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Magicity and occurrence of a band with enhanced B(E2) in neutron-rich nuclei 68Ni and 90Zr
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Experimental energy spectrum and B(E2) values in 68Ni and 90Zr indicate a double-magic character in
these neutron-rich nuclei with N or Z = 40. The data nevertheless do not show any pronounced irregularity
in two-nucleon separation energy. To understand the underlying physics, we carry out both shell-model and
mean-field calculations. The shell-model calculation can reproduce all the observations well. It is understood
from the mean-field results for 68Ni that the shell gap at N = 40 disappears because of dynamical correlations of
the isovector J = 0 pairing interaction. In 90Zr, however, such a dynamic process with the J = 0 pairing appears
not important because of the strong contribution of the J > 0 interaction. We study also level schemes in the
Ni isotopes and N = 50 isotones. We predict a new band built on the 0+

2 state in both 68Ni and 90Zr. The states
of this band are dominated by two-particle-two-hole excitations from the fp shell to the intruder g9/2 orbit.
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I. INTRODUCTION

The study of nuclear shell effects away from the valley
of stability is one of the current topics in nuclear structure
physics. The most interesting aspects are how the well-known
shell effects, such as the occurrence of magic numbers [1] and
the shape-coexistence phenomenon [2,3], manifest themselves
in exotic mass regions where nuclei have unusual combinations
of neutron and proton number. There have been intensive
discussions on the issue of weakening of the shell effect
in neutron-rich nuclei. For example, the spherical N = 20
shell gap for light nuclei disappears in neutron-rich isotopes,
leading to strongly deformed ground states and large E2
transition probabilities between the 2+

1 state and the ground
state (0+

1 ). By using the shell-model approach, it has been
demonstrated [4] that the magic number at N = 20 vanishes
because of the proton-neutron attraction between spin-orbit
partners of maximum j . On the other hand, there have been
suggestions [5] that the strong deformation effects around
32Mg are induced by dynamical correlations, such as the
neutron pairing correlations.

It has been found [6–9] by several experiments that the
neutron-rich nucleus 68Ni (Z = 28, N = 40) shows a double-
magic character: a relatively large 2+

1 excitation energy and
a small B(E2, 0+

1 → 2+
1 ) value, which is comparable with

the cases of double-magic nuclei 16O, 40Ca, and 48Ca. The
nucleus 68Ni lies far from the neutron drip line, and the
neutron energy gap between the fp shell and the g9/2 intruder
orbit appears to be sizable at N = 40. It was discussed in
Refs. [10,11] that in the early mean-field calculations a distinct
shell gap that exists in the N = 40 nucleus 68Ni disappears
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when quadrupole correlations are taken into account. For 68Ni,
it is remarkable that this nucleus does not show a pronounced
irregularity in two-neutron separation energy, as expected
for a typical double-magic nucleus. It was suggested [12]
that a small B(E2, 0+

1 → 2+
1 ) value is not strong evidence

for the double-magic character. We may thus conclude that
double-magicity in 68Ni is still controversial and remains an
open question.

In general, shell closure leads to spherical configurations
for the ground state, while breaking a magic shell can produce
coexisting deformed states. An important indication for the
emergent deformation is the appearance of low-lying 0+

bands. The deformed structure occurs as a consequence of
nuclear correlations, which excite nucleons from the closed
shell to a higher shell. For example, the typical double-magic
nucleus 56Ni (Z = N = 28) [13–15] is known to have two
collective bands with large deformations coexisting with the
spherical ground band. Therefore, it is very interesting to
examine theoretically whether such collective bands exist also
in 68Ni.

Similar discussions would also apply to the neutron-rich
nucleus 90Zr, which has a closed Z = 40 proton subshell
and a strong N = 50 neutron shell closure. This is an
interesting case for studying the persistence of the Z =
40 stability. Recently, energy levels and B(E2) values in
90Zr were measured [16], which showed a double-magic
character: a relatively large 2+

1 excitation energy and a
small B(E2, 0+

1 → 2+
1 ) value. However, this nucleus does not

indicate a pronounced irregularity in two-proton separation
energy. Moreover, it is known that a low-lying 0+

2 state exists
at Z = 40 in the N = 50 isotonic chain. Hence we can
expect to see excited bands in 90Zr but perhaps with different
structure.

0556-2813/2006/74(2)/024321(10) 024321-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.024321


K. KANEKO, M. HASEGAWA, T. MIZUSAKI, AND Y. SUN PHYSICAL REVIEW C 74, 024321 (2006)

In this paper, we study the magicity at N or Z = 40 and
structure of excited 0+

2 bands in the neutron-rich nuclei 68Ni
and 90Zr. To understand the physics in a systematic way, we
perform spherical shell-model calculations for the Ni isotopes
and N = 50 isotones. Conventional shell-model calculations in
the (1f7/2, 2p3/2, 1f5/2, 2p1/2, 1g9/2) shell space for N,Z =
30–36 are not possible at present because of the huge
dimension of configuration space; we need to restrict the model
space to the 2p3/2, 1f5/2, 2p1/2, and 1g9/2 orbitals (hereafter
called the fpg shell). Of course, neutron (proton) excitations
from the 1f7/2 orbit to the fpg shell cannot be neglected for
68Ni (90Zr) [9,11]. Nevertheless, after all we shall see that
the variations in B(E2) in the nuclei around 68Ni (90Zr) can
be understood in terms of valence neutrons (protons) in this
restricted model space. For the Ni isotopes, we employ an
effective interaction starting from a realistic neutron G-matrix
interaction based on the Bonn-C NN potential (called the VMS
interaction) [17]. For the N = 50 isotones, we use two types
of effective interaction: the proton part of the VMS interaction
and the effective interaction of Ji and Wildenthal (called the
JW interaction) [18].

The paper is arranged as follows. In Secs. II and III, we
present the numerical calculations and discuss the results for
Ni isotopes and N = 50 isotones, respectively. Conclusions
are drawn in Sec. IV.

II. Ni ISOTOPES

A. Magicity in 68Ni

Let us first review what the experiment has found for the Ni
isotopes. In Fig. 1, the experimental B(E2, 0+

1 → 2+
1 ) value

and the first excited 2+ energy are shown as a function of
neutron number N for 58−70Ni. With increasing N,B(E2)
decreases quickly and becomes the smallest at N = 40. In
contrast, changes in the 2+

1 energy (E2+
1
) are quite small for

58−66Ni, but E2+
1

jumps to a large value at N = 40. Thus, with
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FIG. 1. (Color online) Comparison between the calculated and
the experimental values of (a) B(E2, 0+

1 → 2+
1 ) and (b) E2+

1
for the

Ni isotopes. The calculated values are denoted by open circles and
the experimental data [6,9,19,20] by filled squares.

a pronounced large E2+
1

and a small B(E2, 0+
1 → 2+

1 ), these
data seem to suggest a subshell closure at N = 40 in 68Ni.

We now carry out shell-model calculations for the
Ni isotopes. The shell-model Hamiltonian is written as

H =
∑

α

εαc†αcα + 1

4

∑
αβγ δ

Vαβ,γ δc
†
αc

†
βcδcγ , (1)

where εα are single-particle energies and Vαβ,γ δ two-body
matrix elements. Since 56Ni is taken as a core, the model
space is restricted to the fpg shell for neutrons, and protons are
assumed to be inactive. The proton core excitations from 56Ni
are taken into account implicitly by the effective two-body
matrix elements, and the proton contributions are estimated
from the KB3 calculations [21] in 48Ca. The neutron effective
charge is taken as en = 1.0 so as to reproduce the experimental
B(E2, 0+

1 → 2+
1 ) of 68Ni [17]. We use the VMS interaction

starting from a realistic neutron G-matrix interaction based on
the Bonn-C NN potential.

As one can see in Fig. 1, our calculations reproduce nicely
the observed trends in B(E2, 0+

1 → 2+
1 ) and E2+

1
[17]. In

particular, a large 2+
1 excitation energy and small B(E2, 0+

1 →
2+

1 ) value at N = 40 are correctly obtained. It should be
pointed out that the proton core excitations may significantly
contribute to the excitation energy and to B(E2, 0+

1 → 2+
1 ) in

58Ni, and thus it is difficult to absorb these effects into the
effective interaction and the effective charges. In addition, the
very recent observation [20] indicates a large B(E2, 0+

1 → 2+
1 )

value in 70Ni, which exceeds the calculated one. Figure 2 shows
two-neutron separation energy S2n and the difference between
two-neutron separation energies δ2n, defined respectively by

S2n(Z,N) = B(Z,N ) − B(Z,N − 2), (2)

δ2n(Z,N) = S2n(Z,N ) − S2n(Z,N + 2). (3)

In Eq. (2), B(Z,N) is the binding energy taken as positive
values. The quantity δ2n is known as the most sensitive and
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FIG. 2. (Color online) (a) Two-neutron separation energies and
(b) differences between the two-neutron separation energies defined
in Eq. (3). The exact shell-model results are denoted by open circles
and the experimental data [19,22] by filled squares.

024321-2



MAGICITY AND OCCURRENCE OF A BAND WITH . . . PHYSICAL REVIEW C 74, 024321 (2006)

24 26 28 30 32 34 36 38 40 42 44 46 48
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3

p3/2

f5/2

p1/2

g9/2

e α  
(M

eV
)

N

VMS

FIG. 3. (Color online) Spherical neutron shell structure. The HF
single-particle energy levels eα predicted in the HF calculations with
the VMS interaction for the Ni isotopes.

direct signature for a (sub)shell closure. Our shell model
calculations reproduce well the experimental values of S2n and
δ2n. As can be seen in Fig. 2, S2n and δ2n are smooth functions,
and in particular, do not show any notable changes at N = 40.
Thus, 68Ni has a large E2+

1
and a small B(E2, 0+

1 → 2+
1 ), but

no irregularity in S2n and no strong peak in δ2n. It is therefore
very interesting to further look into the S2n and δ2n results from
the viewpoint of the magicity in 68Ni.

Let us analyze the shell-model results in Fig. 2 by using
mean-field procedures. We carry out Hartree-Fock (HF)
and Hartree-Fock-Bogolyubov (HFB) calculations using the
shell-model Hamiltonian (1). In the calculations, we impose
spherical symmetry. The HF single-particle energies are given
by

eα = εα +
∑

β=occup

Vαβ,αβ, (4)

where
∑

β=occup means the summation over the occupied states
only. Figure 3 shows the HF single-particle energies eα . The
single-particle energy gap between g9/2 and the fp shell varies
from 4 MeV at N = 28 to 2.5 MeV at N = 40, which shows a
persistence of a large shell gap at this neutron number. As we
shall discuss below, this gap in the static single-particle picture
will be washed out by dynamic correlations.

The total HF energy is expressed as

EHF =
∑

α


εα + 1

2

∑
β=occup

Vαβ,αβ


 . (5)

On the other hand, the HFB approximation is carried out with
the following procedure. The HFB transformation is given by

a†
α = uαc†α − vαcᾱ, (6)

where ᾱ is the time reversed state relative to α and the
occupation numbers v2

α satisfy the following equation:

v2
α = 1

2

(
1 − ẽα − λ√

(ẽα − λ)2 + �2
α

)
. (7)

Here the self-consistent mean-fields, the self-consistent pairing
gaps, and the canonical single-particle energies are respec-

tively defined as

�α =
∑

β

Vαβ,αβv2
β, (8)

�α =
∑

β

Vαᾱ,ββ̄uβvβ, (9)

ẽα = εα + �α, (10)

and the total HFB energy [23] is

EHFB =
∑

α

[
(εα + 1

2
�α)v2

α − 1

2
�αuαvα

]
. (11)

The neutron chemical potential λ is determined by the neutron
number conservation ∑

α

v2
α = N. (12)

Equations (7) and (12) are solved iteratively. In this paper,
however, we get the solutions by minimizing the total HFB
energy (11) with neutron number conservation (12) under the
normalization condition u2

α + v2
α = 1.

The total shell-model energies ESM and the HF energies
EHF are plotted in Fig. 4(a), and the correlation energies,
defined as Ecorr = ESM − EHF, are shown in Fig. 4(b). The
correlation energy exhibits a characteristic pattern where the
absolute value is the largest at N = 34 but has a local minimum
at N = 40. The reduction in correlation energy at N = 40
would be attributed to the small pairing gap �1/2 of the p1/2

orbit with a small j .
Calculations for two-neutron separation energy S2n and

the difference between two-neutron separation energies δ2n

are shown in Fig. 5. One can clearly see the irregularity
in S2n and a peak in δ2n in the HF calculation for 68Ni,
which suggest a large energy gap and a subshell closure at
N = 40. This result is consistent with the most of the Skyrme
HF (SHF) and relativistic mean-field (RMF) calculations,
which produced a distinct δ2n peak at N = 40 [10,11].
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FIG. 4. (Color online) (a) Total energies and (b) correlation
energies in the shell-model and the HF calculations with the VMS
interaction for the Ni isotopes. Note that the absolute correlation
energies become small around N = 40.
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FIG. 5. (Color online) (a) Calculated two-neutron separation
energies and (b) differences between the two-neutron separation
energies defined by Eq. (3) in the mean-field approximation using the
VMS interaction. The HF results are denoted by open triangles and the
HFB ones by the filled squares. Note that at N = 40 irregularity of S2n

appears in the HF calculation and disappears in the HFB calculation.

However, as seen in Fig. 5, the irregularity in S2n and
peak in δ2n do not show up in the HFB calculations when
the T = 1, J = 0 pairing interaction is included. We may
therefore conclude that the T = 1, J = 0 pairing interaction
is responsible for the observed smooth behavior in S2n and
δ2n, and thus for the disappearance of a magicity character in
68Ni. This conclusion is different from that of the SHF and
RMF calculations in which the disappearance of the δ2n peak
is caused by quadrupole correlations [10,11].

The above conclusion is reinforced by the following analy-
sis. To see the role of the T = 1, J = 0 pairing interaction
in the shell model calculations, we divide the two-body
interaction Hint in the total Hamiltonian (1) into two parts

Hint = HJ=0 + HJ>0, (13)

where HJ=0 is the T = 1, J = 0 pairing interaction and
HJ>0 = H − HJ=0. Figure 6 compares different calculations
for S2n and δ2n. We evaluate S2n and δ2n by using the binding
energy B(Z,N) calculated from the expectation values 〈H −
HJ=0〉 and 〈H − HJ>0〉 and compare them with the results
of the full Hamiltonian. All these calculations use the same
ground-state wave function obtained from diagonalization of
the total Hamiltonian (1). Now the significant role of the
T = 1, J = 0 pairing interaction is clearly shown: when HJ=0

is switched off, S2n exhibits irregularity, and a large peak in
δ2n is seen at N = 40, whereas in 〈H − HJ>0〉 no irregularity
in S2n and no peak in δ2n can be seen.

In Fig. 7, we further examine the expectation values for
various Hamiltonian terms. For the quantity 〈HJ=0〉, one sees
that the contribution of the T = 1, J = 0 pairing causes a
bending at N = 40. On the other hand, 〈HJ>0〉 increases
monotonically with N . The total expectation value 〈Hint〉 in
Fig. 7 corresponds to the correlation energy in Fig. 4(b). Thus
we have understood the source of the seeming irregularity
in S2n and the peak in δ2n (see Fig. 5). The irregularity
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FIG. 6. (Color online) (a) Two-neutron separation energies and
(b) differences between the two-neutron separation energies defined
by Eq. (3) from the shell-model calculations using the VMS
interaction. The exact shell-model results are denoted by open circles,
the expectation values neglecting the T = 1, J = 0 interactions by
open triangles, and the expectation values neglecting the J > 0
interactions by open diamonds. Note that only the 〈H − HJ=0〉 result
shows irregularity at N = 40.

shows up in two-neutron separation energy at N = 40 if the
T = 1, J = 0 pairing interaction is missing. Inclusion of the
T = 1, J = 0 pairing interaction washes out the irregularities
in S2n and δ2n found in the HF calculations and thus explains
the observations. It was inferred from the discussion of the
g9/2 occupation number that the erosion of the N = 40 shell
gap is attributed to the pairing correlations [9].

B. Level structure in 64−68Ni

In this section, we discuss the structure evolution along
the isotopic chain 64−68Ni. Figure 8 shows the experimental
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FIG. 7. (Color online) Expectation values of HJ=0 and HJ>0 in
Eq. (13), which are denoted by open circles and open triangles,
respectively. The total interaction energy 〈Hint〉 is also depicted by
filled circles. Note that 〈HJ=0〉 displays a bending at N = 40.

024321-4



MAGICITY AND OCCURRENCE OF A BAND WITH . . . PHYSICAL REVIEW C 74, 024321 (2006)

0

1

2

3

4

5

6

7

0+

4+

exp. th.exp. exp.th. th.

E
xc

it
at

io
n

 e
n

er
gy

 (
M

eV
)

28
Ni

40

68

2+

8+

0+

28
Ni

36

64

28
Ni

38

66

0+

2+

0+
2+
4+

0+

2+

4+

2+

4+

0+

6+

8+

7-

5-

3-

6+ 8+

7-

3-,5-

6+

5-

7-

3-

9.
6

10
.2

0.
7

14 1.
3

0.
7

7.
6

7.
9

3.
2

3.
2

0.
7

3.
5

0.
8

14
12

8.
6

3.
5

0.
8

FIG. 8. (Color online) Comparison between the theoretical (th.)
and the experimental (exp.) level scheme [6,9,19] for 64−68Ni. The
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and theoretical level schemes. The B(E2) values have been
measured only for the first transition between the 2+

1 state
and the ground state [19]. Since in 64Ni the 0+

2 , 2+
2 , and

4+
1 states all lie around 2.7 MeV and their excitation en-

ergies are approximately twice the first excited 2+
1 energy

(∼1.38 MeV), the level sequence appears to be consistent
with that of an harmonic vibration. This sequence is typical
for low-lying excitations in spherical nuclei. Anharmonicity
of the two-phonon states (0+

2 , 2+
2 , 4+

1 ) becomes large in 66Ni,
and the harmonic pattern breaks down completely in 68Ni,
where the 0+

2 level drops down and appears below the 2+
1 level.

We carry out shell-model calculations using the VMS
interaction. The results are compared with data in Fig. 8,
and the predicted B(E2) values are summarized in Table I.
The calculations can well reproduce the experimental energy
levels and the B(E2, 0+

1 → 2+
1 ) values, and the systematic

behavior of the low-lying 0+
2 state is also reasonably described.

It is striking that in our results an excited band is formed
in 68Ni based on the 0+

2 state. The E2 transition probability
B(E2, 0+

2 → 2+
1 ) is quite small in 64,66Ni, but becomes rather

large in 68Ni. The values B(E2, 4+
1 → 2+

1 ) and B(E2, 6+
1 →

TABLE I. B(E2) values for the positive-parity yrast states and
some excited states in 66Ni and 68Ni. The calculated values are the
shell-model results using the VMS interaction. Data are taken from
Refs. [6,9,19].

Iπ
i → Iπ

f
66Ni [e2fm4] 68Ni [e2fm4]

Expt. Calc. Expt. Calc.

2+
1 → 0+

1 120(20) 125 53(12) 52
4+

1 → 2+
1 56 239

6+
1 → 4+

1 13 144
8+

1 → 6+
1 79 26(1) 58

2+
1 → 0+

2 11 198
2+

2 → 0+
1 12 15

2+
2 → 2+

1 12 36
2+

2 → 0+
2 14 27
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FIG. 9. (Color online) Neutron occupation numbers of the fpg-
shell orbits for the low-lying levels in (a) 66Ni and (b) 68Ni.

4+
1 ) in 68Ni are also large. In contrast, B(E2, 0+

1 → 2+
1 ) in 68Ni

is found smaller than those in 64,66Ni. Thus we have predicted
a new band in 68Ni, as shown in Fig. 8.

In order to see how this band is formed, we compare neutron
occupation numbers of the p3/2, f5/2, p1/2, and g9/2 orbits in
the relevant low-lying states in 66Ni and 68Ni. As one can see
in Fig. 9, except for the 6+

1 state, neutron occupation numbers
in the low-lying states in 66Ni are dominated by the fp-shell
components. This is because the Fermi energy of 66Ni lies
below the p1/2 orbit. However, neutron occupation numbers
in 68Ni show very different values [9]. Except for the ground
state, occupation number of the g9/2 orbit in all low-lying
states in 68Ni increases by more than two units. This means
that two neutrons are excited from the fp shell to the g9/2

orbit in these states in 68Ni [11,24]. To see the structure of the
low-lying states more clearly, we calculate the probability of
n-particle-n-hole (np-nh) excitations from the fp shell to the
g9/2 orbit, defined by

Pn = 〈Nn〉∑
n〈Nn〉 , (14)

where Nn are the np-nh operators from the fp-shell to the g9/2

orbit. Table II lists the probabilities of np-nh excitations in the
relevant low-lying states of 66Ni and 68Ni. In 66Ni, in all low-
lying states except the 6+

1 state, the dominant components are
the 0p-0h excitations but with considerable mixing of the 2p-2h
excitations. The 4p-4h excitations are quite small in these
states. The 6+

1 state in 66Ni has almost a pure 2p-2h component.
In contrast, the low-lying excited states in 68Ni show very
different structures. While the ground state has mixed 2p-
2h and 0p-0h components with nearly equal probability, the
low-lying excited states have mainly the 2p-2h component
with considerable mixing with the 4p-4h excitation. A large
E2+

1
and a small B(E2, 0+

1 → 2+
1 ) in 68Ni (see Fig. 1) would

be alternatively explained as follows. Once the odd-parity fp
orbits are filled at N = 40, at least two neutrons have to jump
to the intruder g9/2 orbit to create a 2+

1 state, and therefore the
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TABLE II. Probabilities of n particle-hole excitations for the
low-lying states of 66Ni and 68Ni.

Iπ 66Ni 68Ni

0p-0h 2p-2h 4p-4h 0p-0h 2p-2h 4p-4h

0+
1 0.596 0.347 0.054 0.482 0.405 0.104

2+
1 0.654 0.311 0.034 0.000 0.728 0.254

0+
2 0.718 0.260 0.022 0.108 0.610 0.256

4+
1 0.715 0.262 0.023 0.000 0.800 0.009

6+
1 0.000 0.891 0.107 0.000 0.779 0.210

energy E2+
1

increases [11,17,24]. The E2 transition between
2+

1 and 0+
1 in 68Ni becomes small just because the two states

have different structures. Interestingly, we indeed see from our
calculation that the band is built on the 0+

2 state. This happens
because all the excited states belonging to this band have a
structure similar to the 2p-2h excitations.

To visualize the shape of 68Ni, we use the CHF method with
the following quadratic constraint [15]:

H ′ = H + α
∑

µ

(〈Q2µ〉 − qµ)2 + β(〈Jx〉 − jx)2, (15)

where Q2µ and Jx are the isoscalar quadrupole oper-
ators and the x-component of angular momentum op-
erator, respectively. The qµ’s are constant parameters:
q0 = √

(5/16π )q cos γ, q±2 = √
(5/16π )qsinγ , and q±1 =

0, where q is the isoscalar intrinsic quadrupole moment
and γ is the triaxial angle. We set jx = √

J (J + 1) with J

the total angular momentum of the state. The parameters,
α and β, are taken so as to achieve a convergence for an
iteration calculation with the gradient method. Then, potential
energy surface (PES) is defined as the expectation value 〈H 〉
with respect to the CHF state for given q and γ . Figure 10
shows the contour plot of the PES in the q-γ plane for 68Ni.
We find that the PES minimum exhibits a spherical shape
and an oblate softness. This is consistent with our previous

0 10 20 30

68
Ni

q   (efm2)

γ=0

γ=60

FIG. 10. Contour plot of PES on the q-γ plane in the CHF
calculation for 68Ni.

discussions on the shell-model results, namely, a large E2+
1

and a small B(E2, 0+
1 → 2+

1 ) in 68Ni. The PES figure in
Fig. 10 is in contrast to the characteristic feature of an
oblate-prolate shape coexistence in 68Se [25,26].

III. N = 50 ISOTONES

A. Magicity in 90Zr

In the previous section, we discussed several unusual
properties found in 68Ni, which are associated with the subshell
closure at N = 40. A related question is how neutron-rich
nuclei with Z = 40 behave. Figure 11 shows the experimental
B(E2, 0+

1 → 2+
1 ) and the first excited 2+

1 energy as a func-
tion of proton number Z for some N = 50 isotones. For
both B(E2, 0+

1 → 2+
1 ) and E2+

1
values in Fig. 11, we find

remarkable similarities as seen in Fig. 1: with increasing proton
number Z,B(E2) quickly increases until Z = 34 and then
decreases from Z = 36 to Z = 40. The first excited 2+

1 energy
E2+

1
goes up gradually and peaks at Z = 40. Again, in terms

of B(E2, 0+
1 → 2+

1 ) and E2+
1
,90Zr seems to be a double-magic

nucleus. It should be pointed out that B(E2, 4+
1 → 2+

1 ) shows
different behavior from B(E2, 0+

1 → 2+
1 ) [28]. Recent lifetime

measurements for 96Pd and 94Ru corroborate the tendency of
this behavior for N = 50 [29]. Moreover, it has been shown
recently that the exact strengths for these transitions cannot
be reproduced in a T = 1 model space but require neutron
excitations across the N = 50 shell [30].

We carry out shell-model calculations for the N = 50
isotones. Since 78Ni is taken as a core, the model space the
for the proton is restricted to the fpg shell, and the neutrons
are assumed to be inactive. The proton effective charge is
taken as ep = 1.8 for the VMS interaction and ep = 2.0
for the JW interaction so as to reproduce the experimental
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0.0

0.5

1.0

1.5

2.0

E
2+ 1 (

M
eV

)

Z

0

500

1000

1500

2000

(b)

(a)

 vms
 jw
 exp

B
(E

2,
0+ 1  

  2
+ 1)

  (
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FIG. 11. (Color online) Comparison between the calculated and
the experimental values of (a) the B(E2, 0+

1 → 2+
1 ) and (b) E2+

1
for N = 50 isotones. Data are taken from Refs. [16,19,27]. The
shell-model calculations are carried out by using the VMS and
JW interactions. The calculated results are denoted by open circles
(triangles) for the VMS (JW) interaction, and the experimental ones
by filled squares.
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FIG. 12. (Color online) Two-proton separation energies in the
shell-model calculations with the VMS interaction. The exact shell
model results are denoted by open circles, the expectation values
neglecting the T = 1, J = 0 interactions by the open triangles, and
the expectation values neglecting the J > 0 interactions by the open
diamonds. Experimental data [19,22] are denoted by filled squares.

B(E2, 0+
1 → 2+

1 ) value of 90Zr [17]. We use two types of
effective interaction: the proton part of the VMS interaction
and the JW interaction. As one can see in Fig. 11, the
calculations nicely reproduce the observed trends for both
B(E2, 0+

1 → 2+
1 ) and E2+

1
.

Figure 12 shows the two-proton separation energy S2p and
the difference between two-proton separation energies δ2p for
this isotonic chain, defined by

S2p(Z,N ) = B(Z,N ) − B(Z − 2, N ), (16)

δ2p(Z,N ) = S2p(Z,N ) − S2p(Z + 2, N). (17)

The experimental data do not show a signature for a subshell
closure in 90Zr, since no irregularity in S2p can be seen.
The shell-model calculations reproduce well the experimental
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FIG. 13. (Color online) Same as Fig. 12, except that the calcula-
tions are performed by using the JW interaction.
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FIG. 14. (Color online) Expectation values of HJ=0 and HJ>0

defined by Eq. (13) for (a) the VMS interaction and (b) the JW
interaction. 〈HJ=0〉 and 〈HJ>0〉 are denoted by open circles and open
triangles, respectively. Their total (〈Hint〉) is also depicted by filled
circles. Note that the contribution of 〈HJ>0〉 becomes large with
increasing proton number.

values of S2p. In particular, the small peak in δ2p at N = 38 is
well described. To understand these results, we analyze the role
of the T = 1, J = 0 pairing interaction (HJ=0) and the other
interactions (HJ>0) in the Hamiltonian, as done in the previous
section [see Eq. (13)]. In contrast to the case of the Ni isotopes,
Figs. 12(a) and 13(a) indicate that, while the T = 1, J = 0
pairing interaction scarcely contributes to S2p, the remaining
interactions HJ>0 increase S2p significantly. Thus, the J > 0
interactions are more important for two-proton separation
energy in the N = 50 isotones. The HJ>0 contribution,
however, does not produce any notable irregularity in S2p.
For δ2p, we can see some differences between the VMS and
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FIG. 15. (Color online) Spherical proton shell structure. (a) The
HF single-particle energies eα obtained by the HF calculations with
the VMS interaction and (b) the two-proton separation energies from
the mean-field calculations for the N = 50 isotones. The HF results
are denoted by open triangles and the HFB by the filled squares.
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FIG. 16. (Color online) Same as Fig. 15, except that the calcula-
tions are performed by using the JW interaction.

JW interactions in Figs. 12(b) and 13(b). Moreover, the HJ=0

and HJ>0 contributions to δ2p in the VMS results are different
from those in the JW results.

Figure 14 shows the expectation values of HJ=0,HJ>0 and
the total interaction energy 〈Hint〉. Comparing Fig. 14 with
Fig. 7, we find that in the N = 50 isotones 〈HJ>0〉 increases
drastically with increasing proton number or becomes dom-
inant when Z is large. There is no clear bending at Z = 40
in either curve 〈HJ=0〉 or 〈HJ>0〉. Thus these detailed results
have explained the trends of the two-proton separation energy
in Fig. 12(a) and Fig. 13(a).

Let us now study the contributions from the above interac-
tions to HF single-particle energies eα in the HF, HF+BCS,
and HFB treatments. We also evaluate two-proton separation
energy S2p within these treatments. Figures 15 and 16 show,
respectively, the results calculated with the VMS and JW
interactions. In the VMS results shown in Fig. 15(a) it is seen
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FIG. 17. (Color online) Comparison between the experimental
and calculated level scheme for 86Kr, 88Sr, and 90Zr. Data are taken
from Refs. [16,19]. The shell model calculations are carried out by
using the VMS interaction. The widths of the arrows denote relative
values of B(E2). The numbers by the arrows are the B(E2) values in
Weisskopf units.
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cal results are obtained by using the JW interaction.

that the single-particle energy gap between g9/2 and p1/2 orbits
decreases quickly with increasing proton number. This causes
a smooth variation in S2p as seen in Fig. 15(b). All the HF type
calculations produce no irregularity in S2p. In the JW results in
Fig. 16(a), the single-particle energy gap between the g9/2 and
p1/2 orbits remains large up to Z = 36 but becomes small after
Z = 38. The Fermi energy, as found in all HF type calculations,
lies in the fp shell for Z = 30–38 and between g9/2 and p1/2 for
Z = 40–46. Therefore protons do not encounter a large energy
gap when they are excited. Therefore, in addition, with the JW
interaction no irregularity in S2p is produced [see Fig. 16(b)].
We note that in both Figs. 15 and 16, the proton separation
energies in the HFB calculations deviate from those of the
other calculations when Z is large. Similar trend is obtained
in the shell-model calculation without the J > 0 interaction.

B. Level structure in 86Kr, 88Sr, and 90Zr

Experimental level schemes for 86Kr, 88Sr, and 90Zr are
shown in Figs. 17 and 18. B(E2) in these nuclei has been
measured only for transitions between the 2+

1 state and the

TABLE III. B(E2) values for the positive-parity yrast states
and some excited states in 88Sr and 90Zr. Data are taken from
Refs. [16,19]. The calculated values are the shell-model results from
the VMS interaction.

Iπ
i → Iπ

f
88Sr [e2fm4] 90Zr [e2fm4]

Expt. Calc. Expt. Calc.

2+
1 → 0+

1 167(5) 230 129(4) 112

4+
1 → 2+

1 113 277

6+
1 → 4+

1 0.2 <1054 180

8+
1 → 6+

1 16 57(4) 65

2+
1 → 0+

2 7.3 124(2) 240

2+
2 → 0+

1 2.8(1) 0.5 38

2+
2 → 2+

1 0.2 38

2+
2 → 0+

2 0.1 133
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TABLE IV. Same as Table III, except that the calculations are
performed by using the JW interaction.

Iπ
i → Iπ

f
88Sr [e2fm4] 90Zr [e2fm4]

Expt. Calc. Expt. Calc.

2+
1 → 0+

1 167(5) 166 129(4) 133

4+
1 → 2+

1 51 264

6+
1 → 4+

1 116 <1054 192

8+
1 → 6+

1 226 57(4) 56

2+
1 → 0+

2 70 124(2) 173

2+
2 → 0+

1 2.8(1) 117 94

2+
2 → 2+

1 23 0.05

2+
2 → 0+

2 41 60

ground state. Among the three isotones, the 0+
2 level in 90Zr

is the lowest in energy and lies below the 2+
1 state. We

perform shell-model calculations by using the VMS and JW
interactions; the results are compared with data in Figs. 17
and 18, and the B(E2) values are summarized in Tables III
and IV.

The calculations can reproduce the experimental energy
levels and B(E2, 0+

1 → 2+
1 ) values. In particular, the system-

atic behavior of the 0+
2 state is well described. It is striking that

the results again show an excited band in 90Zr based on the
0+

2 state. For the E2 transition probability B(E2, 0+
2 → 2+

1 ),
both calculations indicate a quite small value in 86Kr and 88Sr
but a very large one in 90Zr. Moreover, B(E2, 4+

1 → 2+
1 ) and

B(E2, 6+
1 → 4+

1 ) are found to be large in 90Zr. In contrast,
B(E2, 0+

1 → 2+
1 ) in 90Zr is smaller than that in 86Kr and 88Sr.

All of these strongly suggest a new band in the Z = 40 nucleus
90Zr.

To confirm the above findings, we further study the
probability of the np-nh excitations defined by Eq. (14), in two
shell-model calculations with the VMS and JW interactions.
The results for 88Sr and 90Zr are listed in Tables V and VI,
respectively. For 88Sr with the VMS interaction (Table V), the
ground state and the 2+

1 state have a dominant component of
0p-0h excitation, and the 0+

2 and 4+
1 states have comparable

probabilities of 0p-0h and 2p-2h excitations. Note that the 2+
1

TABLE V. Probabilities of np-nh excitations in the low-lying
states for 88Sr and 90Zr, where the VMS interaction is used in the
shell-model calculations.

Iπ 88Sr 90Zr

0p-0h 2p-2h 4p-4h 0p-0h 2p-2h 4p-4h

0+
1 0.732 0.244 0.022 0.425 0.467 0.100

2+
1 0.799 0.190 0.011 0.000 0.835 0.158

0+
2 0.498 0.433 0.065 0.300 0.546 0.141

2+
2 0.811 0.180 0.009 0.000 0.854 0.141

4+
1 0.496 0.464 0.040 0.000 0.854 0.141

6+
1 0.000 0.920 0.078 0.000 0.852 0.142

TABLE VI. Same as Table V, except that the calculations are
performed by using the JW interaction.

Iπ 88Sr 90Zr

0p-0h 2p-2h 4p-4h 0p-0h 2p-2h 4p-4h

0+
1 0.809 0.184 0.006 0.452 0.484 0.062

2+
1 0.899 0.100 0.001 0.000 0.894 0.104

0+
2 0.208 0.729 0.061 0.356 0.523 0.115

2+
2 0.671 0.320 0.013 0.000 0.925 0.074

4+
1 0.250 0.714 0.036 0.000 0.904 0.094

6+
1 0.000 0.967 0.032 0.000 0.912 0.087

state in 88Sr can be made by 1p-1h excitations from (f5/2, p3/2)
to p1/2, which contribute to the E2 transitions. In the JW
results (Table VI), the 2p-2h components are dominant in the
0+

2 and 4+
1 states. The 6+

1 state is almost a pure 2p-2h excitation
in both VMS and JW interactions. One can thus expect that
only the E2 transition B(E2, 0+

1 → 2+
1 ) is enhanced in 88Sr.

In 90Zr, on the other hand, the ground state has the 0p-0h
and 2p-2h components with nearly equal probability, and the
dominant components in the 2+

1 , 0+
2 , and 6+

1 states are the
2p-2h excitation mixed with the 0p-0h component. Similar
results are found in both calculations. From this analysis, we
can understand that an excited band is formed on the 0+

2 state
in 90Zr because the 0+

2 , 2+
1 , 4+

1 , and 6+
1 states all have a similar

structure with a large component of 2p-2h excitations.

IV. CONCLUSIONS

We have studied the magicity of N or Z = 40 and the level
schemes for the neutron-rich nuclei 68Ni and 90Zr by means
of the shell-model and the mean-field approximations. For
both nuclei, with either N = 40 or Z = 40, their two-nucleon
separation energies do not show any irregularity along the
respective isotopic or isotonic chain, in spite of the apparent
double-magic feature shown with a comparatively large 2+

1
excitation energy and a small B(E2, 0+

1 → 2+
1 ) value. The

reason why the separation energy does not exhibit irregularity
has been found to be different for the Ni isotopes and
the N = 50 isotones. From the shell-model calculations by
using the VMS and JW interactions, we have suggested that
the T = 1, J = 0 pairing interaction is responsible for the
absence of any irregularity in separation energy in 68Ni.
The irregularity appears in the HF treatment but disappears
in the HFB treatment. This indicates that the shell gap at
N = 40 disappears because of dynamical correlations of
the isovector J = 0 pairing interaction. In the case of 90Zr,
however, irregularity in two-proton separation energy does not
appear in the HF calculations. For the N = 50 isotopes, the
J > 0 interactions contribute significantly to the two-proton
separation energy.

We have also studied level schemes for 68Ni and 90Zr.
We have predicted an excited band built on the 0+

2 state in
both nuclei. The dominant component of this band has been
determined to be the 2p-2h excitations from the fp shell to
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the intruder g9/2 orbit. The structure of the excited states
of this band is quite different from that of the ground state.
This happens because the opposite signs of parity between
the g9/2 orbit and the fp shell do not allow 1p-1h excitations
[24]. The first excited 2+

1 state in 68Ni and 90Zr lies higher,

and B(E2, 0+
1 → 2+

1 ) is relatively weak. The difference in
parity between the fp and the g9/2 subshells leads to a small
probability of quadrupole excitations across N = 40, and the
large energy gain due to pairing correlations in the g9/2 subshell
is responsible for the high 2+ energy in 68Ni.
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