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Relativistic Coulomb excitation around grazing impact parameters
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The semiclassical model of relativistic Coulomb excitation is studied in situations in which the impact parameter
is small enough so that projectile and target charge distributions overlap. The electromagnetic effects of this
overlap are shown to be small. Realistic nucleon-nucleon reaction cross sections and realistic nuclear radial
charge and matter distributions are used to determine a formula for the lower impact parameter limit to be used
in the calculation of the Coulomb excitation cross section. A wide selection of projectile-target pairs is explored,
in the bombarding energy range of 1 to 5 GeV per nucleon.
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I. INTRODUCTION

The semiclassical approach to relativistic Coulomb exci-
tation (RCE) assumes that the Coulomb impulse suffered
by the projectile nucleus as it passes the target nucleus is
small compared to the linear momentum of the projectile.
Then the deflection of the projectile will be small, and its
trajectory can be approximated by a straight line, with impact
parameter b. If b is large enough so that the projectile and
target do not experience each other’s nuclear forces, the only
processes that can occur are electromagnetic. For example, as
the projectile moves along its trajectory, the electromagnetic
fields it produces can induce transitions in the target.1 The
RCE cross section for the population of a final target state ψα ,
starting with the target ground state ψg.s., is given by

σg.s.→α = 2π

∫ ∞

b=bmin

b dbPg.s.→α(b), (1.1)

where Pg.s.→α(b) is the probability of the ψg.s. → ψα target
transition when the target experiences the electromagnetic
impulse due to the projectile following an orbit with impact
parameter b.

The choice of bmin can have a significant effect on σg.s.→α

calculated with Eq. (1.1), since Pg.s.→α(b) has its greatest value
at b = bmin. This is because the projectile electromagnetic
fields at the target are greatest when the two are in closest
proximity. Also, for small b, the electromagnetic impulse at the
target is more sudden, which makes it more effective at exciting
high-energy target states, such as giant multipole excitations.
One of the goals of this paper is to provide reliable values of
bmin for a wide variety of projectile-target pairs and a wide
range of relativistic bombarding energies.

The assumption behind Eq. (1.1) is that there are no
nuclear interactions when b � bmin; but when b < bmin, the
nuclear interactions are so strong that they dominate over

1Transitions can also be induced in the projectile, because of the
electromagnetic fields of the target. In this paper, we will assume that
the projectile remains in its ground state throughout the collision.

electromagnetic processes, and we no longer have Coulomb
excitation. We will refer to this latter situation using the
term absorption. A more realistic discussion would involve a
continuous transition as b increases, from complete absorption
at small b to zero absorption at large b. If X(b) is the probability
that a projectile traverses its orbit with no nuclear interaction
with the target, the absorption probability would be 1 − X(b),
and the RCE cross section would be

σg.s→α = 2π

∫ ∞

b=0
b dbPg.s.→α(b) × X(b). (1.2)

The function X(b) can be estimated by folding the nuclear
density distributions of the projectile and target with the
nucleon-nucleon interaction cross section.

For the small-b range of the integral in Eq. (1.2), there are
situations in which the tails of the projectile and target overlap.
When this happens, the electromagnetic interaction between
the projectile and target is more complicated than the situation
of Eq. (1.1), where all the projectile charge density is assumed
to be outside the target. In this connection, we explore the
b range of the integral in Eq. (1.2), where X(b) is making the
transition from a small value (almost complete absorption) to
near unity (almost no absorption).

More precisely, in Sec. II we consider the nucleon-nucleon
interactions, and an explicit form will be deduced for the
function X(b). In Sec. III we will investigate the effect on
Pg.s.→α(b) of the overlapping of the projectile and target charge
densities. We will then discuss in Sec. IV several prescriptions
for the parameter bmin of Eq. (1.1), which will lead to the same
calculated cross section as the more accurate Eq. (1.2).

II. NUCLEAR INTERACTION BETWEEN
PROJECTILE AND TARGET

We discuss the nuclear interactions between the projectile
and target nuclei in terms of the optical limit of the Glauber
model [1], in which each projectile nucleon is treated as a grey
disk. If a spherical projectile with nucleon number density
nP (r) passes a spherical target with nucleon number density
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nT (r) along a straight-line trajectory with impact parameter b,
the probability of no nuclear interaction is given by

X(b) = e−�(b), (2.1a)

with

�(b) ≡
∫ ∞

0
q dq J0(qb) ñP (q) ñT (q)

fNN (q)

ikNN

. (2.1b)

The tilde represents a Fourier transform, so that

ñP,T (q) ≡ 4π

q

∫ ∞

0
r dr sin(qr) nP,T (r), (2.2)

and fNN (q) is related to the nucleon-nucleon scattering
amplitude at relative momentum h̄kNN .

If the center-of-mass energy of the projectile and target
nucleons is in the GeV region, as in relativistic Coulomb
excitation, the spin-averaged nucleon-nucleon scattering am-
plitudes can be parametrized by (see, e.g., Ref. [2])

fZZ(q)

ikZZ

∼ σZZ

4π
e−BZZ (h̄q)2

,

fZN (q)

ikZN

∼ σZN

4π
e−BZN (h̄q)2

.

We have distinguished here between identical nucleon param-
eters (designated ZZ) and nonidentical nucleon parameters
(designated ZN). The numerical values of σZZ, BZZ, σZN , and
BZN , which are functions of energy, were taken from Igo [2].
They are given in Table I.

The nucleon number densities required in Eq. (2.2) were
taken from the IAEA compilation [3]. They are the results of
Hartree-Fock-Bogoliubov calculations, whose parameters are
fitted to measured nuclear masses. In a comparison involving
523 nuclei, these number densities agreed with measured radii
within an rms error of 0.028 fm.

Bertulani et al. [4] used a similar approach to represent the
effect of nuclear absorption in grazing collisions. Their analy-
sis assumes that the nucleon-nucleon scattering amplitude is q
independent. They do not distinguish between the interactions
of identical and nonidentical nucleons. In different contexts,
a similar approach has been developed by Benesh, Cook, and
Vary [5] and by Kox et al. [6].

TABLE I. Parameters to determine the spin-averaged nucleon-
nucleon scattering amplitudes, interpolated and extrapolated from
figures given by Igo [2].

Bombarding energy σZZ BZZ σZN BZN

(GeV per nucleon) (mb) (GeV/c)−2 (mb) (GeV/c)−2

1 47.849 5.814 40.221 4.1
2 45.024 6.349 42.973 5.904
3 42.493 6.847 42.520 6.645
4 41.307 7.280 42.124 7.384
5 40.809 7.737 42.567 8.069

III. ELECTROMAGNETIC TRANSITION MATRIX
ELEMENTS WITH OVERLAPPING CHARGE

DISTRIBUTIONS

In the previous sections, we saw that at the bottom of the
range of impact parameters there can be overlapping of the
projectile and target charge distributions. We now consider
whether this requires us to modify the standard analysis
of relativistic Coulomb excitation, which is based on the
assumption that the projectile and target charge distributions
do not overlap.

A. Scalar and vector potentials

We orient our axes so that the projectile center moves with
velocity vẑ relative to the target center in their common ŷ-ẑ
plane. If (x, y, z, t) locate an event relative to the projectile,
and (x ′, y ′, z′, t ′) locate the same event relative to the target,
then

x = x ′, y = y ′ − b, z = γ (z′ − vt ′),

t = γ
(
t ′ − v

c2
z′

)
, γ ≡

(
1 − v2

c2

)− 1
2

.

Suppose that the projectile charge density is static and
spherically symmetric in its own rest frame, so that it can
be written

ρ
P
(x, y, z) = ρ

P
(r), r ≡

√
x2 + y2 + z2.

Then the scalar potential due to this charge distribution, as
measured in the projectile rest frame, is given by

φ
P
(r) = 4π

r

∫ r

s=0
s2ρ

P
(s)ds + 4π

∫ ∞

s=r

sρ
P
(s)ds. (3.1)

It can be readily verified that this expression for φ
P
(r) satisfies

Poisson’s equation for the specified projectile charge density:

∇2
r φP (r) = 1

r2

d

dr
r2 d

dr
φ

P
(r) = −4πρ

P
(r).

The scalar potential measured by an observer at the target
center can be determined from Eq. (3.1), since the scalar
potential transforms as the 0 component of a Lorentz four-
vector. This leads to

φ′
P
(x ′, y ′, z′, t ′) = γφ

P
(x, y, z, t)

= 4πγ

r

∫ r

s=0
s2ρ

P
(s)ds + 4πγ

∫ ∞

s=r

sρ
P
(s)ds,

(3.2)

with r =
√

x ′2 + (y ′ − b)2 + γ 2(z′ − vt ′)2. Note that there is
no contribution in Eq. (3.2) from a projectile current density,
as seen by a projectile-based observer. This would be the
situation, for example, if the projectile were a doubly-closed-
shell nucleus, in which every occupied shell-model state was
matched by an occupied time-reversed state.
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It is helpful to modify Eq. (3.2) by adding and subtracting
the quantity 4πγ

r

∫ ∞
r

s2ρ
P
(s)ds. This converts Eq. (3.2) into

φ′
P
(x ′, y ′, z′, t ′) = 4πγ

r

∫ ∞

s=0
s2ρ

P
(s)ds

+ 4πγ

∫ ∞

s=r

(
s − s2

r

)
ρ

P
(s)ds. (3.3a)

Since the total projectile charge is Z
P
e = ∫ ∞

s=0 4πs2ρ
P
(s)ds,

this equation can be rewritten as

φ′
P
(x ′, y ′, z′, t ′) = γZ

P
e√

x ′2 + (y ′ − b)2 + γ 2(z′ − vt ′)2

+ 4πγ

∫ ∞

s=r

(
s − s2

r

)
ρ

P
(s)ds. (3.3b)

The first term on the right-hand sides of Eqs. (3.3a)
and (3.3b) is the Lienard-Wiechert (LW) potential (see, e.g.,
Ref. [7]), which is the potential at (x ′, y ′, z′, t ′) produced by
a point charge Z

P
e at the projectile center, as measured by

a target-based observer. The second term is a correction to
the LW potential, needed when the projectile has charge that
extends farther from the projectile center than the observation
point (x ′, y ′, z′, t ′). In other words, this correction term is
needed for points in space within the projectile charge
distribution. It is seen that although the LW term involves
only the total projectile charge Z

P
e, the overlap correction

term depends upon the radial shape of the projectile charge
distribution.

The same Lorentz transformation that yields the scalar
potential (3.2) yields the vector potential

A′
P
(r′, t ′) = v

c
φ′

P
(r′, t ′)ẑ. (3.4)

B. Calculation of the transition charge density

Let us consider the specific case of a direct transition
between the zero- and one-phonon states of the target giant
dipole excitation. We will generate the transition charge and
current densities with the Goldhaber-Teller model [8] of the
giant dipole resonance (GDR), in which the target protons
and neutrons oscillate relative to each other. For example,
phonon excitations of the 40Ca ground state can be constructed
in which spherical clusters of 20 protons and 20 neutrons
oscillate relative to each other, with the oscillation degree of
freedom the vector rpn, drawn from the center of the neutron
cluster to the center of the proton cluster (see Fig. 1). If the
oscillations are small, the GDR potential can be expected to be
approximately harmonic, and then the relative motion of the
cluster centers would be governed by a harmonic oscillator
wave function ψn,	

m (r
pn

). The ground state relative motion
would be determined by ψ

0,0
0 (r

pn
), and the ground state charge

density would be

ρg.s.(r′) = e

∫
d3r

pn

[
ψ

0,0
0 (r

pn
)
]∗

ψ
0,0
0 (r

pn
)G(|r′ − f rpn|).

(3.5a)
where G(s) is the number density of the protons at a distance
s from the center of the protons (see Fig. 1), and f is defined

FIG. 1. Goldhaber-Teller picture of the GDR, with proton and
neutron spheres oscillating relative to each other. The oscillation
variable is rpn, the vector connecting the centers of the two spheres.

by

f ≡ NT

ZT + NT

= NT

AT

, (3.5b)

so that f rpn is the vector connecting the target center of mass
to the center of the target proton cluster, which we take to be
an inert sphere. The transition charge density for the transition
from the ground state to the GDR state with relative motion
(n, 	,m) is given by

ρg.s.→(n,	,m)(r′) = e

∫
d3r

pn

[
ψn,	

m (r
pn

)
]∗

ψ
0,0
0 (r

pn
)

×G(|r′ − f rpn|). (3.5c)

It will be sufficient for our purposes to consider the
transition from the ground state to the mode

ψy ≡ 1√
2

[
ψ

0,1
1 + ψ

0,1
−1

]
,

which is one quantum of oscillation in the ŷ direction. At
high bombarding energy, this is the strongest direct transition.
Because this state has a simple interpretation in a Cartesian
representation, we rewrite Eq. (3.5a) and (3.5c) in terms of
one-dimensional harmonic oscillator eigenstates:

ρg.s.(r′) = e

∫
dxpndypndzpn[ψ0(xpn)]2[ψ0(ypn)]2

× [ψ0(zpn)]2G(|r′ − f rpn|), (3.6a)

ρg.s.→y(r′) = e

∫
dxpndypndzpn[ψ0(xpn)]2[ψ1(ypn)ψ0(ypn)]

× [ψ0(zpn)]2G(|r′ − f rpn|). (3.6b)

The one-dimensional harmonic oscillator states needed here
are

ψ0(ypn) =
( ν

π

) 1
4
e− 1

2 νy2
pn ,

ψ1(ypn) =
( ν

π

) 1
4 √

2ν ypne
− 1

2 νy2
pn = −

√
2

ν

∂

∂ypn

ψ0(ypn),
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so that

[ψ1(ypn)ψ0(ypn)] = −
√

2

ν
ψ0(ypn)

∂

∂ypn

ψ0(ypn)

= − 1√
2ν

∂

∂ypn

[ψ0(ypn)]2.

If we use this relation in Eq. (3.6b),

ρg.s.→y(r′) = − e√
2ν

∫
dxpndypndzpn[ψ0(xpn)]2

× ∂

∂ypn

[ψ0(ypn)]2[ψ0(zpn)]2G(|r′ − f rpn|),

and integrate by parts, we get

ρg.s.→y(r′) = + e√
2ν

∫
dxpndypndzpn[ψ0(xpn)]2[ψ0(ypn)]2

× [ψ0(zpn)]2 ∂

∂ypn

G(|r′ − f rpn|). (3.7)

But

∂

∂ypn

G(|r′ − f rpn|) = −f
∂

∂y ′ G(|r′ − f rpn|),

so that Eq. (3.7) becomes

ρg.s.→y(r′) = − ef√
2ν

∂

∂y ′

∫
dxpndypndzpn[ψ0(xpn)]2

× [ψ0(ypn)]2[ψ0(zpn)]2G(|r′ − f rpn|)

= − f√
2ν

∂

∂y ′ ρg.s.(r′) = − f√
2ν

y ′

r ′
∂

∂r ′ ρg.s.(r
′)

= − f√
2ν

sin(θ ′) sin(φ′)
∂

∂r ′ ρg.s.(r
′). (3.8)

Thus the radial shape of the transition charge density is
obtained from the radial derivative of the target ground state
charge density. This result depends upon the interpretation
of the GDR as a harmonic oscillation of proton and neutron
spheres relative to each other, but it makes no assumption about
the radial charge dependence of the proton sphere.

The occurrence of the derivative of the ground state radial
density in expressions for transition densities is familiar from
discussions of direct inelastic scattering to modes which
are interpreted as small shape oscillations. An exhaustive
discussion of this topic can be found, e.g., in Ch. 14 of Ref. [9].
These theories are based on expansions of the nuclear shape
in powers of the small parameter describing the oscillation.
We note that our derivation of Eq. (3.8) is not based on
an expansion in powers of a small parameter. However, our
use of harmonic oscillator wave functions in the derivation
of Eq. (3.8) depended upon our assumption that the GDR
potential is harmonic, which will generally be true only if the
deviation from equilibrium is small.

The size parameter ν used in Eq. (3.6a) through (3.8) is
given by ν = µω/h̄, where µ is the reduced mass for the
neutron and proton spheres, and ω is the GDR oscillation

frequency. We will use the generic formula [10]

h̄ω = 79 A
− 1

3
T , (3.9)

where AT is the target mass number.

C. Transition matrix element

Some of the basic formulas of the semiclassical approach
to RCE are presented in the Appendix.

The time-dependent target transition matrix element is

Vg.s.→y(t ′, b) =
∫

d3r ′
[
ρg.s.→y(r′)φ′

P
(r′, t ′)

− 1

c
jg.s.→y(r′) · A′

P
(r′, t ′)

]
. (3.10)

According to Eqs. (3.4) and (3.10), only the z component of the
transition current density enters into the matrix element. This
is zero for the matrix element connecting the zero-phonon
state to the state with one phonon of oscillation in the
ŷ direction. Thus, for this particular matrix element, we need
only be concerned with the ρ − φ term in (3.10).

The partition of the scalar potential into LW and overlap
terms carries over to the transition matrix element:

Vg.s.→y(t ′, b) = VLW(t ′) + Voverlap(t ′), (3.11a)

VLW(t ′, b) =
∫

d3r ′ γZ
P
e√

x ′2 + (y ′ − b)2 + γ 2(z′ − vt ′)2

×ρg.s.→y(r′), (3.11b)

Voverlap(t ′, b) = 4πγ

∫
d3r ′

∫ ∞

s=r

(
s − s2

r

)
ρ

P
(s)ds

× ρg.s.→y(r′), (3.11c)

with r ≡
√

x ′2 + (y ′ − b)2 + γ 2(z′ − vt ′)2. For the purposes
of calculation, it is convenient to define a function F (r) by

F (r) ≡ 4πγ

∫ ∞

s=r

s(s − r)ρ
P
(s)ds. (3.12)

Then VLW(t ′) and Voverlap(t ′) can be written more compactly
as

VLW(t ′) =
∫

d3r ′ ρg.s.→y(r′)
r

F (0), (3.13a)

Voverlap(t ′) = −
∫

d3r ′ ρg.s.→y(r′)
r

F (r), (3.13b)

with r ≡
√

x ′2 + (y ′ − b)2 + γ 2(z′ − vt ′)2. Once ρ
P
(s), the

radial form of the projectile proton density distribution, has
been chosen, F (r) is calculated using Eq. (3.12), and then it
is used in the numerical evaluation of the integrals (3.13a) and
(3.13b).

D. Cross sections

Up to bombarding energies of about 5 GeV per nucleon,
first-order time-dependent perturbation theory accounts for
almost all of the population of the state with one phonon of
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TABLE II. σLW and σoverlap, defined in Eq. (3.14), for 16O and 208Pb projectiles
bombarding 74Ge and 202Hg targets, at 2 GeV per nucleon.

Projectile 74Ge target 202Hg target

σLW (barns) σoverlap (barns) σLW (barns) σoverlap (barns)

16O 1.9 × 10−2 −9.3 × 10−5 7.3 × 10−2 −9.9 × 10−5

208Pb 1.3 −3.5 × 10−4 5.8 −3.5 × 10−4

oscillation in the ŷ direction (see, e.g., [11]). This leads to

Pg.s.→y(b) =
∣∣∣∣
∫ ∞

−∞

dt ′

h̄
eiωt ′Vg.s.→y(t ′, b)

∣∣∣∣
2

≡ |Ṽg.s.→y(ω, b)|2,

where Ṽg.s.→y(ω, b) is the “on-shell” Fourier component of
Vg.s→y(t ′, b) (see Appendix). Using Eq. (1.2), we can write2

σ =
∫

bdb|Ṽg.s.→y(ω, b)|2X(b)

=
∫

bdb|ṼLW(ω, b) + Ṽoverlap(ω, b)|2X(b)

=
∫

bdb(ṼLW(ω, b))2X(b)

+
∫

bdbṼoverlap(ω, b) × (2ṼLW(ω, b)

+ Ṽoverlap(ω, b))X(b)

= σLW + σoverlap. (3.14)

Here σLW is the cross section that would have been calculated
had the Lienard-Wiechert potential been used everywhere,
even in the overlap region, and σoverlap is the correction that
must be applied due to the inadequacy of the Lienard-Wiechert
potential.

Application of the Winther-Alder [12] general formula,
Eq. (A1), to ṼLW(ω, b) gives

ṼLW(ω, b) = −πcZP ef

h̄γ v2

√
32

ν
K1

(
ωb

γ v

)

×
∫ ∞

0
r ′2dr ′j1

(ω

c
r ′

) ∂ρg.s.(r ′)
∂r ′ . (3.15)

We can use this in Eq. (3.14), but Ṽoverlap(ω, b) must be
evaluated numerically, as must the b integral in σoverlap. The
latter is simplified by the fact that the effective b range is finite.
It is limited from below by the vanishing of X(b) and from
above by the vanishing of Ṽoverlap(ω, b), since large b implies
small overlap.

Table II shows a comparison of σLW and σoverlap for 16O and
208Pb projectiles bombarding 74Ge and 202Hg targets at 2 GeV
per nucleon. It is seen that σLW is very much larger when 208Pb
is the projectile and 202Hg is the target. This is because all the
projectile and target charges contribute to the LW cross section.
However, the amount of overlap charge is approximately the
same in all four cases, so that the four overlap corrections
are of the same order of magnitude. Another feature that

2These matrix elements are real.

suppresses the overlap correction in the heavier systems is their
greater neutron/proton ratio. The extra neutrons contribute to
the absorption, but not to the electromagnetic interaction.

Although σoverlap is a greater fraction of σLW in lighter
systems than in heavier systems, we can see from Table II
that σoverlap is always very small compared to σLW. Thus we
can safely ignore σoverlap, and use σLW alone to account for
experimental data.

IV. PROJECTILE AND TARGET DEPENDENCE OF bmin

Suppose that X(b) makes a sharp transition from 0 to 1 as
b crosses a particular value bmin. Then Eq. (3.14) yields

σLW =
∫ ∞

b=bmin

bdb(ṼLW(ω, b))2 (4.1)

Application of Eq. (A1) through (A4) gives

σLW = πb2
min

[(
K2

(
ωbmin

γ v

))2

−
(

K1

(
ωbmin

γ v

))2

− 2

(
γ v

ωbmin

)2

K2

(
ωbmin

γ v

)
K1

(
ωbmin

γ v

)]

×
(

πcZP ef

h̄γ v2

√
32

ν

∫ ∞

0
r ′2dr ′j1

(ω

c
r ′

) ∂ρg.s.(r ′)
∂r ′

)2

.

(4.2)

It would be advantageous to have a prescription for bmin such
that the entire expression (3.14) for the cross section would
be given by the explicit formula (4.2). Equivalently, we seek a
formula for bmin that satisfies3∫ ∞

b=0
bdb [ṼLW(ω, b)2]X(b) =

∫ ∞

b=bmin

bdb [ṼLW(ω, b)2].

Since all the b dependence of ṼLW(ω, b) is contained in

K1

(
ωbmin
γ v

)
, we can write this equation more explicitly as

∫ ∞

b=0
bdb

(
K1

(
ωb

γ v

))2

X(b) =
∫ ∞

b=bmin

bdb

(
K1

(
ωb

γ v

))2

.

(4.3)

We could use bmin defined in this way in Eq. (4.2), thus
incorporating the effect of nuclear interactions during grazing
collisions of the projectile and target.

Since the left-hand side of Eq. (4.3) must be evaluated
numerically, we cannot produce a closed formula for bmin.

3Bertulani et al. [4] use the symbol bsharp to represent this quantity.
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However, we can numerically evaluate Eq. (4.3) for a variety
of projectiles, targets, and bombarding energies, and then look
for regularities that could guide our choice of bmin in any
particular situation. To carry out this program, we selected as
projectiles the nuclei 16O, 40Ca, 120Sn, and 208Pb, and as targets
the nuclei 16O, 32S, 52Cr, 74Ge, 90Zr, 114Cd, 138Ba, 158Gd, 180Hf,
and 202Hg. The GDR oscillation frequencies were given by
Eq. (3.9). For each projectile-target combination, we varied
the bombarding energy from 1 to 5 GeV per nucleon, in steps
of 1 GeV per nucleon, and used Eq. (4.3) to calculate the
appropriate value of bmin.

In the limit of very large nucleon-nucleon interaction
cross sections, we would expect bmin to be of the order of
RP + RT , or perhaps somewhat larger if the finite range
of the nucleon-nucleon interaction is included. This would
lead to an expression for bmin proportional to A

1/3
P + A

1/3
T .

However, a more realistic nucleon-nucleon interaction would
allow the projectile and target densities to overlap slightly
without nuclear interaction, which would lead to a smaller
value of bmin. If the projectile and/or the target have large
radii, even a small amount of penetration implies a large
overlap volume and thus a large nuclear interaction probability.
Thus, the downward correction to an A

1/3
P + A

1/3
T term would

be expected to decrease as the size of the colliding nuclei
increases. The simplest way to incorporate these trends into a
formula is to seek parameters λ,µ such that

bmin ∼ λ
(
A

1/3
P + A

1/3
T

) − µ
(
A

−1/3
P + A

−1/3
T

)
. (4.4)

This is the form used by Benesh et al. [5] in their analysis of
the total reaction cross section for colliding nuclei. We have
chosen λ and µ to produce the best fit, in a least-squares sense
to the 200 (4 × 10 × 5) projectile-target-energy combinations
for which we have numerically calculated bmin using Eq. (4.3).
The result is

λ = 1.3115 fm, µ = 1.0509 fm.

If these paramaters are used in Eq. (4.4), the calculated values
of bmin are reproduced with an r.m.s. error of 0.0248 fm
per point. A graphical comparison is shown in Fig. 2. The
continuous lines are plots of Eq. (4.4) for our four projectiles,
and the plotted points refer to our numerical calculations of
bmin for our ten targets at bombarding energies of 1 and 5 GeV
per nucleon. It is seen that Eq. (4.4), with the parameters given
above, provides an excellent representation of the bmin values
numerically calculated from Eq. (4.3).

Another study [6] of nucleus-nucleus reaction cross sec-
tions adopted a form equivalent to

bmin ∼ λ
(
A

1/3
P + A

1/3
T

) + µ
A

1/3
P × A

1/3
T

A
1/3
P + A

1/3
T

− c. (4.5)

This equation contains three adjustable parameters, λ,µ, and
c. A least-square-deviation fit to our 200 values of bmin yields

λ = 1.3338 fm, µ = 0.1652 fm, c = 1.0667 fm,

with an r.m.s error of 0.0382 fm per point. We see that the
form (4.5) with three free parameters does not produce as
good an overall fit as the form (4.4), which has only two free
parameters. We conclude that Eq. (4.4) gives the most effective
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FIG. 2. Circles correspond to bmin values calculated using
Eq. (4.3), when the bombarding energy is 1 GeV per nucleon. Crosses
are the same, but for a bombarding energy of 5 GeV per nucleon.
Continuous lines were calculated using Eq. (4.4), with λ = 1.3115 fm
and µ = 1.0509 fm.

and economical representation of the dependence of bmin on
projectile and target mass numbers.

The bmin values given by Eqs. (4.4) or (4.5) yield very
nearly the same Coulomb excitation (CEX) cross sections
when substituted into Eq. (4.2). The differences are less than
1% for all cases except for 1 GeV per nucleon 16O projectiles
on a 16O target, where the difference is 2%. These differences
are probably small compared to the errors associated with the
use of first-order time-dependent perturbation theory.

V. DISCUSSION

All the calculations presented so far have referred to
µ = 1 transitions, i.e., transitions in which the transfer of
the ẑ component of angular momentum is ±h̄. These are
the dominant transitions in RCE. Indeed, in the Weizsäcker-
Williams [13] approach to RCE, these are the only transitions
considered. Nevertheless, transitions with µ 	= 1 are possible,
and it is of some interest to know how a change in µ would
affect bmin. This can be answered simply by replacing K1 in
Eq. (4.3) by Kµ. In the vicinity of b ∼ bmin, the argument of

Kµ

(
ωbmin
γ v

)
is small, which implies that Kµ is proportional

to b−µ. Thus Kµ falls more sharply with increasing b as µ

increases, and this has the consequence that bmin calculated
from Eq. (4.3) will decrease as µ increases. Another way to
reach this conclusion is to think about the µ component of
the transition charge density. As µ increases, the centrifugal
potential will keep the transition charge density farther away
from the ẑ axis. Thus absorption, which occurs close to the
ẑ axis, will have less effect on high µ transitions. Since it is
absorption that gives rise to a minimum effective value of b,
less absorption will mean a smaller value of bmin.

We have done calculations for µ = 2 and found a decrease
in bmin, compared to the µ = 1 values presented in the last
section, by about 0.05 fm when the projectile is 208Pb. For the
range of targets and bombarding energies we have studied,
this decrease in bmin is equivalent to an increase in CEX
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cross section of about 0.7% to 1.5%. This difference is small
enough to be ignored in practical calculations. If the projectile
is 16O, the corresponding error in bmin is about 0.1 fm, which is
equivalent to errors of about 1.5% to 7% in CEX cross sections.
Thus, for lighter projectiles, and in situations in which µ > 1
transitions are expected to be important, the values of bmin

calculated with Eqs. (4.4) and (4.5) should be interpreted only
as upper limits.

To do a calculation that accurately includes the effect
of absorption when several values of µ are important, it
is necessary to give up the picture implied by Eq. (1.2),
in which absorptive processes occur independently of the
Coulomb excitation. Rather, the coupled equations that are
used to calculate the transition amplitude would have to include
absorptive processes along with electromagnetic processes.
This would be analagous to the way that optical model
analyses of inelastic scattering employ an imaginary potential
to simulate absorption into other channels in the calculation of
the inelastic scattering amplitude.

APPENDIX: SOME BASIC FORMULAS OF THE
SEMICLASSICAL APPROACH TO RELATIVISTIC

COULOMB EXCITATION

The Fourier transform of the matrix element for the
transfer of angular momenta (λ,µ) in the target transition
φα → φβ , due to the time-dependent electromagnetic field of
a spherically symmetric projectile moving with speed v along
a trajectory with impact parameter b is

Vβα(ω, b) ≡
∫ ∞

−∞

dt ′

h̄
Vβα(t ′, b)

= 2ZP e

h̄v
e−iφb

[
Gλ,µ

∫
d3r ′

(
ρβα(r′) − v

c2
ẑ · jβα(r′)

)

× jλ

( |ω|
c

r ′
)

Yλ
µ(r̂ ′)

]
Kµ

( |ω|b
γ v

)
. (A1)

Here ρβα(r′) and jβα(r′) are the target charge and current
transition charge densities for the states φα → φβ , and Kµ

is a modified Bessel function. The coefficients Gλ,µ are
defined by

Gλ,µ ≡ iλ+µ

(2γ )µ

( |ω|
ω

)λ−µ √
4π (2λ + 1)(λ − µ)!(λ + µ)!

×
∑

n

1

(2γ )2n(n + µ)!n!(λ − µ − 2n)!
. (A2)

This expression assumes there is no overlap between projectile
and target charge. The time reversal phase convention is used,
so that the spherical harmonics Y 	

m has an extra factor of i	

compared to a Condon-Shortley spherical harmonic.
If it is assumed that no contribution to RCE occurs from b <

bmin and no nuclear interactions occur for b > bmin, then the
first-order time-dependent perturbation theory approximation
for the cross section for the RCE population of a state φλ

µ in
an even-even nucleus is

σ = 2π

∫ ∞

b=bmin

bdb|Vβα(ω, b)|2. (A3)

The value of ω to be used here is 1
h̄

times the excitation
energy of φλ

µ. This is sometimes referred to as the “on-shell”
ω value. For the calculations in this paper, the excited state
corresponds to a one-phonon excitation of the GDR, and thus
the on-shell value of ω is given by Eq. (3.9). Because all the b

dependence of Vβα(ω, b) is contained in the factor Kµ

(
|ω|b
γ v

)
,

the b integral in Eq. (A3) can be performed exactly, with the
help of∫ ∞

ξ

(Kµ(x))2xdx = ξ 2

2

[
(Kµ+1(ξ ))2 − (Kµ(ξ ))2

− 2µ

ξ
(Kµ+1(ξ )Kµ(ξ ))

]
. (A4)
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