
PHYSICAL REVIEW C 74, 024326 (2006)

Muon capture on nuclei: Random phase approximation evaluation versus data
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We use the random phase approximation to systematically describe the total muon capture rates on all nuclei
where they have been measured. We reproduce the experimental values on these nuclei to better than 15%
accuracy using the free nucleon weak form factors and residual interactions with a mild A dependency. The
isospin dependence and the effects associated with shell closures are fairly well reproduced as well. However,
the calculated rates for the same residual interactions would be significantly lower than the experimental data if the
in-medium quenching of the axial-vector coupling constant were employed to other than the true Gamow-Teller
amplitudes. Our calculation thus suggests that no quenching is needed in the description of semileptonic weak
processes involving higher multipole transitions and momentum transfer ∼mµ, with obvious importance to
analogous weak processes.
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I. INTRODUCTION

The capture of a negative muon from the atomic 1s orbit,

µ− + (Z,N ) → νµ + (Z − 1, N + 1)∗, (1)

is a semileptonic weak process that has been studied for a
long time (see, e.g., the recent review [1] or the earlier one
by Walecka [2] and the classic by Mukhopadhyay [3] and
the earlier references therein). The total capture rate has been
measured for many stable nuclei; in some cases the capture
rates on separated isotopes have also been determined [4].

The nuclear response in muon capture is governed by the
momentum transfer of the order of the muon mass. The phase
space and the nuclear response favor lower nuclear excitation
energies; thus the nuclear states in the giant resonance region
dominate. Because the experimental data are quite accurate and
the theoretical techniques of evaluating the nuclear response in
the relevant regime are well developed, it is worthwhile to see
to what extent the capture rates are understood globally. Such
a comparison may be viewed as a general test of our ability
to describe semileptonic weak charged-current reactions with
q ∼ mµ over a large range of nuclei, where q is the momentum
transfer and mµ = 105.6 MeV is the muon mass.

The present work represents the first fully comprehensive
theoretical evaluation of the total muon capture rate over
the full range of nuclei where the experimental data are
available. Previously, the muon capture rates for selected
nuclei encompassing a broad range of atomic charges were
calculated in Ref. [5]. That article was devoted mostly to
the description of the radiative muon capture, and the total
muon capture rates were a by-product with only a limited
agreement with the data. More along the lines of the present

approach, Refs. [6] and [7] used a Hatree-Fock random phase
approximation method and obtained good agreement with the
experimental data, however, only for a limited selection of
nuclei. The local Fermi gas model was used successfully for
the evaluation of the muon capture rate in selected nuclei in
Ref. [8] and more recently in Ref. [9].

The present work is an extension of previous papers devoted
to this issue [10,11]. In Ref. [10] the capture rates for 12C,
16O, and 40Ca were evaluated using the continuum random
phase approximation, and a very good agreement with the total
rate was obtained. However, the residual interaction employed
in [10] was adjusted to describe other observables in the cases
of 12C and 16O. Moreover, it was necessary to quench the
Gamow-Teller-like (GT) partial capture rate leading to the
1+ ground state of 12B. In the later Ref. [11] heavier nuclei
with N > Z,44,48Ca, 56Fe, 90Zr, and 208Pb, were also included
with a similar success. In Ref. [11] it was also shown that
for the calculation of muon capture rates the standard random
phase approximation (SRPA) is essentially equivalent to the
more computationally demanding continuum random phase
approximation. Thus, the SRPA method is also used in the
present study. In Ref. [12] the SRPA approach was used to
study the muon capture rates for a long chain of calcium and
tin isotopes.

One of the important issues when evaluating the response of
nuclei to weak probes of relatively low energies is the problem
of quenching of the corresponding strength. The evidence for
quenching comes primarily from the analysis of the β decay
of the (sd) shell [13] as well as the (p,f ) shell [14] nuclei.
In addition, the interpretation of the forward angle (p, n) and
(n, p) charge-exchange reactions [15–17] leads to the same
conclusion. All such evidence, so far, is restricted to the GT
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strength and relatively low excitation energies. A convenient
and customary way to account for this quenching is to use an
“effective” axial-vector coupling constant gA, reducing it from
its nominal value of gA = 1.26 to gA ∼ 1.

The evaluation of the muon capture rate, reported here, sug-
gests that the quenching of gA is not needed to describe these
data. (That conclusion was already reached in Refs. [10,11].)
As stressed above, the mean excitation energy in muon capture
is in the region of giant resonances of about 15 MeV (slowly
decreasing with A or Z), and the GT-like operators contribute
very little in heavier nuclei where the neutrons and protons
are in different oscillator shells. In lighter nuclei, for N and Z

less than 40, the GT strength contributes and is concentrated at
low energy. Thus, in agreement with the evidence mentioned
above, we quench this, and only this, part of the transition
strength by a common factor (0.8)2 = 0.64 [13].

The present work, and the evaluation of the muon capture
in general, makes it possible to extend the study of quenching
to higher multipoles, and correspondingly to higher nuclear
excitation energies. Such processes typically depend primarily
on the positions of the corresponding giant resonances and on
the overall strength. Our conclusions, therefore, show that the
SRPA method involving correlated particle-hole excitations
is capable of describing the inclusive semileptonic processes
with momentum transfer q of order ∼mµ quite well. This is
an important conclusion, applicable to a variety of practically
important subjects, e.g., detection of supernova neutrinos or
evaluation of the nuclear matrix elements for neutrinoless
double β decay.

The challenge of evaluating the muon capture rate in a
wide variety of nuclei made it necessary to include several
effects that are not usually included in analogous calculations.
Because we needed to describe the bound muon in the 1s orbit
well, we went beyond the usual calculation of the muon density
at the site of the nucleus. First, we solved the Dirac equation
in the field of the finite size nucleus numerically. We then used
its wave function, taking into account that it is not constant
between the origin and the nuclear surface. For high Z values
the muon is relativistic, and the “small” p1/2 component of
its wave function is nonnegligible. As explained below, we
used here (for the first time) the additional transition matrix
elements associated with that component.

Because our goal is to describe muon capture in all
nuclei (except the very light ones) we have to describe, at
least crudely, effects associated with the partial filling of the
single-particle subshells for nuclei that do not have magic
numbers of protons and/or neutrons. As described in the
next section, we describe these effects by taking into account
the smearing of the proton and neutron Fermi levels caused
by pairing and deformation. It appears that this simplified
treatment of complicated correlations, including those caused
by deformation, is sufficient for our purpose.

II. METHOD AND PARAMETERS

In this calculation we used the standard RPA model to
describe the nuclear excitations. In a previous work [11] this
model was shown to be just as good as the computationally
more involved continuum random phase approximation (RPA).

As residual interaction we use the phenomenological Landau-
Migdal force. For low mass nuclei the parameters for the
force were taken from Ref. [18]. This choice was shown to be
accurate in [10]. For muon capture the most important term in
the Landau-Migdal force is the spin-isospin coupling constant
g′. In [18] the value g′ = 0.7 is recommended; however, in
a recent review [19] g′ = 0.96 is used for heavy nuclei. To
accommodate this variation, we use an interpolation formula
with a mild A dependency,

g′ = c1 + c2A
1/3, (2)

where the constants c1 and c2 are fitted to yield g′ = 0.7 in 16O
and g′ = 0.96 in 208Pb. We note that the change in the total
capture rate in going from g′ = 0.7 to g′ = 0.96 is less than
10%.

To get a basis of single-particle states we diagonalize a
Woods-Saxon potential (WSP) in a harmonic oscillator basis
of more than eight major shells, thus enabling us to always
have an excess of 2h̄ω of valence space above the Fermi level
for both protons and neutrons. As parameters of the WSP, we
use R0 = 1.2 ∗ A1/3 fm for the radius and a = 0.53 fm for the
diffuseness. The spin-orbit term is given as the derivative of
the WSP times a strength Vso. Here we simply used a fixed
value of Vso = −8.95 throughout, initially checking that other
choices did not significantly effect the total capture rate. To
find the overall strength of the WSP, we fixed the last proton
and neutron particle energies to experimentally known masses.
More specifically, for a nucleus (A,Z) we found the energy
of the last proton level from the proton separation energy
Sp in (A,Z). For the last neutron level we used the neutron
separation energy Sn, but this time in the daughter (A,Z − 1).

To be able to handle open-shell nuclei we previously used
a simple scheme where partial occupancies were treated by
multiplying the open level matrix elements by occupation
numbers corresponding to an independent particle model [20].
In this work we attempted to improve on this treatment
by solving the standard BCS equations to determine the
occupation numbers. Following Ref. [21] the occupation
probabilities are given by

v2
k = 1

2

(
1 − εk − µ√

�2 + (εk − µ)2

)
, (3)

where εk are the single-particle energies and the chemical
potential µ is fixed by the condition N = ∑

k v2
k (2jk + 1).

The pairing gap � is obtained by the procedure described in
Ref. [22].

The formalism used to evaluate the total muon capture rate
is that of Ref. [2]. As mentioned in the Introduction, we treat
the muon wave function by solving the Dirac equation in the
extended charge of the nucleus, which is assumed to be of
the Woods-Saxon form with the same parameteres as above.
For nuclei with large values of Z, the atomic binding energy
becomes a significant fraction of the muon rest mass and the
small component of the Dirac bi-spinor may not be negligble in
this range. We therefore explicitly include all terms containing
both large and small components in our transition operators.
An outline of the complications arising from this is given in
the Appendix.
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FIG. 1. (Color online) Comparison of the measured total muon
capture rates [4] (denoted by squares), the calculated rates with all
corrections (open circles), and the calculated rates without the BCS
and relativistic corrections (diamonds). The inset, in larger scale,
shows the same results for light nuclei. When the measurements
are for the natural abundance of a given element, the calcula-
tion represents the corresponding combination of the individual
isotopes.

III. RESULTS

Our calculated total muon capture rates for all nuclei for
which measured values exist are shown in Fig. 1. One sees
that the overall agreement is quite good. With the exceptions
at Z = 74 and 80 the calculations reproduce the experimental
values to 15% or better. In Fig. 2 we provide a ratio plot where
the degree of agreement can be better seen. In addition, in
Table I we collect all our calculated capture rates, including
the results for individual isotopes.

FIG. 2. (Color online) Ratios of the calculated and measured total
muon capture rates vs the atomic number.

In Fig. 1 the total capture rates are also compared with val-
ues obtained from calculations where the BCS occupancy and
the relativistic corrections are turned off. From this comparison
it is clear that these are only small corrections, providing
justification for the calculation done in Refs. [10,11,20]. At
low Z one especially notices the good reproduction of the
distinct dips in the rates above the magic numbers Z = 20
and 28. For Z = 50 the same trend is visible in both calculation
and experimental values, but the calculations overshoot the
experimental values somewhat. Just above Z = 60, where
the N = 82 closed neutron shell comes into play, we also
overestimate the capture rates. This continues into the region
with Z = 74 and 80, and also, to a lesser extent, to the
doubly-magic nucleus 208Pb. One should remember that some
of the nuclei above Z = 50 and below Z = 82 are deformed
and thus have single-particle structures different than those
of the ones given by our spherical mean-field model; thus a
perfect agreement should not be expected. The fact that the
calculated values are again approaching experimental values
at Th, U, and Pu is likely a consequence of the same dip after
the magic shell closure that was seen at lower Z also. (These
trends were also noted in Ref. [23]; see, in particular, Fig. 3 of
that reference.)

As stated previously, we use the unquenched value for
the axial-vector coupling constant for all multipole operators,
except for the true Gamow-Teller transition. For most of
the light- and medium-mass nuclei, λ = 1− (dipole-like) and
λ = 2+ (quadrupole-like) transitions dominate. However, for
208Pb and the heavier nuclei, λ = 1+ transitions contribute
significantly to the total capture rate. For these nuclei,
the neutron excess is already so large that, in the simple
independent particle model, two major oscillator shells must
be overcome when changing a proton into a neutron in the
muon capture process. Thus, for these excitations the λ = 1+
multipole transition corresponds to a 2h̄ω mode and not to a
(0 h̄ω) Gamow-Teller transition; the contribution of the latter
to the rate in the heavy nuclei vanishes in our calculations. We
have not renormalized the axial-vector coupling constant for
such 2h̄ω 1+ transitions, supported by the good agreement of
the the calculated capture rates with the measured results for
the heavy nuclei.

An important test of the ability of a nuclear structure
model to reproduce the data is the dependence of the muon
capture rate on the number of neutrons for a fixed nuclear
charge Z. Typically, the rate decreases with increasing N (or
A) as subsequently more neutron levels are getting blocked.
This effect is incorporated into the well-known Primakoff
parametrization by its (N -Z) dependence [26]. As examples,
Table I includes three isotope chains of nuclei (Ca, Cr, and
Ni) where total capture rates for individual isotopes were
measured. One sees that the isotope dependence is well
reproduced by our calculations. Analogous calculations were
performed in Refs. [12,27].

IV. CONCLUSION

The present analysis shows that the standard random phase
approximation method is capable of describing quite well the
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TABLE I. Calculated rates for natural elements and for the important individual isotopes. All rates are in the form xx × 106 s−1. If the
natural abundance has more than 90% of a given isotope then the Nuc column gives this particular isotope and the calculation is carried
out for this nucleus only. Whenever a nucleus has the superscript nat the calculation is a weighted combination of all isotopes contributing
more than 10% to the natural abundance. An empty experiment box means that the given isotope has not been measured. Natural abundance
measurements appear in the box next to the most abundant isotope. Experimental data are from Ref. [4], where the original sources may be
found.

Nuc Exp Calc Nuc Exp Calc Nuc Exp Calc

12C 0.039 0.042 16O 0.103 0.104 18O 0.088 0.089
20Ne 0.204 0.206 24Mg 0.484 0.454 28Si 0.871 0.823
32S 1.352 1.269 40Ar 1.355 1.345 40Ca 2.557 2.379
44Ca 1.793 1.946 48Ca 1.214a 1.455 48Ti 2.590 2.214
natCr 3.472 3.101 50Cr 3.825 3.451 52Cr 3.452 3.085
54Cr 3.057 3.024 56Fe 4.411 4.457 natNi 5.932 6.004
58Ni 6.110 6.230 60Ni 5.560 5.563 62Ni 4.720 4.939
natZn 5.834 5.235 64Zn 5.735 66Zn 4.976
68Zn 4.328 natGe 5.569 5.317 70Ge 5.948
72Ge 5.311 74Ge 4.970 natSe 5.681 5.588
78Se 6.023 80Se 5.485 82Se 5.024
natSr 7.020 7.529 86Sr 8.225 88Sr 6.610 7.445
natZr 8.660 8.897 90Zr 8.974 92Zr 9.254
94Zr 8.317 natMo 9.614 10.33 92Mo 10.80
94Mo 11.01 96Mo 10.04 98Mo 9.153
natPd 10.00 11.00 104Pd 12.71 106Pd 11.44
108Pd 10.44 110Pd 9.607 natCd 10.61 11.46
110Cd 12.58 112Cd 11.51 114Cd 11.21
116Cd 10.44 natSn 10.44 11.95 116Sn 13.08
118Sn 12.35 120Sn 11.64 122Sn 10.82
124Sn 10.15 natTe 9.270 9.523 126Te 10.20
128Te 9.639 130Te 9.043 natBa 9.940 10.80
136Ba 11.45 138Ba 10.73 natCe 11.60 12.44
140Ce 12.38 142Ce 12.95 natNd 12.50 13.70
142Nd 13.67 144Nd 14.12 146Nd 13.15
natSm 12.22 13.86 148Sm 15.01 152Sm 13.23
154Sm 12.08 natGd 11.82 13.06 156Gd 14.15
158Gd 13.06 160Gd 12.03 natDy 12.29 12.97
162Dy 13.45 164Dy 12.54 natEr 13.04 13.87
166Er 14.46 168Er 13.51 170Er 13.22
natHf 13.03 15.13 178Hf 15.44 180Hf 14.89
natW 12.36 15.81 182W 16.37 184W 15.79
186W 15.32 natHg 12.74 15.88 198Hg 17.17
200Hg 16.29 202Hg 15.43 204Hg 14.58
natPb 13.45 15.15 206Pb 15.54 208Pb 14.97
232Th 12.56 13.71 234U 13.79 14.89 236U 13.09b 14.17
238U 12.57b 13.51 242Pu 12.90 13.13 244Pu 12.40c 12.70

aFrom Ref. [24].
bFrom Ref. [23].
cFrom Ref. [25].

total µ− capture rates for essentially all stable nuclei. The
dependence of the capture rate on the isospin, or neutron
excess, the so-called Primakoff rule [26], is also fairly well,
albeit not perfectly, reproduced. Our calculation even describes
the rather subtle effects of shell closures when considering the
dependence of the capture rate on Z and/or A. There is no
indication of the need to apply any quenching to the operators
responsible for the muon capture, in particular those involving
single-particle transitions from one oscillator shell to another,

i.e., other than those involving 0h̄ω spin and isospin changing
operators.

Given the task of describing the capture in a variety of
nuclei, including those with high charge Z and nuclei with
unfilled shells, it became necessary to consider several effects
that have not been typically included previously. One of them is
a fully relativistic treatment of the muon bound state, including
the effects associated with the “small” p1/2 component of its
wave function. Another one is the effect of the smearing of the

024326-4



MUON CAPTURE ON NUCLEI: RANDOM PHASE . . . PHYSICAL REVIEW C 74, 024326 (2006)

Fermi level (both for protons and neutrons) in nuclei that have
nonmagic Z or N numbers. Even though the corresponding
corrections are not very large, they contribute noticeably to the
overall good agreement between the experimental data and our
calculated values.

Our findings then can be used as guidance in the evaluation
of a wide variety of semileptonic weak processes on nuclei
with similar momentum transfer.
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APPENDIX

In this appendix we give an outline of terms arising from the
inclusion of the fully relativistic treatment of the bound muon
wave function, i.e., of both the large and small components.
The muon wave function we use has the form

φjm =
(

ig(r)�jlm(r̂)

−f (r)�jl′m(r̂)

)
, (A1)

where the radial functions satisfy the equation

d

dr

(
g

f

)
=


 −1 + κ

r
E + mµ − V (r)

−E + mµ + V (r) −1 − κ

r




(
g

f

)
,

(A2)

where g(r) and f (r) are the large and small components,
respectively. Here

κ =
{−(l + 1), j = l + 1

2

l, j = l − 1
2

}
(A3)

and

�j,l,m(r̂) =
∑
ml,ms

(l, 1/2, j |ml,ms,m)Yl,ml
(r̂)χms

. (A4)

These equations are entirely general and can be found in, e.g.,
Ref. [28]. Since we assume that the muon is captured from the
atomic 1s orbit we have l = 0 and l′ = 1. Since l′ is nonzero,
we can no longer just multiply the wave function with the
irreducible nuclear operators and obtain good total angular
momentum. If the positive z axis is chosen along the direction
of the outgoing neutrino, then its wave function becomes

ψ = N

(
χ−

−χ−

)
exp (i �p · �x).

Here χ− are the usual spin down Pauli two-spinors and N is
a normalization given in [28]. This wave function makes the
neutrino purely left-handed as the standard model prescribes.

The approach used in [2] neglects the small component
in the muon wave function and expands the neutrino plane
wave in multipoles. As the large component has l = 0, angular
momentum coupling of the muon wave function and the
multipole operators is quite straightforward. This is, however,

no longer the case if the small component with orbital angular
momentum l = 1 is considered, implying the need for a
cumbersome recoupling of angular momenta to regain tensor
operators that can be applied in the nuclear Hilbert space.
This results in a more complicated expression for the weak
Hamiltonian governing muon capture with several new terms.
In the notation used in [2] the Hamiltonian with all terms from
both components can be written as

H = 2 GF cos θCN∗
√

2

×
[ ∞∑

J=0

√
4π [J ](−i)J

{
iδm,−1/2{M′

J,0 − L′
J,0}

+α
(
J − 1, J,m + 1

2

)
T1

(
J − 1, J,m + 1

2

)
+α

(
J + 1, J,m + 1

2

)
T1

(
J + 1, J,m + 1

2

)
− iβ+(J, J,m)T2

(
J, J,m + 1

2

)
− iβ+(J + 1, J,m)T2

(
J + 1, J,m + 1

2

)
− iβ+(J + 1, J + 2,m)T2

(
J + 1, J + 2,m + 1

2

)
− iβ−(J − 1, J − 2,m)T3

(
J − 1, J − 2,m + 1

2

)
− iβ−(J − 1, J,m)T3

(
J − 1, J,m + 1

2

)
− iβ−(J, J,m)T3

(
J, J,m + 1

2

) }
+

∞∑
J=1

√
4π [J ](−i)J

{
iδm,1/2

{
J ′el

J,1 − J ′ mag
J,1

}
− δ(J − 1, J − 1,m)T4

(
J − 1, J − 1,m + 1

2

)
− δ(J − 1, J − 1,m)T4

(
J − 1, J − 1,m + 1

2

)
− δ(J, J,m)T4

(
J, J,m + 1

2

)
− δ(J, J + 1,m)T4

(
J, J + 1,m + 1

2

)
− δ(J + 1, J + 1,m)T4

(
J + 1, J + 1,m + 1

2

)
+ iη+(J, J,m)T2

(
J, J,m + 1

2

)
+ iη+(J + 1, J,m)T2

(
J + 1, J,m + 1

2

)
+ iη+(J + 1, J + 2,m)T2

(
J + 1, J + 2,m + 1

2

)
− iη−(J − 1, J,m)T3

(
J − 1, J,m + 1

2

)
− iη−(J, J,m)T3

(
J, J,m + 1

2

)
− iη−(J − 1, J − 2,m)T3

(
J − 1, J − 2,m + 1

2

) }]

Here we have defined the tensor operators in the nuclear Hilbert
space as

M′
J,M =

∫
d3 �xg(r)Y0,0jJ (κx)YJ,MJ0

L′
J,M = i

κ

∫
d3 �xg(r)Y0,0∇(jJ (κx)YJ,M )J0

J ′ mag
J,M =

∫
d3 �xg(r)Y0,0jJ (κx) �YM

J,J,1 · �J

J ′el
J,M = 1

κ

∫
d3 �xg(r)Y0,0∇ ∧ (

jJ (κx) �YM
J,J,1

) · �J
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T1(γ, ρ, µ) =
∫

d3 �xf (r)jρ(κx)Yγ,µJ0

T2(γ, ρ, J, µ) =
∫

d3 �xf (r)jJ+1(κx) �Yµ

γ,ρ,1 · �J

T3(γ, ρ, J, µ) =
∫

d3 �xf (r)jJ−1(κx) �Yµ

γ,ρ,1 · �J

T4(γ, ρ, J, µ) =
∫

d3 �xf (r)jJ (κx) �Yµ

γ,ρ,1 · �J ,

where Y are the spherical harmonics and �Y are the vector
harmonics. The first four operators are those involving the large
component and are identical with the ones given in [2]. Their
tensor character is (J,M). The last four are new operators; i.e.,
they were ignored in [2], involving the small component of the
muon wave function. Their tensor character is (γ, µ). The
other indices of the new operators identify terms that originate
in the multipole expansion to produce the correct spherical
Bessel function in the integrals. The constants appearing in the
Hamiltonian above are given by the rather lengthy expressions

α(γ, ρ,m) =
√

3/2 + m

3

√
3

4π

[ρ]

[γ ]
〈ρ 1 γ |000〉

×
〈
ρ 1 γ

∣∣∣∣0 m + 1

2
m + 1

2

〉

β+(γ, ρ, J,m) =
√

3/2 + m

3

√
3

4π

√
J + 1[J + 1]

× 〈1 J + 1 ρ|000〉
×

〈
1 J γ

∣∣∣∣m + 1

2
0 m + 1

2

〉
×W (1 J + 1 γ 1; ρ J )

β−(γ, ρ, J,m) =
√

3/2 + m

3

√
3

4π

√
J [J − 1]

× 〈1 J − 1 ρ|000〉
×

〈
1 J γ

∣∣∣∣m + 1

2
0 m + 1

2

〉
×W (1 J − 1 γ 1; ρ J )

δ(γ, ρ, J,m) =
√

3/2 − m

3

√
3

4π
[J ]2 〈1 J ρ|000〉

×
〈
1 J γ

∣∣∣∣m − 1

2
1 m + 1

2

〉
W (1 J γ 1; ρ J )

η+(γ, ρ, J,m) =
√

3/2 − m

3

√
3

4π

√
J [J + 1]

× 〈1 J + 1 ρ|000〉
×

〈
1 J γ

∣∣∣∣m − 1

2
1 m + 1

2

〉
×W (1 J + 1 γ 1; ρ J )

η−(γ, ρ, J,m) =
√

3/2 − m

3

√
3

4π

√
J + 1[J − 1]

× 〈1 J − 1 ρ|000〉
×

〈
1 J γ

∣∣∣∣m − 1

2
1 m + 1

2

〉
×W (1 J − 1 γ 1; ρ J ) .

Here we have repeatedly used the standard notation [J ] =√
2J + 1. All conventions for the Clebsch-Gordan coefficients

and W symbols are those of [29].
In the derivation of the Hamiltonian given above we used

various selection rules for the Clebsch-Gordan coefficients
and the W symbols. Note that some of the terms vanish at
low angular momenta, since γ and ρ must be positive for any
term to contribute. The quantity m in the above expressions
corresponds to the spin projection of the muon. Since we
consider unpolarized muons we must average over the two
values m = ±1/2.

For completeness we list here the relevant nuclear currents
for the muon capture process. These are

ρ̂V (�x) = GE

A∑
j=1

τ+(j )δ(3)(�x − �xj )

�̂JV (�x) = GE

2Mi

A∑
j=1

τ+(j )
[
δ(3)(�x − �xj )

→∇j − ←∇j δ
(3)(�x − �xj )

]

+ GM

2M

→∇ ∧
A∑

j=1

τ+(j )�σ (j )δ(3)(�x − �xj )

ρ̂A = GA

2Mi

A∑
j=1

τ+(j )�σ · [
δ(3)(�x − �xj )

→∇j

− ←∇j δ
(3)(�x − �xj )

]
+ mµGP

2M

→∇ ·
A∑

j=1

τ+(j ) �σ (j )δ(3)(�x − �xj )

�̂JA(�x) = GA

A∑
j=1

τ+(j ) �σ (j )δ(3)(�x − �xj ).

Here M is the nucleon mass, GE and GM are the Sachs
nucleon form factors, and GA is the axial form factor. We note
that the usual Fermi and Gamow-Teller transition operators
are recovered in the q → 0 limit as the following multipole
components (see, e.g., Ref. [30]),

M0,0 = 1√
4π

GV

A∑
j=1

τ+(j )

L1,M = 1√
2
T el

1,M = i√
12π

GA

A∑
j=1

τ+(j ) σ1,M (j ),

where GV is the q → 0 limit of the vector coupling form
factor, which is often denoted by F1(0) in the literature.

To get the final expression for the total rate one must
now evaluate the absolute squared matrix element of the
Hamiltonian in the initial and final nuclear states and multiply
it by the two-body phase space factor given in [2]. It is
advantegeous to group together the components with like
tensor order to better control the interference of operators
arising from the large and small components.
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A510, 591 (1990).
[9] J. Nieves, J. E. Amaro, and M. Valverde, Phys. Rev. C 70, 055503

(2000); J. E. Amaro, C. Maieron, J. Nieves, and M. Valverde,
Eur. Phys. J. A 24, 343 (2005) .

[10] E. Kolbe, K. Langanke, and P. Vogel, Phys. Rev. C 50, 2576
(1994).

[11] E. Kolbe, K. Langanke, and P. Vogel, Phys. Rev. C 62, 055502
(2000).

[12] N. T. Zinner, K. Langanke, K. Riisager, and E. Kolbe, Eur. Phys.
J. A 17, 625 (2003).

[13] B. H. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984).
[14] E. Caurier, A. Poves, and A. P. Zuker, Phys. Rev. Lett. 74, 1517

(1995).
[15] C. D. Goodman and S. B. Bloom, in Spin Excitation in

Nuclei, edited by F. Petrovich et al. (Plenum, New York, 1983);

G. F. Bertsch and H. Esbensen, Rep. Prog. Phys. 50, 607 (1987);
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