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We outline a formalism to carry out time dependent Hartree-Fock (TDHF) calculations of fusion cross sections
for spherical+deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into
the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of
the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations
are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.
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I. INTRODUCTION

Heavy-ion fusion reactions are a sensitive probe of the size
and structure of atomic nuclei [1]. Recent experiments with
radioactive ion beams allow the study of heavy-ion fusion with
exotic nuclei. For instance, enhanced fusion-evaporation cross
sections have been observed with neutron-rich 132Sn beams
on 64Ni [2]. The synthesis of superheavy nuclei in hot and
cold fusion reactions [3–7] represents another experimental
frontier.

In general, the fusion cross sections depend on the interac-
tion potential and form factors in the vicinity of the Coulomb
barrier. Furthermore, experiments on subbarrier fusion have
demonstrated a strong dependence of the total fusion cross
section on nuclear deformation [8]. The dependence on nuclear
orientation has received particular attention in the formation of
heavy and superheavy elements [9], and various entrance chan-
nel models have been developed to predict its role in enhancing
or diminishing the probability for fusion [10,11]. While this
may be true for heavy systems, the orientation effects should
influence the fusion process for light nuclei as well.

There are several theoretical methods for calculating
heavy-ion fusion cross sections: (a) barrier penetration mod-
els [12–14], (b) coupled-channels calculations [15–18], and
(c) microscopic many-body approaches such as the time-
dependent Hartree-Fock (TDHF) method [19–22].

Recent coupled-channel calculations of heavy-ion fusion
reactions have used the “rotating frame approximation”
[17,18] which assumes that the orbital angular momentum
L of relative motion is conserved; this approximation avoids
the full angular momentum coupling and thus considerably
reduces the number of coupled channels. One tends to
use empirical interaction potentials which are mostly real
and energy independent (e.g., the Woods-Saxon potential,
proximity-type potentials, and the double-folding potential).
An imaginary potential is unnecessary because one explicitly
takes into account all channel couplings that affect fusion.
Coupling potentials are usually obtained utilizing macroscopic
nuclear structure models (e.g., the rotational model or har-
monic vibrator). The coupled-channel equations are solved
numerically with standard scattering boundary conditions at
r → ∞ and an incoming-wave boundary condition at some
point r = RF inside the Coulomb barrier. The fusion cross
section is obtained from the incoming flux at RF .

Fusion in the TDHF collision process is achieved when
the relative kinetic energy in the entrance channel is entirely
converted into internal excitations of a single well-defined
compound nucleus. In the TDHF theory, the dissipation of
relative kinetic energy into internal excitations is due to
the collisions of the nucleons with the “walls” of the self-
consistent mean-field potential. TDHF studies demonstrate
that the randomization of the single-particle motion occurs
through repeated exchange of nucleons from one nucleus into
the other. Consequently, the equilibration of excitations is
very slow, and it is sensitive to the details of the evolution
of the shape of the composite system. If one of the nuclei is
deformed, one needs to carry out TDHF fusion calculations on
a three-dimensional lattice for different relative orientations
of the nuclei as they approach each other on a Rutherford
trajectory, and afterwords one has to perform a suitable average
over all orientations. Depending on the incident energy and
impact parameter, some relative orientations may contribute to
fusion while others may not. In a lowest-order approximation,
one might assume that all relative orientations of the intrinsic
axis system occur with equal probability. This is indeed a
reasonable approximation for relatively light nuclei where
Coulomb excitation is negligible. However, in heavier systems,
the dynamic alignment of the deformed nucleus as a result of
multiple E2 and E4 Coulomb excitation of the ground state
rotational band may no longer be ignored and results in a
definite preferential alignment of the deformed nucleus which
must be taken into account when calculating the fusion cross
section.

There are a very limited number of TDHF collision studies
involving deformed nuclei, and almost all of these were done in
an axial geometry using the “rotating frame approximation,”
and thus they could not address the orientation dependence
of reaction cross sections. Recently, we have developed a
new TDHF code that assumes no symmetries regarding both
the collision geometry and the Skyrme effective interaction
[23] and utilizes the modern Skyrme force parametrizations,
including the time-odd terms. The numerical calculations are
performed on a large three-dimensional Cartesian lattice using
the basis spline collocation method [21] for increased accuracy.
In this work, we shall use this code to study fusion cross
sections in the collisions of spherical+deformed nuclei.

The theoretical formalism for calculating the fusion cross
section is outlined in Sec. II. In Sec. III, we present fusion
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calculations carried out using this approach. In Sec. IV, a
summary and outlook are provided.

II. TDHF WITH ALIGNMENT

The evaluation of heavy-ion collision dynamics can be
divided into two separate steps. First, dynamic Coulomb align-
ment calculation is carried out to determine the probability
that a given nuclear orientation occurs at the distance r(t0),
where the TDHF run is initialized. The distance r(t0) is chosen
such that the nuclei only interact via the Coulomb interaction.
Second, TDHF calculation, starting at this finite internuclear
distance r(t0), is performed for a fixed initial orientation of the
deformed nucleus. Since the experiments are usually done with
unpolarized beams, in a full quantum mechanical calculation
one would have to average over discrete quantum mechanical
rotational bands. In the classical limit, this corresponds to
averaging over orientation angles. A general study of taking the
classical limit of the relative nuclear motion during a heavy-ion
collision which includes inelastic excitations of one of the
heavy ions in the entrance channel has been given in Ref. [24].

A. Coulomb excitation

For a given incident energy Ec.m. and impact parameter b,
we carry out a semiclassical Coulomb excitation calculation
of the dominant ground state rotational band of the deformed
nucleus (see Fig. 1). The Coulomb excitation calculation starts
at very large internuclear distances (about 1500 fm) when both
nuclei may be presumed to be in their respective ground states.
We have provided the details of this formalism in the Ap-
pendix. Figure 2 shows a representative result in medium-mass
nuclei, 64

28Ni+162
62Dy, where we plot the excitation probability of

the 162Dy ground state rotational band members as a function of
time. In the Coulomb excitation code, we utilize the measured
energy levels of the ground state rotational band in 162Dy up
to the 18+ level [25]. We also use experimental values for
the reduced transition probabilities [26]B(E2, 0+ → 2+) =
5.35 e2b2 and B(E4, 0+ → 4+) = 0.07 e2b4, from which one
can calculate all remaining E2 and E4 matrix elements within
the collective rotor model. In this semiclassical calculation,
one can see how the nucleus “climbs up the rotational band”
during the collision. Negative times in Fig. 2 correspond
to the incoming branch of the Rutherford trajectory, and
positive times correspond to the outgoing branch. The distance
of closest approach is reached at t = 0. (Alternatively, one

FIG. 1. (Color online) Coulomb excitation of the ground state
rotational band members via multiple E2 and E4 transitions.
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FIG. 2. (Color online) Coulomb excitation probability of the
0+, . . . , 8+ members of the ground state rotational band in 162Dy
as a function of time. The deformed nucleus is excited with a 64Ni
beam at Ec.m. = 200.1 MeV at impact parameter b = 0.

can plot the excitation probability as a function of the
internuclear distance). The Coulomb excitation amplitudes,
aJM (t), give rise to a preferential orientation (alignment).
The dynamic alignment formalism presented in the Appendix
allows us to follow the nuclear alignment as a function of the
internuclear distance vector r(t). We would like to stress that
the quantity which enters in our TDHF fusion calculations
is not the Coulomb alignment after the reaction has taken
place (at t → +∞), but rather the alignment at the finite
internuclear distance r(t0) ≈ 15 fm on the incoming branch of
the Rutherford trajectory. In the case of a spherical+deformed
system, the relative orientation of the deformed nucleus may
be specified by the three Euler angles (α, β, γ ) relative to
the collision plane as shown in Fig. 3. We use here the
definition of the Euler angles given in Ref. [27]. Multiple
Coulomb excitation predominantly excites the members of the
K = 0 ground state rotational band which preserves an axially
symmetric shape; hence, rotations about the symmetry axis z′
described by the Euler angle γ are irrelevant (see Appendix).

B. Fusion cross section

Subsequent to the determination of the initial conditions
for the two nuclei, as described in the previous section, we

FIG. 3. Orientation of the intrinsic body-fixed frame of the
deformed target nucleus is specified by the three Euler angles (α, β, γ )
relative to the collision plane.
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perform a TDHF calculation to establish the outcome of the
collision process. In TDHF, for a given set of initial conditions
(energy, impact parameter, orientation, etc.), only one outcome
is possible, thus we define

PTDHF(b,Ec.m.; β, α) =
{

1 TDHF fusion

0 TDHF no fusion,
(1)

where b is the asymptotic impact parameter, Ec.m. is the
associated center of mass energy, and quantities β and α denote
the orientation angles discussed above. The total fusion cross
section may be written as

σfusion(Ec.m.) = 2π

∫ bmax

0
b db Pfusion(b,Ec.m.). (2)

The probability for fusion is given in terms of the differential
probability

Pfusion(b,Ec.m.) =
∫

d�
dPfusion(b,Ec.m.; β, α)

d�
, (3)

where the Euler angle solid angle element is given by d� =
sin(β)dβdα, and

dPfusion(b,Ec.m.; β, α)

d�
= dPorient(b,Ec.m., t0; β, α)

d�

×PTDHF(b,Ec.m.; β, α). (4)

Since for a given Ec.m. value and angles (β, α) the TDHF fusion
probability is either zero or unity, we can instead write the
integrals over the impact parameter to terminate at bmax(β, α),
where bmax(β, α) denotes the maximum impact parameter for
fusion for orientation angles β and α. This allows us to write

dσfusion(Ec.m.; β, α)

sin(β) dβ dα
= 2π

∫ bmax(β,α)

0
b db

× dPorient(b,Ec.m., t0; β, α)

sin(β) dβ dα
. (5)

The differential cross section given in Eq. (5) in terms of Euler
angles should not be confused with the laboratory differential
cross section given in terms of the scattering angles. The
differential orientation probability used in Eq. (5) is evaluated
in the Appendix, Eq. (A7).

III. NUMERICAL STUDIES

To gain a better insight into the differential orientation
probability mentioned above, we performed calculations for
systems that involve two heavy reaction partners and for
systems composed of two light nuclei. We first examine the
dynamic orientation, due to multiple E2/E4 Coulomb excita-
tions, of the deformed nucleus 162

66Dy colliding with a spherical
64
28Ni nucleus at Ec.m. = 265 MeV. In a central collision (impact
parameter b = 0), the orientation probability of an even-even
nucleus is independent of the Euler angle α because, starting
from the 0+ ground state, only magnetic substates M = 0
of the ground state rotational band are excited. Therefore,
the orientation probability depends only on the Euler angle
β in this case [see Appendix, Eq. (A7)]. Figure 4 shows
the orientation probability for two values of the internuclear
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FIG. 4. (Color online) Dynamic alignment due to Coulomb
excitation of 162Dy by a 64Ni beam. Shown is the orientation
probability as a function of the Euler angle β in a central collision
at internuclear distances R = 1363 fm (blue straight line) and R =
13.2 fm (red curve).

distance. At a very large distance (R = 1363 fm) before the
collision where the deformed nucleus is in its 0+ ground
state, all Euler angles β occur with equal probability, and
there is no preferential alignment. However, at an internuclear
distance of R = R1 + R2 + 2 = 13.2 fm (where R1 and R2

denote the mean square nuclear radii), we observe substantial
alignment preference. Clearly, the perpendicular orientation
(β = 90◦) is preferred over the parallel (β = 0◦) orienta-
tion, with an alignment ratio [dP (β = 90◦)/d�]/[dP (β =
0◦)/d�] = 1.54. The reason for this preferred alignment is
easily understood in terms of classical electrostatics: for a
given internuclear distance R, the perpendicular orientation
of the deformed nucleus minimizes the Coulomb interaction
energy which is proportional to P2[cos(β)].

We have repeated the above analysis to study the Coulomb
excitation of the deformed nucleus 22

10Ne in a central collision
with a 16

8O nucleus. In the Coulomb excitation code, we utilize
the measured energy levels of the 22Ne rotational band up to
the 6+(6.311 MeV) level [25]. The B(E2, 0+ → 2+) value
is computed from the measured half-life [26]T1/2 = 3.63 ps,
and the remaining E2 matrix elements are determined from
the collective rotor model. Figure 5 shows the corresponding
orientation probability for these two light nuclei. Despite the
much higher incident energy of Ec.m. = 95 MeV (about 6.9
times the Coulomb barrier height), we observe only a very
small alignment preference: [dP (β = 90◦)/d�]/[dP (β =
0◦)/d�] = 1.007. There are two aspects pertaining to the
importance of dynamic alignment in calculating fusion cross
sections. In the case where all orientations lead to fusion, the
alignment probability provides a properly weighted sum for
calculating the fusion cross section using Eq. (3). However,
implicit in the above expression is also the fact that for different
orientations we will have different values for bmax. Thus, even
in a case where the central collision leads to fusion for all
orientations of the deformed nucleus, and even if the Coulomb
excitation probabilities are angle independent, we still have

024606-3



A. S. UMAR AND V. E. OBERACKER PHYSICAL REVIEW C 74, 024606 (2006)

0 20 40 60 80

 β (deg)

0.497

0.498

0.499

0.5

0.501

0.502

dP
(β

) 
/ s

in
β 

dβ

E
c.m.

 = 95 MeV

b = 0 fm

16
O + 

22
Ne

FIG. 5. (Color online) Dynamic alignment due to Coulomb
excitation of 22Ne by a 16O beam. Shown is the orientation probability
as a function of the Euler angle β in a central collision at internuclear
distances R = 154 fm (blue straight line) and R = 14 fm (red curve).

different contributions to the fusion cross section arising from
different orientations.

To demonstrate the points made above, we performed
TDHF calculations for the 16O+22Ne system at Ec.m. =
95 MeV. We chose this light system at a relatively high beam
energy so that we could perform the numerical calculations
faster. We used our new TDHF code [23], which works in
three dimensions and uses modern Skyrme forces, including
the time-odd terms. For this work, we used the SLy4
parametrization [28]. In this case, Hartree-Fock calculations
result in a spherical 16O nucleus and a 22Ne nucleus with
strong axial deformation. When no spatial symmetries are
assumed, Hartree-Fock calculations generate an orientation
for the intrinsic coordinate system, with respect to the code
coordinate system, typically determined by the choice for
the initial single-particle states, e.g., harmonic oscillators.
Depending on the order in which the Cartesian oscillator
shells are filled, we get a particular orientation for the
nucleus. Different orientations with Euler angle β �= 0 can
be generated by rotating the coordinate frame in which the
initial single-particle states are created with respect to the
code frame. The resulting states will then be oriented with
Euler angle β with respect to the code frame. A subsequent

rotation perpendicular to this direction would then generate
the α rotation. The Hartree-Fock iterations in generating the
static solutions preserve this orientation since in an unrestricted
geometry all orientations are exactly equivalent.

We performed calculations by keeping the angle α fixed at
α = 0◦ and varying the angle β in 10◦ intervals. At this energy,
all angles up to β = 60◦ show no fusion for head-on collisions,
whereas larger angles fuse. For each of the orientations leading
to fusion, we made a sweep over the impact parameter to find
the maximum impact parameter for fusion. This was initially
done in 1.0 fm steps and reduced down to 0.05 fm when the
approximate fusion boundary was located. For large impact
parameters, the system undergoes multiple revolutions before
fusion or deep-inelastic collision. Starting from an initial
separation of 15 fm, we followed most of the collisions to
about 1200 fm/c. Angles smaller than β = 60◦ contribute to
the deep-inelastic channel. For these orientations, a study of the
central collisions show a gradual decrease in the translational
kinetic energy between the two final fragments, ranging from
almost 30 MeV for β = 0◦ to about 11 MeV for β = 50◦. We
also observe particle transfer between the fragments, in most
of the cases, the final fragments seem to have exchanged one
neutron from the neon to the oxygen. In the fusion regime,
we found maximum impact parameters for fusion as 6.35,
6.55, 6.83, and 6.87 fm for β values of 60◦, 70◦, 80◦, and
90◦, respectively. In Fig. 6, we show various time slices
of the TDHF evolution for the case of β = 60◦ and b =
6.35 fm. During this time interval, the system makes about
four revolutions, and eventually the internal structure shows
no memory of the initial structure. For Euler angles β = 60◦,
70◦, 80◦, and 90◦, respectively, we find 16O+22Ne fusion cross
sections dσfusion(Ec.m.; β, α = 0◦)/(sin(β) dβ dα) of 633, 673,
732, and 741 mb/sr, as shown in Fig. 7.

To get a better idea of the effects of deformation, we
studied the same system using the filling approximation used
in earlier TDHF calculations to obtain a spherical equivalent
of a deformed nucleus. In this case, two protons and four
neutrons in the s-d shell were distributed to fill the entire shell
with fractional occupation numbers resulting in a closed shell
and a spherical 22Ne nucleus. In this case, TDHF calculations
show no fusion. Finally, let us compare our TDHF fusion

FIG. 6. (Color online) TDHF time evolution
for the 22Ne+16O collision at an impact param-
eter of b = 6.35 fm and initial neon orientation
angle β = 60◦ using the SLy4 interaction. Initial
energy is Ec.m. = 95 MeV. During the evolution,
the combined system makes four revolutions.
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FIG. 7. Cross section as a function of orientation angle β. Shaded
region indicates fusion.

cross section results with the predictions of a standard simple
fusion model. We have chosen the Bass model [1] for two
spherical nuclei; the heavy-ion potential VL(r) consists of
a Coulomb, centrifugal, and nuclear part. The nuclear part
depends exponentially on the surface separation s = r − R12,
where R12 = R1 + R2 denotes the sum of the half-density
radii. For the 16O+22Ne system considered here, one finds
R12 = 5.70 fm, and the L = 0 fusion barrier is located at
10.4 MeV. The Bass model yields expressions for the total
fusion cross section in the form σfusion(Ec.m.) = πb2

max, where
bmax denotes the maximum impact parameter leading to fusion.
In the low-energy regime, bmax and the closely related angular
momentum Lmax are determined from the condition that the
maximum of the effective potential VL(r) equals Ec.m.. With
increasing value of L, the effective potential maximum moves
closer and closer to the sum of the half-density radii. At the
critical energy E1 = 41.6 MeV, the maximum of VL(r) is
located at the distance R12. The basic model assumption is that
at r = R12, strong radial and tangential friction forces cause
a sharp drop to zero in the radial linear momentum, and the
relative angular momentum is lowered by either “rolling” or
“sticking.” For energies Ec.m. > E1, frictional energy loss sets
in, and the fusion cross section is determined by the value of the
Coulomb plus nuclear potential at the half-density separation
V (R12). The Ec.m. = 95 MeV chosen in our TDHF fusion
calculations corresponds to the high-energy regime of the Bass
model, which starts at energy E2 = 89.4 MeV. The Bass model
predicts for this region

bmax(Ec.m. > E2) = R12[(E2 − V (R12))/Ec.m.]
1/2. (6)

For the 16O+22Ne system, one finds V (R12) = −8.23 MeV,
resulting in bmax = 5.77 fm at Ec.m. = 95 MeV. This Bass
model value for spherical nuclei should be compared with
the maximum impact parameters found in the TDHF fusion
calculation which yields values between 6.35 and 6.87 fm in
the spherical+deformed calculation.

IV. CONCLUSIONS

To date, most TDHF calculations have been limited to
the study of collisions involving spherical systems. Fur-
thermore, approximations made of the collision geometry
(reaction-plane symmetry, etc.), in order to make numerical
computations tractable, have lead to the exclusion of deformed
systems from such studies. In this paper, we have presented
TDHF calculations involving spherical+deformed systems
without any assumptions regarding collision geometry and
using the full form of the Skyrme interaction. The details
of our new TDHF code can be found in Ref. [23]. Dealing
with deformed nuclei necessitates an approach to determine
the orientation of the deformed system prior to the start of
the TDHF calculations, as such calculations are initialized
at relatively small separations. This alignment is inherently
related to multiple E2/E4 excitations due to the Coulomb
interaction between the two nuclei. We have outlined an
approach for calculating this dynamic alignment probability
and have shown how to incorporate it into the cross section
calculations. While the alignment probabilities for various
orientations do not vary substantially for light systems, they
show considerable preference for particular orientations of
heavier systems. On the other hand, we have also shown that
the alignment has a major consequence for TDHF calculations.
We have observed that in the 22Ne+16O system, alignments
close to the collision axis (β < 60◦) result in no fusion,
whereas perpendicular alignments lead to fusion. Furthermore,
the alignment naturally affects the impact parameter depen-
dence of fusion for different orientations. With the advent
of computer technology and numerical methods, unrestricted
TDHF calculations are becoming more and more feasible. It
is our goal to pursue and improve such calculations in order
to provide a tool for studying heavy-ion collisions with as few
computational restrictions as possible.
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APPENDIX: DYNAMIC ALIGNMENT OF DEFORMED
NUCLEI DUE TO COULOMB EXCITATION

We present a brief summary of the theory of dynamic
alignment of deformed nuclei during a heavy-ion collision. The
alignment results from multiple E2/E4 Coulomb excitation of
the ground state rotational band. Details, including a discussion
of strong nuclear interaction effects, can be found in Ref. [29].
The associated form factors for inelastic Coulomb excitation
and strong nuclear excitation (proximity potential) have been
derived for collective rotations and surface vibrations in
Ref. [30].

There exists extensive literature on the semiclassical theory
of multiple Coulomb excitation of heavy ions [31]. In
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this approach, the excitation process is described quantum
mechanically, and the relative motion of the nuclei is treated by
classical mechanics. The total Hamiltonian consists of the free
Hamiltonian of the target nucleus, H0(X), and of the coupling
potential for inelastic Coulomb excitation, VC(X, r(t)). The
latter depends on the intrinsic coordinates of the target X and
on the classical relative trajectory r(t).

The Coulomb excitation process is determined by the time-
dependent Schrödinger equation

[H0(X) + VC(X, r(t))] ψ(X, t) = ih̄
∂

∂t
ψ(X, t). (A1)

The eigenstates of the target nucleus are given by

H0(X)φr (X) = Erφr (X). (A2)

We expand the time-dependent wave function in terms of the
stationary eigenstates φr of the unperturbed Hamiltonian H0

ψ(X, t) =
∑

r

ar (t)φr (X)e−iEr t/h̄, (A3)

resulting in a system of linear coupled differential equations
for the excitation amplitudes as a function of time

ih̄ȧr (t) =
∑

s

as(t) 〈φr (X)|VC(X, r(t))|φs(X)〉 ei(Er−Es )t/h̄.

(A4)

This system of differential equations is solved numerically
by a combination of the fourth-order Runge-Kutta method
and the AdAms-Bashforth-Moulton (predictor-corrector)
algorithm [32]. For the classical relative motion r(t), we utilize
the “coordinate system B” defined in Ref. [31], page 47.

In the specific application of this formalism to dynamic
nuclear alignment, we describe the free Hamiltonian and the
corresponding wave functions in terms of the collective rotor
model. The degrees of freedom are the three Euler angles
X = (α, β, γ )

H0(X) = Trotor(X). (A5)

In deformed even-even nuclei, the ground state rotational
band has an intrinsic total angular momentum projection
K = 0; therefore, the collective rotor wave functions [27] are
independent of the Euler angle γ which describes a rotation
about the intrinsic symmetry axis z′ (see Fig. 3)

φr (X) =
(

2J + 1

8π2

)1/2

DJ∗
M,K=0(α, β, γ )

= (2π )−1/2 YJM (β, α). (A6)

The probability density at time t to find the nucleus oriented
with given Euler angles X = (α, β) is given by |ψ(X, t)|2;
by integration over γ , we find the corresponding differential
orientation probability

dPorient(b,Ec.m., t ; β, α)

sin(β)dβdα
=

∫ 2π

0
dγ |ψ(α, β, γ ; t)|2

→
∣∣∣∣∣
∑
J,M

aJM (t)YJM (β, α)e−iEJ t/h̄

∣∣∣∣∣
2

.

(A7)
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