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Fluctuation analysis and the extraction of the collisional damping width of the giant dipole
resonance in the system 28Si+58Ni at E(28Si) =100 and 125 MeV
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Simplistic shape and orientation fluctuation calculations are compared with the data for the system 28Si+58Ni
at E(28Si)= 100 and 125 MeV. The collisional damping width (�0) is extracted under the shape fluctuation model
analysis. A constant value of �0 cannot reproduce the measured γ -spectra. The extracted value of �0 is found to
be independent of the average angular momentum 〈J 〉, while showing a mild temperature dependence above an
average temperature, 〈T 〉 ∼ 1.3 MeV. Below, a very small value of �0 ∼ 3.8 MeV is found.
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I. INTRODUCTION

The giant dipole resonance (GDR) is one of the fundamental
modes of excitation. Its strength function is characterised by
resonance energy (ED) and width (�D) [1,2]. One of the
important issues in the GDR study is the separation of the
contributions of widths from different damping mechanisms so
that their dependence on temperature and angular momentum
can be studied. The spreading of the width of the giant
dipole resonance is mainly due to two mechanisms. The first
is the collisional damping [3]. The mixing of the correlated
one particle one hole states, which constitute the giant dipole
resonance, with more complicated states lying at the same
excitation energy is termed as the collisional damping. It arises
due to coupling of giant vibrational modes to small amplitude
quantal fluctuations of the nuclear surface. The collisional
damping model [4,5] has been widely used in describing the
GDR width at zero temperature (T). The other mechanism is
the coupling of GDR vibration to large amplitude fluctuations
(shape fluctuations) of nuclear surface that are induced by
temperature. At finite temperature and angular momentum
the nucleus can be viewed as an ensemble of shapes with
a distribution governed by the Boltzmann factor [6–10]. An
averaging of GDR vibrations over distribution of shapes is
necessary to get the information of the GDR width.

Earlier we have reported angular momentum gated GDR
measurements in the system 28Si+58Ni at E(28Si) =100 and
125 MeV [11]. Experimental details and data analysis can
be found in Refs. [11,12]. In the present paper, orientation
and shape fluctuation analysis is presented. We also report the
extraction of the collisional damping width (�0), under the
shape fluctuation analysis.

II. ORIENTION FLUCTUATION ANALYSIS

The GDR strength function is extracted from the mea-
surement of the angle integrated γ -spectrum, which under
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the shape fluctuation model, is related to the nuclear shape
evolution and its fluctuations. The angular distribution of
γ -rays emitted from compound nuclei, relative to the beam
axis is given by

Y (θ, Eγ ) = Y0(Eγ )[1 + a2(Eγ )P2(cos θ )], (1)

where a2 is the anisotropy. The γ -ray energy dependence
of the angular anisotropy should, in principle, differentiate
between prolate and oblate shapes, rotating collectively or
noncollectively. However, the angular anisotropy gets diluted
due to the orientation fluctuation. For a given orientation (θ, φ)
of the spin axis in the the body-fixed frame, the angular
anisotropy coefficient a2 for the GDR γ -rays [13,14] is given
by

a2 = 1
4 [Fx(3 sin2 θ cos2 φ − 1) + Fy(3 sin2 θ sin2 φ − 1)

+Fz(3 cos2 θ − 1)], (2)

where Fx, Fy, Fz are the relative probabilities for the γ -rays to
originate from vibrations along the x, y, and z axis, respectively.
The probability of a certain orientation is given by P (θ, φ) ∼
exp(−Erot/kT ). The rotational energy (Erot) depends on the
angular momentum J and the moment of inertia, which in turn
depends on the angles describing the spin axis. Integrating
over these probabilities, the average a2 and hence the ratio of
γ -yields at various angles can be obtained.

The spectra at 125◦ are representatives of the angle
integrated measurements since a2P2(cos θ ) = 0 for θ = 125◦.
Figure 1 shows the ratio of the Doppler corrected γ -spectra at
100 and 125 MeV for various angles. The 100 MeV spectra are
normalized (up to 10%) to make the ratio about 1.0 at Eγ =
5 MeV. The γ -ray fold gates used for 100 MeV and 125 MeV
are 6–14 and 7–14, respectively [11]. The average temperature
〈T 〉 and average angular momentum 〈J 〉 corresponding to
these folds for ESi = 100 MeV are 1.12 MeV and 22h̄, while
for ESi = 125 MeV, those are 1.29 MeV and 30h̄. At these high
folds (high angular momentum) the attenuation in anisotropy
should be weak, or in other words enhanced. The observed
isotropy at 100 MeV beam energy could be due to a spherical
shape. However, the extracted strength functions from the data
has been described due to prolate shape. The solid lines in
Fig. 1 show the results of the orientation fluctuation calculation
for a prolate nucleus with the deformation β = 0.3. This is so
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FIG. 1. Angular distribution of high energy γ -rays at ESi =
100 MeV and ESi = 125 MeV. Solid line shows the orientation
fluctuation calculations for a prolate nucleus with the deformation
β = 0.3.

chosen because the values of β extracted from the GDR data
for various T and J, lies in the range of ∼0.2 to 0.4 [11]. The
present data at 100 MeV are thus consistent with the orientation
fluctuation calculation. There is a discrepancy between the
forward angle data and the calculation at 125 MeV. One of the
reasons for this discrepancy can be due to the contribution of
preequilibrium γ -rays at 125 MeV. If we add the odd order
Legendre polynomial, i.e., a1Eγ P1(cos θ ) then the spectra at
ESi = 125 MeV can be explained. At Eγ = 7 MeV, where
there is a maximum deviation, the required value of a1 is
∼0.1, and the change in Y(125◦) is found to be ∼5%. At
higher energies this change will be even less. Hence, it is not
expected to affect the extracted GDR parameters.

III. SHAPE FLUCTUATION ANALYSIS

The fluctuations in the nuclear shape, characterized by
the shape parameters β and γ , decide the angle integrated
γ -spectrum. In a simplistic approach, the shape fluctuations
are described by Gaussian distributions in β and γ . The energy
dependent average γ -ray strength function is calculated by
integrating the strength function for a given β, γ over these
Gaussian distributions with a Monte Carlo procedure. The
averaging is done using a volume element β4sin3γ dβdγ . For
a given set of (β, γ ), the GDR energies of different components
are given by [2]

Ek = E0 exp

[
−

√
5

4π
β cos

(
γ − 2πk

3

)]
, (3)

where k =1, 2, 3 correspond to the three principle axes in the
intrinsic frame and E0 is the intrinsic energy of the dipole
vibration. The component widths are related [9] as

�k

�0
=

(
Ek

E0

)δ

, (4)

where �0 is the intrinsic width.

TABLE I. GDR width and effective deforma-
tion parameter β from the Monte Carlo procedure.
Also given is the first variance σβ in β.

�D(MeV) β σβ

5.75 ± 0.50 0.10 0.03
7.30 ± 0.20 0.20 0.07
8.00 ± 0.30 0.24 0.04
8.20 ± 0.10 0.24 0.04
8.30 ± 0.10 0.25 0.07
9.70 ± 0.50 0.33 0.05
9.35 ± 0.05 0.30 0.10
9.65 ± 0.35 0.32 0.08
11.1 ± 0.90 0.39 0.09
11.6 ± 0.20 0.40 0.13

The parameters E0, �0 and δ are supposed to be constants
for a given nucleus. The values of E0 and �0 are taken from
the the ground state data [15] as 17.5 MeV and 5 MeV,
respectively. The value of δ is fixed at 1.5. While the mean
(βm) and the FWHM (	β) for the distribution in β are varied
in steps of 0.1, the mean (γm) and the FWHM (	γ ) for the
distribution in γ are varied in steps of 10◦. In order to extract the
width from the average GDR strength function, the following
procedure is adopted. A three component Lorentzian strength
distribution, characterised by energy (E1, E2, E3) and width
parameters (�1, �2, �3) are generated and then compared
with the average GDR strength function from Monte Carlo
procedure. The width for the average GDR strength function
is defined as the FWHM of the three component strength
function. The effective quadrupole deformation β is obtained
from the averaging of β over many trials (typically 10 × 104).
The sets of GDR width and effective β from the Monte Carlo
procedure for 10 × 104 trials is shown in Table I. For a given
set of βm,	β, γm and 	γ , effective β has a distribution. The
first variance σβ is given in Table I. Also different sets of
βm,	β, γm and 	γ corresponding to same effective β gives
slightly different � values, which are included by defining
errors in �. It should be noted that in this analysis, there are
many solutions for γ ranging from 0◦ to 60◦ for a given β.
Figure 2 shows the plot of effective β as a function of � from
the shape fluctuation analysis. A functional relation between
effective β and �

β = m� + b, (5)
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FIG. 2. Effective β as a function of �.
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FIG. 3. β as a function of 〈J 〉 and 〈T 〉. Solid line is a guideline
for the β values from Eq. (5).

with m ∼ 0.05 and b ∼ −0.02 is obtained. As discussed in
Ref. [11], the data are presented as a function of 〈T 〉 and
〈J 〉 over the various γ -decay steps. The GDR widths from
these data corresponding to various 〈T 〉 and 〈J 〉 are used in
this equation to obtain the values of β from shape fluctuation
analysis.

Figure 3 shows the extracted deformation parameter β [11]
as a function of 〈J 〉 and 〈T 〉. Also shown is effective β from the
shape fluctuation calculations. Figure 3(b) shows that the shape
fluctuations increase with the increase in the temperature. The
data reasonably agrees with the fluctuation analysis except for
the low values of T.

The above mentioned procedure is a very simplistic ap-
proach towards the shape fluctuation analysis. A more detailed
procedure would be to use the average γ -ray strength function
(calculated by the above mentioned Monte Carlo procedure) in
the CASCADE [16] calculations, then calculate the γ -spectrum
and fold it with the detector response function to compare
with the measured γ -spectra (discussed later). An even more
advanced analysis would be to calculate the potential energy
surfaces for the nuclei at A ∼ 85 at the relevant T, J, to obtain
the strength function and use that in the statistical model code
CASCADE.

A systematic analysis of the GDR width as a function
of T, J, and A has been done by Kusnezov et al. [17].
The experimental results are compared with the theoretical
calculations in nuclei ranging from A ∼ 45 to 208. The
calculations include thermal shape fluctuations using both the
Nilsson-Strutinsky and the liquid drop free energy surfaces.
The resultant phenomenological formula to describe the global
dependence of the GDR width on T, J and A is parametrized
as

�(T , J,A) = �(T , J = 0, A)

[
L

(
J

A5/6

)]4/[(T/T0)+3]

, (6)

�(T , J = 0, A) = �0(A) + c(A) ln(1 + T/T0), (7)

where L(ξ ) = 1 + 1.8[1 + exp(1.3 − ξ )/0.2]−1 and c(A) =
6.45 − A/100. The value of �0 is taken as the measured
ground state GDR width and the reference temperature (T0) is
assumed to be 1 MeV. The experimentally extracted data from
Ref. [11] is compared with the above phenomenological
formula [Eq. (6)] in Fig. 4. The value of �0 used is 3.8 MeV.
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FIG. 4. Comparison of experimental widths with the phenomeno-
logical width [Eqs. (6) and (7)]. (a) shows the ratio of experimental
width to theoretical scaled �(T , J = 0, A) vs ξ = J/A5/6. The solid
line is the scaling function. (b) shows the T dependence of the GDR
width. Solid line is a guideline.

As can be seen from Figs. 4(a) and 4(b), the formula describes
well the behavior of width as a function of J, while it fails
to explain the T dependence. In Ref. [18] the experimental
widths are plotted against the compound nucleus spin, while
in this paper the experimental widths are plotted against the
average spin. It has also been shown in Ref. [18] that the
phenomenological model is not applicable for all masses. It
would be interesting to carry out measurements at higher J in
this mass region, to verify the phenomenological formula.

Kusnezov and Ormand [19] have proposed a simple
functional relation between the average deformation param-
eter β and the experimental width � based on liquid-drop
parametrization as

β = a′ �(J, T ,A) − �0

E0
+ c′, (8)

where E0 and �0 are the ground state energy and width. The
values of a′ = 0.8 and c′ = 0.12 are obtained from Ref. [17].
The nuclei around A ∼ 85, have ground state widths ranging
from 3.5 to 5.5 MeV [15]. The values of E0 and �0 used are
17 MeV and 3.8 MeV. The �(J, T ,A) values are taken from
Ref. [11]. The comparison of the β values from the Ref. [11]
and those from Eq. (8) is shown in Fig. 5. The values of
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FIG. 5. β as a function of 〈J 〉 and 〈T 〉. The solid line is a guideline
for the values of β, calculated from Eq. (8).
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FIG. 6. Divided plots of the measured γ -spectra in the system
28Si+58Ni. The fits are from the shape fluctuation calculations with
the best choices for the relevant parameters.

β predicted from the above relation reosonably agrees with
the present results.

IV. EXTRACTION OF THE COLLISIONAL DAMPING
WIDTH

As discussed earlier, the calculated average strength func-
tion is used in the statistical model code to extract the
collisional damping width. The prescription for the nuclear
level density used in this work is that of Ref. [20] with
the asymptotic liquid drop value for the NLD fixed at
A/7.5 MeV−1 [21]. A sum rule strength of 100% is used in all
the calculations. The calculated γ -spectrum is folded with the
detector response function to compare with the experimental
γ -spectra in a chi-square minimisation procedure. The values
of E0 and �0 are varied over the ranges of 16 to 18.5 MeV
and 3 to 9 MeV, respectively, in steps of 0.2 MeV. The value
of δ is fixed at 1.8. The values of βm and 	β are varied in
steps of 0.1 and γm and 	γ in steps of 10◦, until the best fit
to the data is obtained for each fold window. Figure 6 shows
the divided plots of measured γ -spectra. The continuous lines
are shape fluctuation calculations with best choices for the
relevant parameters.

Figure 7 shows the value of �0 derived from the shape
fluctuation analysis. The fold gated γ -spectra at 100 MeV
cannot be explained with a constant value of �0, while �0

does not show any explicit variation with fold at 125 MeV. A
constant E0 ∼ 17.5 MeV explains the fold gated spectra. The
value of βm and 	β is found to be 0.1 and 0.2, respectively. The
value of effective β obtained is 0.25 ± 0.07. In this analysis
also, there are many solutions for γ , which gives a good fit
to the data. Similar observation was reported in Ref. [22].
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FIG. 7. Extraction of collisional damping width as a function of
fold.

Further, we report here also exclusive temperature and angular
momentum dependence of �0. The extraction of 〈T 〉 and 〈J 〉
of the states on which GDR is built, for various γ -multiplicity
windows is reported in Ref. [11]. The corresponding standard
deviations (σ ) for temperature and angular momentum are
∼0.28 MeV and ∼7h̄. �0 is found to be independent of
〈J 〉 (Fig. 8(a)), while showing a mild T dependence above
〈T 〉 ∼ 1.3 MeV (Fig. 8(b)). Below, a very small value of �0 ∼
3.8 MeV is found. Similar results are also reported in 59−63Cu,
120Sn, 179Au and 208Pb nuclei [17,23,24] and seems to be a
general feature of all nuclei as indicated in Ref. [25].

V. SUMMARY

In summary, a simplistic orientation and shape fluctuation
analysis are compared with the data and they reasonably
agree for the system 28Si+58Ni at E(28Si) =100 and 125
MeV. The extraction of �0 under the shape fluctuation model
analysis is also reported for this system. A constant value
of �0 cannot reproduce the measured γ -spectra. �0 is found
to be independent of 〈J 〉. Above 〈T 〉 ∼ 1.3 MeV, �0 shows
a mild T dependence. Below, a very small value of �0 ∼
3.8 MeV is found. A detailed calculation of the potential
energy surfaces for these nuclei would be very interesting.
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FIG. 8. Extraction of collisional damping width as a function of
(a) average angular momentum and (b) average temperature.
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At this low temperature, spin dependence of level density
can also play an important role. Since the system studied lies
away from the nearby stable nuclei, it will be interesting to
make some more exclusive GDR measurements in the near-by
mass region, and see if at low temperature similar results are
observed.
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