolution and see whether granular structures may play a role
in the space-time development of the presumed quark-gluon
plasma matter.

Although a granular structure was suggested earlier as the
signature of a first-order phase transition [45], the occurrence
of granular structure may not be limited to the occurrence of
a first-order phase transition. There are additional effects that
may lead to the dynamical formation of granular droplets.

Because the QGP is a strongly interacting dense medium,
a surface tension arises at a boundary due to the presence
of a strong interaction in the dense phase on one side of
the boundary and the absence (or weakening) of the strong
interaction with no density (or diminishing density) on the
other side [46–53]. This imbalance of the forces acting on
different parts at the boundary leads to the surface tension,
whereas the detail profile of the boundary may depend on the
nature and the order of phase transition. Due to the presence
of this surface tension, there may be instability against surface
shape changes and bulk density oscillations.
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A. Transverse density fluctuations and surface granular
instability

The quark-gluon plasma that may be produced in the
laboratory is spatially bounded by various boundaries. Fur-
thermore, in many simulations of the heavy-ion collisions on
an event-by-event basis, the initial transverse energy density
is far from being uniform. It exhibits large transverse density
fluctuations with a large peak-to-valley ratio [29,41,54]. A
large number of transverse density domains are clearly visible
in the initial transverse density distribution of the produced
matter in Fig. 21 of [54] or Fig. 4 of [41]. Because of
these highly fluctuating initial transverse density distribution
forming “lumps” in different regions, the probability for the
occurrence of granular structure may be enhanced.

We can present an approximate scenario to discuss the
evolution of matter with a large transverse density fluctuations,
in a central collision of two heavy and equal nuclei of radius R.
Because of Lorentz contraction, the longitudinal length R/γ

of the produced matter is much smaller than the transverse
length, which is of the order R. Initially as depicted in
Fig. 1(a), density fluctuations in the transverse plane manifest
as a number of transverse lumps characterized by a radius
rd0, which one can also see from the results of Refs. [41,54].
From such an initial data, we can consider the evolution
according to Landau hydrodynamics [55], which gives a good
description of the longitudinal distribution of the produced
particles [56,57]. In such a description, because the initial
longitudinal length is much smaller than the transverse length,
the hydrodynamical force per unit volume in the longitudinal
direction, −∂P/∂z, is much greater than the hydrodynamical
force per unit volume in the transverse direction, −∂P/∂ρ. The
subsequent expansion in the longitudinal direction proceeds
much faster than in the transverse direction, as pointed out by
Landau and Belenkii [55]. The expanding matter develops into

(a)

(b)

(c)

FIG. 1. (a) Schematic description of the matter distribution under
a rapid longitudinal expansion in the z-direction, for a highly
fluctuating initial transverse density distribution. The system evolves
into many longitudinal tubes at (b) and later at (c). Sausage
instabilities lead to the production of droplets along the longitudinal
tubes as depicted in (c).

tubes of radius rd0 [Fig. 1(b)] and the density of matter in the
tube decreases as a function of the proper time.

As is well known, a long tube of matter is unstable against
“sausage” perturbations that tend to make the tube narrow
in some regions and thicker in other regions. The sausage
instability leads to the breakup of the long tube of matter into
many approximately equal spherical droplets, as in the breakup
of toroidal liquid droplets [58].

We can examine the sausage instability for a cylinder with a
length L and a radius rd0, with L � rd0. We consider “sausage”
perturbations an about the cylinder of matter,

rd (z) = r̃d0

{
1 +

∑
n=odd

an sin(nπz/L)

}
. (1)

To have a positive slope drd (z)/dz at z = 0 and a negative
slope at z = L, we need to limit ourselves to perturbations
with odd values of n and an > 0. By the condition of volume
conservation, the quantity r̃d0 is

r̃d0 = rd0

{
1 −

∑
n=odd

2an

nπ
− 1

4

∑
n=odd

a2
n + 3

2

( ∑
n=odd

2an

nπ

)2
}
. (2)

The surface energy of the cylinder is then

Es = σ2πrd0L

{
1 − 1

4

∑
n=odd

an
2 + 1

2

( ∑
n=odd

2an

nπ

)2
}

. (3)

The cylinder is unstable against perturbations of order n if
d2Es/da2

n is negative. We can evaluate d2Es/da2
n and obtain

d2Es

/
da2

n = σ2πrd0L{−1/2 + (2/nπ )2}. (4)

Thus, d2Es/da2
n is negative for all odd integer values of

n. As an unrestrained growth of the perturbation of order
n leads the formation of (n + 1)/2 droplets, we find that
the cylinder is unstable against perturbations leading to the
formation of 1, 2, 3, . . . approximately equal droplets. Thus,
when the length L of the tubes are stretched, sausage (granular)
instability will develop and the long tube will fragment into
approximately equal-size droplets, as depicted in Fig. 2(c).
Large density fluctuations in the transverse direction, together
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FIG. 2. f (k) curves for different values of a. The expansion is
unstable in the shadowy region.
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with the surface tension effects, favor the formation of granular
droplets.

In our simplified description, we have ignored the effects of
the perturbation on the variation of the transverse surfaces at
the two ends of the cylinder. A refinement on the description
of the end surfaces will not modify significantly the question
of the instability of the cylindrical matter, for cylinders with L
substantially greater than rd0.

In conclusion, we find from the above analysis that the
occurrence of granular droplets may be more common than
previously thought. It is of great interest to explore the
subsequent dynamics in a granular model for the description
of various observables measured in high-energy heavy-ion
collisions. This is particularly relevant because a granular
droplet model can explain the occurrence of early emission
of particles and a small value of Rout [28].

B. Bulk density oscillations due to surface tension interactions

To carry out the analysis of the effects of surface tension on
the stability of density oscillations, we consider the following
simple model of the surface tension, as represented by a finite-
range interaction. The equation of hydrodynamics without a
finite-range interaction is [59]

[ε + p]uk ∂ui

∂xk
= − ∂p

∂xi
− uiu

k ∂p

∂xk
, (5)

where ε and p are the energy density and pressure. In this
hydrodynamical equation, interactions between constituents
leading to bulk properties of the plasma have already been
included into the characterization of the pressure p and the
energy density ε. What remains is the effective residual finite-
range interaction v(r − r′) that can lead to the surface tension.
In the presence of this finite-range residual interaction, the
above can be generalized to be [60]

[ε(r) + p(r)]uk(r)
∂ui(r)

∂xk
= −∂p(r)

∂xi
− ui(r)uk(r)

∂p(r)

∂xk

−
∫

dr′ ε(r)

W

ε(r′)
W

∇iv(r − r′),

(6)

where W is the average energy per particle that may be
temperature dependent and ε(r)/W gives the number density
n(r) of the constituents at r.

We choose to represent the effect of the surface tension in
terms of an effective residual interaction of the following form
as used in Ref. [47],

v(r) = αr

(
1 − µr

2

) e−µr

r
, (7)

where αr > 0 and 1/µ are the strength and the range of
the residual interaction that leads to the surface tension. As
a residual interaction, v(r) has been chosen such that the
contribution of the interaction to the total energy of a system
with a uniform density is zero and is positive and proportional
to the surface area in the surface region.

To carry out the stability analysis, we can envisage that
by solving the hydrodynamical Eq. (5) without the surface

interaction, one obtains a comparatively slow-varying density
distribution ε0(r, t) with a local average ε̄0 = 〈ε0(r, t)〉. Then
following the derivations of the equation of sound waves [59],
the perturbation δε(r, t) = ε(r, t) − ε0(r, t) obeys the wave
equation

∂2δε(r, t)
∂t2

≈ c2
s ∇2δε(r, t) + ∇r ·

∫
dr′[(δε(r, t)ε(r′, t)

+ ε(r, t)(δε(r′, t))]∇rv(r − r′)/W 2, (8)

where cs is the speed of sound. We consider density perturba-
tions of the type

δε(r, t) = eik·r−iωt . (9)

Representing the spatial variation of ε0(r, t) by its average ε̄0,
we obtain from Eq. (8)

ω2 = c2
s f (k)k2 (10)

for points in the interior of the medium. Here, f (k) is

f (k) = 1 − 4aµ2k2

(k2 + µ2)2
, (11)

where the second term of f (k) arises from the surface
tension interaction v(r) and a is the granular stability number
defined as

a = ε̄0παr

W 2µ2c2
s

. (12)

Equations (10) and (11) indicates that when f (k) becomes
negative, the system is unstable against a density perturbation
of wave number k. We plot in Fig. 2 the function f (k) as a
function of k/µ. As one observes, the minimum of f (k) is
located at k/µ = 1 for which the characteristic wavelength
of the oscillation 1/k is equal to the range of the interaction
1/µ. The function f (k) becomes negative when a � 1 and it
is therefore appropriate to call a the granular stability number.
When the granular stability number a is greater than unity, the
system is unstable against perturbations with wave numbers k
in the interval k− � k � k+, with k± given by

k2
± = {2a − 1 ±

√
(2a − 1)2 − 1}µ2. (13)

We note from Eq. (12) that the condition a � 1 for the
occurrence of granular instability happens when the surface
tension interaction strength αr is large. It will be useful to
relate αr to the surface tension coefficient σ . For such a
purpose, we study the energy of a system with a numbers
density profile given by

n(r) = nout + n0 − nout

1 + ez/a
, (14)

where n0(> nout) is the number density in the interior dense
region of a surface and nout is the number density in the outer
dilute region. The energy of the system due to the residual
interaction of Eq. (7) is

E = 1

2

∫
dρ dzn(r)

∫
dρ ′dz′n(r′)v(r − r′). (15)

We can introduce V (z) as

V (z) =
∫

dρ ′dz′n(r′)v(r − r′). (16)
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After integration the ρ ′ coordinates, we find

V (z) = παr

µ

∫ ∞

−∞
dz′n(z′)

×{e−µ|z−z′ | − µ|z − z′|e−µ|z−z′ |}. (17)

From Eqs. (15)–(17), the surface tension coefficient is there-
fore given by

σ ≡ dE/dρ

= αrπ

2µ

∫ ∞

−∞
dzn(z)

∫ ∞

−∞
dz′n(z′)

×{e−µ|z−z′ | − µ|z − z′|e−µ|z−z′ |}, (18)

which gives a relation between σ and αr for a general density
profile. For the simple case of a sharp boundary with n(z) =
n0θ (−z), the above equation gives the relationship

σ = n2
0παr

2µ3
. (19)

The surface tension coefficient increases with αr/µ
3 and the

square of the number density. As n0 varies with temperature as
T 3 while αr and µ are relatively slowly varying functions of T,
the surface tension varies with temperature approximately as
T 6. When the surface is described by a sharp surface profile,
the granular stability number a is related to the surface tension
coefficient σ by

a = 2µσ

ε0c2
s

. (20)

In quenched quantum chromodynamics (QCD) lattice
gauge calculations, the surface tension coefficient σ (Tc) has
been calculated for T = Tc, and σ (Tc)/T 3

c was found to range
from 0.016 to 0.092 [50–53]. If we use such a value of the
surface tension coefficient to evaluate the granular stability
number a using Eq. (12), the quantity a will have the value
from 0.024 to 0.140 and the system is stable against density
oscillations of the type discussed here. However, the medium
considered by the quenched QCD approximation consists
of gluons without dynamical quarks. As is well known,
the presence of dynamical quarks has important influences
on many thermodynamical properties of the plasma. The
phase-transition temperature is altered from 269 MeV for
quenched QCD without dynamical quarks to 154 MeV for
full QCD with three flavors of quarks [61], whereas the
surface tension coefficient σ depends on the temperature
approximately as T 6. The number density of a quark-gluon
plasma with three flavors of quarks is about two times the
number density of the plasma without dynamical quarks,
whereas the surface tension coefficient varies as the square
of the number density. The surface tension coefficient σ

calculated in quenched QCD at T = Tc may be quite different
from that calculated in full QCD at higher temperatures. It
will be of interest to evaluate the surface tension coefficient
in full QCD and study its temperature dependence to find
out whether the quark-gluon plasma is stable against bulk
density oscillations with wavelengths close the the range of
the interaction discussed here.

The above discussions was carried out in the linearized
perturbative theory of slow hydrodynamical motion. We
envisage that the initial QGP matter is highly compressed
in the longitudinal direction and the subsequent longitudinal
expansion will be rather rapid and nonlinear in the density
changes. In this respect, it is of interest to note that in previous
calculations in full hydrodynamics for the rapid expansion
of a nuclear system with a finite range interaction, the one-
dimensional fragmentation of the density into one-dimensional
“lumps” occur, as shown in the left panel of Fig. 2 of Ref. [62].
If these hydrodynamical calculations can be a useful analog,
the analogous occurrence of granular droplets in the bulk
expansion of the quark-gluon plasma may be possible.

III. MODEL OF GRANULAR QGP DROPLETS

Based on the above discussions, we use a model of granular
quark-gluon plasma droplets to examine the dynamical evo-
lution of the system. We assume that the system consists of
Nd droplets of radius rd initially distributed in a short cylinder
of length 2Rz along the beam direction (z direction) as in
Fig. 2(c), with an initial transverse spatial distribution up to a
radius Rt ,

dPd

2πρ dρ dz
∝ [

1 − exp
(−ρ2

/
�R2

t

)]
× θ (Rt − ρ) θ (Rz − |z|), (21)

where ρ =
√

x2 + y2 and z are the coordinates of the center
of a droplet. The parameter �Rt describes a shell-type radial
distribution that may arise from the dynamics of the transverse
expansion. A naive blast-wave-type expansion with a constant
radial velocity would leave a void along the central transverse
axis at ρ = 0. Instead of a constant transverse velocity, we find
later that the best parameters that describe the experimental
data suggests a transverse velocity profile (βd )T ∼ ρ0.42.
From the equation of continuity, the density would change
approximately by

dn

dt
∼ −n

1

ρ

d

dρ
ρ(βd )

T
∝ −1.42

n

ρ0.58
. (22)

Thus the density decreases more rapidly near ρ ∼ 0 and there
is a tendency to form a shell-type radial distribution. The
shell-type distribution of the droplets may also arise from the
shadowing of detected particles originating from the central
region of ρ ∼ 0. The HBT radii as a function of the average
pion transverse momentum of a pion pair turns out to be
slightly sensitive to this parameter of �Rt .

Because of the early thermalization and the anisotropic
pressure gradient, the droplets will acquire anisotropic initial
velocities. We assume that the velocity of a droplet depends
on the initial coordinates of the droplet center, (r1, r2, r3) =
(x, y, z), in the form

(βd )i = ai sign(ri)

( |ri |
Ri

)bi

, i = 1, 2, and 3, (23)

where ai is describes the magnitude of the anisotropic
expansion, sign(ri) denotes the sign of ri , and bi (b

T
, bz) are
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the exponential power parameter that describes the variation
of the velocity with ri .

For each single droplet, we use relativistic hydrodynamics
and the equation of state of the entropy density [16,42,63,64]
to describe its subsequently evolution [28,44]. The evolution
of the granular source of many droplets can then be obtained
by superposing all of the evolutions of individual droplets
[28,44]. In our calculations, the transition temperature and the
transition temperature width are taken to be Tc = 165 MeV
and �T = 0.05Tc [16,28,42,44]. The initial energy density of
the droplets is taken to be ε0 = 3.75Tcsc, which is about two
times of the density of quark matter at Tc [16,42]. The pions
are emitted out of the surfaces of droplets at the freeze-out
temperature Tf = 0.95Tc, with momenta obeying the Bose-
Einstein distribution in the local frame at the temperature Tf .

In our model calculations there are five velocity parameters,
{ax, ay, az, bT

= bx = by , and bz}, and four size parameters
of the granular source, {Rt ,Rz,�Rt , and rd}. We find that
the pion transverse-momentum spectra and the elliptic flow
v2 are sensitive to the velocity parameters and insensitive to
the size parameters. Although our HBT results are sensitive
both to the velocity parameters and the size parameters. We
first determine the velocity parameters by comparing the
pion transverse-momentum spectra and the elliptic flow v2

of our model calculations with experimental data. Then, we
determine the source size parameters by comparing our results
of HBT radii with experimental data.

Figure 3 shows the PHENIX π− transverse-momentum
spectrum in

√
sNN = 200 GeV Au+Au collisions with min-

imum bias [65] and the transverse-momentum spectrum
obtained in our model calculations. The theoretical results
have been normalized by matching the distribution to the first
p

T
bin. In our calculations, we use a cut of particle rapidity

|y| < 0.5 to compare with experimental data, which have
been normalized to unit rapidity [65]. Instead of the velocity
magnitude parameters of ax and ay , we can equivalently use
their average ā

T
= (ax + ay)/2 and their difference �a

T
=

0 0.5 1 1.5 2 2.5 3
p

T (GeV/c)

10-3

10-2

10-1

1

10

102

d2 N
/2

πp
T
dp

T
dy

[(
c/

G
ev

)2
]

PHENIX DATA

_
aT=0.365, az=0.750_
aT=0.365,_
aT=0.200,

az=0.850

az=0.850

FIG. 3. Negative pion transverse-momentum spectrum for |y| <

0.5. The open circles give the PHENIX data for
√

sNN = 200 GeV
Au+Au collisions with minimum bias [65]. Various curves give
theoretical predictions with different parameters.

ax − ay . The transverse-momentum spectra depend on ā
T

and
is independent of �a

T
. They also depend on az, bT

, and bz.
We shall show that the elliptic flow v2 is very sensitive to
�aT , b

T
, and bz. Good agreement with experimental data of

transverse momentum spectra and the elliptic flow can be
obtained concurrently by taking b

T
= 0.42, bz = 0.03, and

�aT = 0.10. After b
T

and bz are fixed, the parameters ā
T

and
az can be obtained by comparing the transverse-momentum
spectrum of the granular sources with experimental data [65].
We finally determine ā

T
= 0.365 and az = 0.850 for our

granular source.

IV. RESULTS OF THE ELLIPTIC FLOW

The transverse-momentum distribution of particles can be
represented in the form [66–68]

d2N

dp2
T
dφ

= dN

2πdp2
T

[
1 + 2

∑
n

vn cos(nφ)

]
, (24)

where p
T

=
√

p2
x + p2

y is the transverse momentum of the
particle, φ is its azimuthal angle with respect to the reaction
plane, and the harmonic coefficients, vn, are anisotropy
parameters. The elliptic flow is defined as the second harmonic
coefficient v2, which describes the eccentricity of the particle
distribution in the momentum space. We choose the direction
of x axis in the reaction plane and the direction of y axis out of
the reaction plane. We can express v2 as

v2 ≡ 〈cos 2φ〉 =
〈
p2

x − p2
y

p2
T

〉
. (25)

Figure 4 shows the PHENIX v2 data as a function of pT for
charged pions in Au+Au collisions at

√
sNN = 200 GeV [10].

Also shown are the theoretical v2 results in our granular
droplet model. We use the same cut for particle pseudorapidity,
|η| < 0.35, in theoretical calculations, as in the experiment
setup [10]. In the region p

T
< 2 GeV, the v2 coefficient for a

granular source increases with p
T

as in previous hydrodynami-
cal calculations [35,36,69–73]. However, in the high-p

T
region

0 1 2 3 4
pT (GeV/c)

0

0.05

0.1

0.15

0.2

0.25

0.3

v 2

PHENIX DATA

(
_
aT=0.365, az=0.850)

bz=0.03,

bT=0.03,

bT=1.00,

bT=0.42,

∆aT=0.13

bz=0.42,

bT=0.42, ∆aT=0.10

∆aT=0.13

∆aT=0.06

FIG. 4. Pion elliptic flow v2 as a function of particle transverse
momentum for the granular sources and the experimental data of
charged pions of PHENIX [10].
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with p
T

> 2.5 GeV, we find that the v2 coefficient for a granular
source with small bz decreases with p

T
, which is different from

previous hydrodynamical calculations [8–11,36,69,70,73]. In
the droplet-rest frame, the average transverse momentum of
particles in the x and y directions, 〈p′

x〉 and 〈p′
y〉, are the

same. In the laboratory frame, a elliptic flow arises from
the anisotropic collective transverse boost of the droplet.
For a very small bz, the longitudinal velocity of droplets is
almost constant in the source, whereas the magnitude of the
longitudinal boost velocity az is very large (0.85) in our model.
In this case, the longitudinal component of droplet velocity
is important and it does not boost the transverse momenta
of the particles. The transverse velocity of the droplet is
much smaller than the longitudinal velocity of the droplet.
Its boost effect becomes weaker for the particles with higher
transverse-momentum p′

T (higher p
T
). On the other extreme

for larger bz, the longitudinal velocity of droplet is small for the
droplets with small longitudinal coordinates. The transverse
components of droplet velocity are dominant in the small
z region, which lead to a production of the elliptic flow and
the v2 coefficient increasing with transverse momentum [71],
even at higher p

T
as shown in the dashed-dot curve in Fig. 4.

After ā
T

and az have been fixed at the values 0.365
and 0.850 as determined by the pion transverse-momentum
spectra, we examine the pattern of v2 as a function of
transverse-momentum pT as we vary b

T
, bz, and �a

T
. In the

region of p
T

< 2 GeV, the curvature of v2 is sensitive to b
T
.

For bz = 0.03, the curvature for b
T

= 0.03 is too large (see
the dashed line in Fig. 4) and the curvature for b

T
= 1.00 is

too small (see the dot line in Fig. 4). For bz = b
T

= 0.42, the
curve of v2 rises continuously and deviates from experimental
data for p

T
> 1.5 GeV. We find that the set of parameters

{bz, bT
, a

T
} = {0.03, 0.42, 0.10} give results consistent with

experimental v2 data, as indicated by the solid theoretical
curves in Fig. 4. The fact that b

T
is much greater than

bz, whereas az is substantially greater than aT , indicates
that the dynamical behavior in the transverse expansion and
longitudinal expansion are very different.

Recent experimental data of the elliptic flow of pion show
that v2 remains to have the value of 0.1 at very high p

T
[74].

The processes of particle production in the high-p
T

region are
dominated by parton and hard-probe processes and is beyond
the thermal emission model we consider here.

V. RESULTS OF HBT INTERFEROMETRY

The two-particle Bose-Einstein correlation function is
defined as the ratio of the two-particle momentum distri-
bution P (p1, p2) relative to the the product of the single-
particle momentum distribution P (p1)P (p2). For a chaotic
pion-emitting source, P (pi)(i = 1, 2), and P (p1, p2) can be
expressed as [75]

P (pi) =
∑
Xi

A2(pi,Xi), (26)

P (p1, p2) =
∑

X1,X2

|�(p1, p2; X1, X2)|2, (27)

where A(pi,Xi) is the magnitude of the amplitude for emitting
a pion with four-momentum pi = (pi , Ei) in the laboratory
frame at Xi and is given by the Bose-Einstein distribution
with freeze-out temperature Tf in the local rest frame of
the source point. �(p1, p2; X1, X2) is the two-pion wave
function. Neglecting the absorption of the emitted pions by
other droplets, �(p1, p2; X1, X2) is simply

�(p1, p2; X1, X2) = 1√
2

[A(p1, X1)A(p2, X2)eip1·X1+ip2·X2

+A(p1, X2)A(p2, X1)eip1·X2+ip2·X1 ].

(28)

Using the components of “out,” “side,” and “long” [76,77]
of the relative momentum of the two pions, q = |p1 −
p2|, as variables, we can construct the correlation function
C(qout, qside, qlong) from P (p1, p2) and P (p1)P (p2) by sum-
ming over p1 and p2 for each (qout, qside, qlong) bin [28]. The
HBT radii Rout, Rside, and Rlong can then be extracted by fitting
the calculated correlation function C(qout, qside, qlong) with the
following parametrized correlation function

C(qout, qside, qlong) = 1 + λe−q2
outR

2
out−q2

sideR
2
side−q2

longR
2
long . (29)

Figure 5 shows the theoretical two-pion correlation func-
tions for the granular source. The top figures give the
results for a average pion transverse momentum of a pion
pair, KT , less than 400 MeV/c, and the bottom figures for
KT > 400 MeV/c. The velocity parameters of the granular
source are ā

T
= 0.365,�a

T
= 0.10, az = 0.850, b

T
= 0.42,

and bz = 0.03, which are determined by the transverse-
momentum spectra and the elliptic flow v2 as discussed above.
The size parameters of the granular sources are taken to be
Rt = 8.8 fm, �Rt = 3.5 fm, Rz = 7.0 fm, and rd = 1.3 fm.
The number of droplet Nd is taken to be 40 in our calculations.
One observes noticeable differences in the lower KT region as
compared to the higher-KT region.

The left panels of Fig. 6 give the fitted two-pion HBT
radii for the granular source as a function of KT . The circle
and down-triangle represent �Rt = 0.35 fm and �Rt = 0,
respectively. The parameter �Rt of Eq. (21) describes the
radial distribution of the centers of the droplets, with �Rt = 0
for a uniform distribution and �Rt = 0.35 fm for a shell-type
radial distribution. The experimental PHENIX results [14], and
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FIG. 5. Two-pion correlation functions for granular source.
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FIG. 6. Two-pion HBT radii obtained by the PHENIX Collab-
oration [14] and the STAR Collaboration [5] compared with the
theoretical results calculated in the granular droplet model with
�Rt = 0 and 3.5 fm.

STAR results [5] are shown in the right panels. The curve gives
the theoretical results for �Rt = 0.35 fm. For our theoretical
HBT calculations, we use a cut for particle pseudorapidity
region |η| < 0.35, the same as in the PHENIX experiments
[14]. We find that if we increase the parameter rd , the HBT radii
Rout and Rlong will increase. And if we increase the parameter
�Rt , the variation of HBT radii Rout and Rside with KT will
become steep. The HBT results of granular source for �Rt =
3.5 fm agree quite well with experimental data, although the
case with �R

T
= 0 also gives an agreement that is almost as

good.

VI. SUMMARY AND CONCLUSION

The expansion of the dense matter produced in high-energy
heavy-ion collisions may favor the production of granular
droplets. The strong interaction associated with the dense
matter will lead naturally to the presence of a surface tension
on a boundary.

In an event-by-event basis, the initial transverse density
distribution of matter in central nucleus-nucleus collisions
have been known to be highly fluctuating [29,41,54]. This large
spatial fluctuations may facilitate the formation of granular

droplets. We envisage that as the expansion in the longitudinal
direction proceeds much more rapidly than in the transverse
direction, these initial transverse density fluctuations will lead
to the formation of many longitudinal tubes of matter with
a length much greater than its radius. Due to the surface
tension effects, these tubes are unstable against granular
sausage instability and will tend to break up into approximately
equal-size spherical droplets.

Motivated by the possibility for the occurrence of granular
droplets and our previous successful HBT analysis in terms
of granular QGP droplets, we refine our previous granular
QGP droplet model to include initial anisotropic velocities
due to the anisotropic pressure gradients at an earlier stage
of the collisions. We investigate concurrently the data of
(1) the pion transverse-momentum spectra, (2) the elliptic
flow v2 as a function of p

T
, and (3) various HBT radii

as a function of K
T
, for Au+Au collisions at

√
sNN =

200 GeV at RHIC. We find that the collection of different
pieces of experimental data can be described well by a
granular source model. Direct confirmation of the granular
droplet configuration may need to await more experimental
work on single-event HBT correlations and the fluctuation
between correlation functions of the single- and mixed-events,
as suggested previously [43,44].

The extracted parameters from our analysis provide useful
information on the nature of the transverse and longitudinal
expansion. The elliptic flow v2 is due to the anisotropic initial
dynamical conditions in different transverse directions. Its
decrease at high-p

T
is sensitive to the exponential power

parameter of the droplet velocity bz in the longitudinal
direction. The value of bz is much smaller than that of
b

T
, indicating different dynamical behaviors in longitudinal

and transverse directions. Our HBT results further indicate
that the granular source has a small lifetime and a possible
shell-type spatial distribution. Further studies on the origin of
the difference in the transverse and longitudinal dynamics as
well as the spatial distribution in the transverse direction will
be of great interest.
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