
PHYSICAL REVIEW C 74, 024324 (2006)

Semiclassical description of autocorrelations in nuclear masses
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Nuclear mass autocorrelations are investigated as a function of the number of nucleons. The fluctuating part of
these autocorrelations is modeled by a parameter free model in which the nucleons are confined in a rigid sphere.
Explicit results are obtained by using periodic orbit theory. Despite the simplicity of the model we have found a
remarkable quantitative agreement of the mass autocorrelations for all nuclei in the nuclear data chart. In order
to achieve a similar degree of agreement for the nuclear masses themselves it is necessary to consider additional
variables such as multipolar corrections to the spherical shape and an effective number of nucleons. Our findings
suggest that higher order effects like nuclear deformations or residual interactions have little relevance in the
description of the fluctuations of the nuclear autocorrelations.
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I. INTRODUCTION

As a consequence of the strong nuclear interaction, the
nuclear mass M is not just the sum of the individual nucleons.
The difference between these two quantities is an indicator
of the stability of a given nucleus, the larger the difference
the more stable is the nucleus. An accurate description of this
binding energy as a function of the number of neutrons and
protons is a recurrent research topic in nuclear physics [1] and
nuclear astrophysics [2].

The semiphenomenological liquid drop model, in which the
nucleus is described as a very dense, charged liquid drop, is the
oldest and simplest approach to this problem [3]. It provides
a qualitative description of the binding energy though it fails
to capture features related to the quantum nature of the single
particles (neutrons and protons) inside the nucleus. This is
clearly observed in Fig. 1, where we have plotted the difference
between measured masses [4] and liquid drop model (LDM)
predictions [5], as a function of the proton number N , mass
number A, neutron number Z, and as an ordered list [6,7].

The sharp valleys and round peaks which remain after
the removal of the smooth LDM mass contribution contain
information related with shell effects due to the quantum
motion of the individual nucleons inside the nucleus, nuclear
deformations, and nuclear residual interactions. One of the
main goals of the present paper is to further investigate the
details of these corrections.

Most theoretical descriptions of nuclear mass models have
as a starting point the general expression

M = M̄ + δM, (1)

where M̄ is a smooth function of the number of nucleons,
usually the liquid drop mass formula. By contrast δM is a
fluctuating function in the number of nucleons which accounts
for the quantum nature of protons and neutrons within the
many body problem. There is a variety of nuclear mass
models in the literature, two of the most broadly utilized are

the finite range droplet model (FRDM) [8], which combines
the macroscopic effects with microscopic shell and pairing
corrections, including explicit deformation effects and the
Strutinsky procedure [9], and, on the other hand, the Duflo
and Zuker (DZ) [10] model, where the microscopic corrections
are functions of the valence numbers of protons and neutrons.
The latter is inspired in the shell model, including explicitly
the diagonal two- and three-body residual interactions between
valence particles and holes.

In principle the fluctuating part δM also depends on the
details of the interaction. However, according to Strutinsky’s
[9] energy theorem, the leading contribution can be evaluated
within the mean field approximation which assumes the
nucleus is composed of free nucleons confined by a one-body
potential. It has been shown [11] that even a simple one-body
potential, in which the nucleons are confined inside a spherical
rigid sphere (spherical model from now on), with radius
R = r0Nnuc

1/3 (r0 ∼ 1.1 fm and Nnuc the number of nucleons)
describes qualitatively some aspects of the experimental δM .
However, for a more quantitative comparison one has to
include small multipolar deformations of the spherical cavity
and an effective number of nucleons [11,12]. While the idea of
employing a spherical well to describe the independent particle
model of the nucleus is rather old [13], the corresponding
magic numbers, associated with the zeros of the spherical
Bessel functions, are in only rough agreement with the
observed nuclear shell closures, even when an effective
rescaling is employed [11]. The spherical model has shown
its best predictive power in systems with just one kind of
particles, like electrons in spherical metal clusters, where
shell closures are predicted in close agreement with the
experimental observation [14].

On the theoretical side, a clear advantage of the spherical
model is that δM can be evaluated analytically in the
semiclassical limit by expressing the exact spectral density of
a quantum particle in a sphere as a trace formula [15], namely,
as a sum over periodic orbits of the classical counterpart.
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FIG. 1. (Color online) Mass differences plotted as function of
Z, A, N , and as an ordered list [6,7].

In this way explicit expressions for δM are available for a
nucleus composed of an arbitrary number of nucleons. In
this letter we will show that this simple spherical model is
specially suitable for the description of the autocorrelations
C(q) of δM as a function of the number of particles. We will
show that a quantitative agreement with the experimental mass
autocorrelations can be obtained without any of the extensions
(deformations of the sphere and an effective number of
nucleons) needed for the case of the microscopic contributions
to the nuclear mass. This is indeed remarkable given the
simplicity of the model and the complex behavior of the
nuclear many body problem.

II. AUTOCORRELATIONS

Our object of study is the autocorrelation

C(q) = F (q)

F (0)

N

N − q
(2)

with

F (q) =
∑

i

δM(i) δM(i + q), (3)

where the sum runs, depending on the case, over the total
number of nucleons, the neutron number N , or over a set
including all possible nuclei as given by the boustrophedon
list [6,7]. We shall also investigate C(q) inside an isotopic
chain, namely, we fix the number of protons Z and examine
the autocorrelations among all isotopes.

Autocorrelations are a useful tool in identifying relation-
ships between elements in a list or an array. The autocorrelation
of a constant distribution is also a constant distribution, and
that of a pure harmonic sine or cosine distribution will also be
an oscillatory distribution. On the other hand, the autocorre-
lation of a random distribution is a delta function, peaked at
q = 0 plus a small random signal for any other q, signaling a
null correlation length among the elements of the distribution.

The fluctuating part of the nuclear mass distribution can be
defined by

δMexp = Mexp − M̄drop, (4)

where Mexp is the experimental value for a certain nucleus
according to the nuclear data chart [4] and M̄drop is the
prediction of the liquid drop model [5]. As shown in Fig. 2, the
autocorrelation C(q) has a well defined oscillatory behavior
with clear maxima and minima related with the presence
of shell closures, as seen in Fig. 1. When the oscillation
amplitude decreases, the position of the first zero in C(q)
provides an estimate of the size of the region in the nuclear
chart where the microscopic, fluctuating contributions to the
nuclear masses are strongly correlated. It will be shown that
this region can include as many of 10 to 15 isotopes or isotones,
with at least 200 neighboring nuclei significantly correlated.
The oscillatory behavior of δM is closely related with the
oscillations in C(q). In what follows it will be shown that
not only the oscillation length, but also other details of these
oscillations are well described by the spherical model.

Theoretically δM is expressed as a function of the spectral
density g(E) = ∑

i δ (E − Ei) = ḡ (E) + δg (E) of the one
body Hamiltonian (in our case a free fermion confined in a
spherical cavity) as

δM = M − M̄

with

M = 2
N∑

i=1

Ei = 2
∫ EF

E g(E) dE (5)

and

M̄ = 2
∫ ĒF

E ḡ(E) dE, (6)

where Ei are the eigenvalues of the one-body Hamiltonian
and ḡ and δg are the mean and fluctuating part of the spectral
density, respectively.

The exact (EF ) and smooth (ĒF ) Fermi energies are
obtained explicitly as a function of the number of particles
by inversion of the following relation:

Nnuc

2
=

∫ EF

g(E) dE =
∫ ĒF

ḡ(E) dE, (7)

where Nnuc is the number of nucleons (neutrons or protons)
and the factor two accounts for the spin degeneracy. The final
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FIG. 2. (Color online) The autocorrelation C(q) as a function of N = 30 . . . , 154. (Left) and N = 60 . . . , 154. (Right) In both cases
the agreement with the experimental results (diamond) is quite good. For N > 60 (right) it reproduces correctly both the amplitude of the
oscillations and the positions of the maxima and minima of the experimental data.

expression of δM in term of the spectral density is given
by

δM(Nnuc) = M(Nnuc) − M̄nuc

= 2
∫ EF

E g(E) dE − 2
∫ ĒF

E ḡ(E) dE.

In order to compute analytically the autocorrelation C(q)
we will first evaluate δM by using the semiclassical expression
for the fluctuating part of the spectral density δg(E) in a
spherical cavity. We then mention how to get ĒF as a function
of the number of particles Nnuc. It is well known [16] that, for
generic cavities, the smooth part of the spectral density ḡ(E)
in three dimensions is given by

ḡ(E) = m

2π2h̄2

[
V k + S + 1

6κ

∫
dS

(
1

R1
+ 1

R2

)]
, (8)

where E = h̄2k2/2m,V is the volume of the cavity, S is the
surface, R1, R2 are the radii of curvature and κ is the scalar
curvature.

For a spherical cavity Eq. (8) reduces to

ḡ(E) = 1

3π
E1/2R3 − 1

4
R2 + R

6π
E−1/2. (9)

In this way the mean Fermi energy is explicitly obtained as a
function of Nnuc by performing the integral in Eq. (7) and then
expressing ĒF as a function of Nnuc.

In the following section we give a brief account of how to
evaluate δg(E) semiclassically by a trace formula involving
only classical quantities.

III. SEMICLASSICAL EVALUATION OF THE
SPECTRAL DENSITY IN A SPHERICAL CAVITY

The oscillatory part of the spectral density describes the
fine structure of the spectrum. These oscillations are related
with classical periodic orbits inside the cavity [17] (for an
introduction see Refs. [11,16]),

δg (E) =
∑

α

Aα(E) exp(iSα(E)/h̄ + να), (10)

where the index α labels the periodic orbits, Sα is the classical
action and να is the Maslov index. As a general rule, the
amplitude Aα(E,L) is a decreasing function of the cavity size
L but depends strongly on its shape. It increases with the
degree of symmetry of the cavity. It is maximal in spherical
cavities and minimal in cavities with no symmetry axis. The
difference (for the same volume) between these two limits can
be of orders of magnitude.

A. The spherical cavity

The oscillating part of the spectral density of a particle in
a spherical cavity of radius R has already been analyzed in
the literature [18,19]. Below we provide a brief overview and
refer the reader to Ref. [19] for an account of the details of the
calculation.

For a spherical geometry the closed stationary trajectories
are given by planar regular polygons along a plane containing
the diameter. The length L of the trajectories is given by the
simple relation L = 2pR sin(φ) where p is the number of
vertexes of the polygon and φ = πt/p with t being the number
of turns around the origin of a specific periodic orbit. Two cases
must be distinguished: Orbits with p = 2t corresponding with
a single diameter repeated t times contribute to the density of
states as

δgD(E) = − 1

2πE0

∑
t=1

1

t
sin(4t

√
E/E0), (11)

where E = h̄2k2

2m
and E0 = h̄2

2mR2 . For the case p > 2t corre-
sponding to regular polygons the contribution to the spectral
density is given by

δgP (E) = 1

E0

(
E

E0

)1/4 ∑
t=1

∑
p>2t

(−1)t sin(2φ)

×
√

sin(φ)

pπ
sin

(
3π

4
+ p sin(φ)

√
E/E0

)
.
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The complete expression for the fluctuating part of the spectral
density is

δg(E) = δgP (E) + δgD(E), (12)

where the first term yields the leading correction for suffi-
ciently large cavities.

A similar calculation can be in principle carried out for
a chaotic cavity. In this case the spectral density can also
be written in terms of classical periodic orbits by using the
Gutzwiller trace formula. Although an explicit expression for
the length of the periodic orbits, equivalent to Eq. (12), is not in
general available in this case it is still possible to estimate the
amplitude of the oscillating part by using symmetry arguments.
This amplitude increases with the symmetry of the cavity. In
cavities with one or several symmetry axis periodic orbits are
degenerate, namely, there exist different periodic orbits of the
same length related by symmetry transformations. It can be
shown that the amplitude, as a function of k, is enhanced
by a factor (kR)1/2 [17] for each symmetry axis. A spherical
cavity has three symmetry axis so the symmetry factor S is
proportional to S ∼ (kR)3/2 � 1. The factor R is a typical
length of the cavity.

By contrast, chaotic cavities of the same volume have no
additional symmetries and the symmetry factor S is unity,
corresponding to the contribution of a single unstable periodic
orbit. Consequently finite size effects are much more important
in cavities with high symmetry. We have now all the ingredients
to compute the autocorrelation C(q) as a function of the
number of nucleons in the rigid spherical approximation for
the nucleus.

IV. MASS AUTOCORRELATIONS IN THE NUCLEAR
SPHERICAL MODEL. RESULTS AND COMPARISON

WITH EXPERIMENT

In this section we adapt our previous results to the specific
case of the nucleus. Our aim is to evaluate the autocorrelation
function C(q) given in Eq. (2). We now describe the smooth
part of the ground state energy M̄ by means of the liquid drop
model. The fluctuating part δM is computed by assuming that
nucleons, protons and neutrons, are confined in a spherical
cavity. Obviously this is a mean field approximation that
should become better as the number of nucleons grows. For
comparison with the experimental results we will typically
remove those nuclei with N < 30, a region where the mean
field approximation is not appropriate.

In our calculations, the radius R is related to the number of
nucleons Nnuc by R = r0Nnuc

1/3 with r0 ∼ 1.1 fm. We remark
that since neutrons and protons are distinguishable one has to
consider these contributions separately, each one with its own
Fermi energy but with the same radius. We are now ready to
write down an explicit analytical expression for δM ,

δM = 2
∫ EF

E g(E) dE − 2
∫ ĒF

E ḡ(E) dE, (13)

where the spectral density δg(E) is given by Eq. (12), and ĒF

is expressed as a function of the number of particles Nnuc by

solving exactly the third order equation in ĒF ,

Nnuc =
∫ ĒF

0
ḡ(E) = 2

9π
ε3/2 − ε

4
+ 1

3π
ε1/2 (14)

with ε = ĒF /E0. Finally the exact Fermi energy EF is
computed by inverting numerically Eq. (7). In all cases we
assume a mass mp ∼ mn ∼ 940 MeV. The sum over periodic
orbits in Eq. (12) has a natural cutoff for scales (length of
periodic orbits) such that inelastic processes which break
the quantum coherence are relevant. In order to account for
this fact we have included in the spectral density Eq. (12)
a damping factor k(l) = l/ξ

sinh(l/ξ ) where l is the length of the
periodic orbit and ξ a coherence length that acts as a effective
cutoff for l � ξ . Following the estimation of Ref. [11] for
the nuclear case we have set ξ ∼ 5R. We have checked that
the gross features of C(q) do not depend on the cutoff,
provided that enough periodic orbits are taken into account
but other parameters like the amplitude of the oscillations of
C(q) may depend on it. This value of the coherence length
can be associated with an effective temperature [16] close to
1 MeV, typical of pairing energies not included in the
model.

A. Comparison with experimental results: C(q) as a function
of the number of neutrons

We now compute C(q), defined in Eq. (2), for a nucleus
composed of N neutrons and Z protons with the fluctuating
part of the mass given by Eq. (13).

First we examine the autocorrelation function as a function
of the total number of neutrons N . We remark that predictions
of our model for C(q) are essentially parameter free. Since
there are many different nuclei with the same number of
neutrons a proper averaging method is needed. In order to
proceed C(q) is evaluated as follows (see Fig. 2 right): we first
obtain the analytical prediction for δM = δM(N ) + δM(Z)
for each of the 2140 combinations of N and Z, then perform
an average over different nuclei with the same N and finally
compute the autocorrelation function C(q). The experimental
C(q) is obtained by using the same averaging procedure. As
shown in Fig. 2, despite the simplicity of the model, the
agreement with the experimental results is quite satisfactory.
It accurately reproduces both the amplitude of the oscillations
and the position of the maxima and minima. The agreement
between theory and experiment gets better if only heavier
nuclei are considered. This is expected due the mean field
nature of the model. The agreement between theory and
experiment could be improved if, as discussed in Ref. [11],
multipolar corrections are considered. However we prefer to
stick to our parameter-free model in order to emphasize that
the main features of the autocorrelation function are related
to the spherical symmetry of the problem. We remark that
similar results are obtained if, instead of taking into account
all the possible combinations of N and Z, we make the simple
assumption δM ∼ 2δM(N ), with r = r0(2N )1/3.

For the sake of completeness we have also computed C(q)
as a function of the total number of nucleons A = N + Z.
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FIG. 3. (Color online) The autocorrelation C(q) as a function of A = N + Z = 50 . . . , 254. (Left) and A = 116 . . . , 254. (Right) In both
cases the agreement with experimental results (diamond) is quite good. For A� 116 (right) reproduces correctly both the amplitude of the
oscillations and the positions of the maxima and minima of the experimental data.

As was expected (see Fig. 3) a similar degree of agreement
has been found.

B. Comparison with experimental results: C(q) as
a function of the boustrophedon ordering scheme

By performing averages (for A or N fixed) over the nuclear
data-chart we may be loosing valuable information about
nuclear mass correlations. Moreover, since cuts along fixed
N or A have a small number of nuclei, it is difficult to
extract definite conclusions. To overcome these difficulties, we
organize all nuclei with measured mass by ordering them in
a boustrophedon, namely, a 1D list composed by 2140 entries
numbered as follows: Even-A nuclei are ordered by increasing
N − Z, while odd-A ones follow a decreasing value of N − Z.
We have evaluated both the experimental and the analytical
autocorrelation C(q), Eq. (2), as a function of the order

number of the boustrophedon. For each i = 1, . . . , 2140, δM

is evaluated by a specific N and Z combination chosen
according to the above classification scheme, as we did
previously, but in this case we have not performed any average.
As is shown in Fig. 4 the agreement between theory and
experiment is also quite satisfactory for this more general
correlation function. Both the global oscillatory behavior and
the more microscopic details (see right plot in Fig. 4) are well
reproduced.

From the above extensive analysis we conclude that the
main features of the nuclear mass correlations are captured by
the simple spherical model. As was mentioned previously, our
analytical results could be further improved by considering
small multipole corrections to the spherical shape [20].

However it is remarkable that our simple spherical model
can reproduce in great detail average properties of the nuclear
autocorrelations.
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FIG. 4. (Color online) The autocorrelation C(q) as a function of the order number according to the boustrophedon list. (Left) Both the result
for the spherical model and the experimental data are obtained by considering the 2140 possible combinations of N and Z. The agreement
between theory (solid line) and experimental data (diamonds) is quite good. (Right) The same but now C(q) is plotted only in the window
q < 150.
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FIG. 5. (Color online) Power spectrum S(k) of the nuclear mass
fluctuation for the boustrophedon ordering. As is observed, the
agreement between theory and experiment is very good in the low
and intermediate frequency region. Their power-law decay with
α ∼ 4.2 is close to the result α = 4 predicted for classically integrable
systems.

V. POWER SPECTRUM AND INTEGRABLE DYNAMICS

Finally as a further check of the validity of our results
we compare the power-spectrum associated to the nuclear
mass fluctuation δM(i) (i = 1, . . . , N = 2140 is the label
of the nuclei according to the boustrophedon ordering) with
the prediction of the spherical model. The discrete Fourier
transforms of the mass fluctuation is just

F (k) = 1√
N

∑
j

δM(j )

σrms
exp

(−2πijk

N

)
. (15)

with the root-mean-square (rms) deviations given by

σrms =

 1

N

N∑
j=1

(δM(j ))2




1/2

, (16)

where δM(j ) is either the experimental or the analytical fluc-
tuating part of the nuclear mass. The decay of the associated
power spectrum S(k) = |F (k)|2 provides information about
the type of dynamics of the model. Thus it can be shown [21]
that, for scales roughly in between the shortest periodic orbit
and the mean level spacing, a power law decay S(k) ∼ k−α

with α = 4 corresponds to integrable classical dynamics. In
Fig. 5 we observe a close agreement between the power
spectrum of the spherical model and that of the experimental
nuclear masses. Moreover the decay in the range ∼ [1, 3],
which includes frequencies between those associated with the
mean level spacing and with the shortest periodic orbit, follows
a power-law with α ∼ 4.2, in agreement with the prediction
for integrable dynamics. Based on these results we suggest
that the power spectrum could be utilized as an effective test
to check whether a strongly interacting many body system is
indeed close to integrability or not.

The power spectrum of differences between measured
masses and those calculated in different models has been
studied in Ref. [7]. A gradual vanishing of the slope α was
observed as more sophisticated and realistic models were
utilized. For the most realistic models a white noise α = 0
(all frequencies have equal weight) signal was found. For a
detailed study of intermediate situations we refer the reader to
Ref. [22].

VI. CONCLUSIONS

A simple semiclassical analysis, where protons and neu-
trons are described by free particles bouncing elastically, back
and forth inside a rigid sphere, has been shown to nearly
reproduce the autocorrelations of the differences between
measured nuclear masses and those calculated using the liquid
drop model. The results are remarkable, offering a different
insight on the microscopic corrections needed to describe
nuclear masses with precision. It also has been shown that
it is possible to perform autocorrelation analysis of nuclear
mass differences along very long chains of isotones, isotopes,
isobars and other chains, a task generally considered very
difficult to perform [23]. While interesting in themselves,
these results could also provide a theoretical explanation
of the amazing success of the two dimensional Fourier
analysis, performed in the Z − N space, in the description
and prediction of nuclear masses [24].
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[23] H. Olofsson, S. Åberg, O. Bohigas, and P. Leboeuf, Phys. Rev.

Lett. 96, 042502 (2006).
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