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We study the phase transitions of two algebraic cluster models, which have similar interactions, but differ from
each other in their model spaces. The semimicroscopical model incorporates the Pauli exclusion principle, while
the phenomenological one does not. The appearance of the quasidynamical SU(3) symmetry is also investigated
in the presence of an explicitly symmetry-breaking interaction. Examples of binary cluster configurations with
two, one, or zero closed-shell clusters are studied.
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I. INTRODUCTION

Phase transitions in nuclear systems are of utmost interest.
An example is provided by the experimental study of the heat
capacity in highly excited nuclei [1], which resulted in an
S shape, as a function of the temperature. The reason for this
dependence is related to a transition from a pairing-dominated
phase to another phase without pairing [2–5].

Another very interesting class of phase transitions can be
seen in algebraic models of nuclear structure [6–8]. They
are called shape-phase transitions for the following reason.
These models have analytically solvable limiting cases, called
dynamical symmetries, which are characterized by a chain
of nested subgroups. They correspond to a well-defined
geometrical shape and behavior, e.g., rotation of an ellipsoid
or spherical vibration. The general case of the model, which
includes interactions described by more than one group chain,
breaks the symmetry; and by changing the relative strengths
of these interactions, one can go from one shape to the other.
In doing so, a phase transition can be seen. A phase transition
is defined as a discontinuity of some quantity as a function
of the control parameter, which gives the relative strength of
the interactions of different symmetries. Real phase transitions
can take place only in infinite systems, as in the classical limits
of these algebraic models, when the particle number N is very
large: N → ∞. For finite N , the discontinuities are smoothed
out; nevertheless, some indications of the phase transitions can
still be there.

A controlled way of breaking the dynamical symmetries
may reveal another very interesting phenomenon, i.e., the
appearance of a quasidynamical (or effective) symmetry [9].
This rather general symmetry concept of quantum mechanics
corresponds to a situation in which the symmetry-breaking
interactions are so strong that the energy eigenfunctions are
not symmetric (i.e., they are not basis states of an irreducible
representation of the symmetry group), rather they are linear
combinations of these basis states. However, they are very

special linear combinations in the sense that their coefficients
are (approximately) identical for states with different spin
values. When this is the case, then the underlying intrinsic
state is the same, and the states are said to form a (soft) band.
The quasidynamical symmetry is based on the mathematical
concept of embedded representation [10]. (In particular for the
quasidynamical SU(3) symmetry, which plays an important
role in the following considerations, a method is developed
in [11] for the determination of the effective SU(3) quantum
numbers in the case of large prolate deformation, and it was
extended in [12] for oblate deformation).

The phase transitions as well as the persistence of
the quasidynamical symmetries in the algebraic models of
quadrupole collectivity have been extensively studied [6,8,13].
The aim of the present paper is to address these questions
in relation to another important collectivity of nuclei, i.e.,
clusterization.

Fully algebraic cluster models, in which the basis states
are characterized by the irreducible representations of some
groups, and the physical operators are expressed in terms
of their generators, have been constructed on both the
phenomenological, and the semimicroscopical levels. A de-
scription is called semimicroscopical if the phenomenological
treatment of the operators (which have some parameters to
fit to the experimental data) is combined with a microscop-
ical model space, which is free from the Pauli-forbidden
states. When no (proper) distinction is made between the
Pauli-allowed and Pauli-forbidden states, the model is called
phenomenological.

The basic assumption of the cluster models is that the
relevant degrees of freedom of the nucleus can be classified
into two categories, which are related to the relative motion
of the clusters and to their internal structure. For the algebraic
description of relative motion, the vibron model [14] proved
to be successful. This model has a scalar (i.e., l = 0)σ boson
and a set of vector (i.e., l = 1)πi (i = 0,+1,−1) bosons as
building blocks. It has a U(4) group structure, and there are
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two analytically solvable limiting cases of the model, denoted
by the SU(3) and SO(4) algebras as

UR(4) ⊃ SUR(3) ⊃ SOR(3) ⊃ SOR(2)
[N, 0, 0, 0] (nπ, 0) LR MR,

nπ = N,N − 1, . . . , 1, 0,

LR = nπ, nπ − 2, . . . , 1 or 0, (1)

MR = LR,LR − 1, . . . ,−LR,

and

UR(4) ⊃ SOR(4) ⊃ SOR(3) ⊃ SOR(2)
[N, 0, 0, 0] (ω, 0) LR MR,

ω = N,N − 2, . . . , 1 or 0,

LR = ω,ω − 1, . . . , 1, 0, (2)

MR = LR,LR − 1, . . . ,−LR,

where the subscript R is applied for relative motion, in order to
avoid confusion later on. Here we have indicated the labels of
the irreducible representations as well as their relations. The
SU(3) limit corresponds to the vibration of the system around
a spherical equilibrium shape, while the SO(4) describes static
dipole deformation. (These questions will be discussed further
in Sec. III.)

The internal structure of the clusters can also be described
by algebraic models, e.g., by the Elliott model (SU(3) shell
model) [15], or by the U(6) interacting boson model (IBM) [6].

In the semimicroscopical algebraic cluster model (SACM)
[16,17], the internal structure of the clusters are described
by the shell model, having an UST(4) ⊗ U(3) group structure,
where UST(4) stands for the spin-isospin sector, while U(3)
refers to the space part. Then the model for a binary clus-
terization has a UST

C1
(4) ⊗ UC1 (3) ⊗ UR(4) ⊗ UST

C2
(4) ⊗ UC2 (3)

algebraic structure, where Ci stands for the ith cluster, and R

indicates the relative motion. The model space is constructed
to be free from the Pauli-forbidden states, and the physical
operators are expressed in terms of the group generators. If we
consider spin-isospin zero clusters, which is going to be the
case here, then the role of the UST

Ci
(4) groups are important

only in the construction of the model space, but they do
not play a role in physical operators. Therefore, from the
viewpoint of building up, e.g., the interactions, we can say that
the group structure is simplified to UC1 (3) ⊗ UR(4) ⊗ UC2 (3).
(This model has been applied in realistic studies [18].)

With the exactly same group structure, one can construct
a phenomenological algebraic cluster model (PACM), simply
forgetting about the exclusion principle. In this sense, we can
have a semimicroscopical and a phenomenological model for
clusterization with the same group structure and the same
interactions.

Since we wish to study the effects of the Pauli principle
on the phase transitions and on the persistence of the
quasidynamical symmetry in the cluster models, we will study
these two models, which are very closely related to each
other. As for the relation of the PACM to the better known
nuclear vibron model [19], which was historically the first fully
algebraic cluster model and has been widely applied [19–21],

the following can be said. Their model spaces and groups
structures are different, but the interactions are very similar. In
particular, the SU(3) dynamically symmetric Hamiltonian, as
discussed in the next section, is relevant also for the nuclear
vibron model.

The specific aims of the present study and the structure of
this paper are as follows. In Sec. II, we present the algebraic
cluster models and their Hamiltonians. Section III gives the
geometric mapping of the models, which provides us with
their large N limits. In this section, the phase transitions
are investigated analytically. Then in Sec. IV, examples of
binary cluster systems are studied numerically. We chose three
examples in such a way that in one of them both clusters
have a closed-shell structure, in the other there is one cluster
with a closed shell and another with an open-shell structure,
and in the third example, both clusters have open shells. In
these finite-N systems, we study numerically the signatures
of the phase transitions, as well as the question of whether
the quasidynamical SU(3) symmetry survives when we move
away from the SUR(3) limit of the vibron model toward the
SOR(4) one. Finally some conclusions are drawn in Sec. V.

II. THE MODELS

The two models we investigate here differ from each other
in their model spaces, while their interactions are the same, as
mentioned in the previous section.

In the semimicroscopical algebraic cluster model (SACM),
the internal structure of the clusters are described by the
Wigner-Elliott shell model of UST

Ci
(4) ⊗ UCi

(3) group struc-
ture. Their internal wave functions are completely antisymmet-
ric. When, however, the product wave function of the two clus-
ters and of the relative motion is constructed, it is contaminated
by the Pauli-forbidden states, because the antisymmetrization
with respect to the interchange of nucleons sitting in the two
different clusters has not been taken into account so far. It has
to be incorporated as an extra requirement. There are different
ways to do this. For light binary cluster configurations, which
will be considered here, a simple procedure is provided by
taking the intersection of the nonantisymmetric cluster model
basis and the fully antisymmetric shell model basis of the
united nucleus. We take this approach here, the details of which
are discussed in Ref. [17]. When this procedure is applied
to a system of two closed shell clusters, then it reduces to
the Wildermuth condition, which simply gives a lower limit
for the number of quanta of the relative motion [22]. (This
number depends, of course, on the clusters.) When one or more
clusters are open shell, then in addition to this condition, a more
refined selection of the allowed and forbidden single-nucleon
states within a major shell is involved. As is obvious from
this brief description, in constructing the microscopic model
space, the spin-isospin degrees of freedom [the UST(4) group]
play an essential role; without them the consequences of the
antisymmetrization cannot be taken into account.

If one does not pay attention to the exclusion principle,
i.e., the approach is phenomenological (PACM), then the
basis provided by the triple product wave functions (cluster-1,
cluster-2, relative motion) gives the basis of the cluster model
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itself, without any further restrictions. In such a case, the lowest
number of quanta in the relative motion is always zero.

In constructing the model Hamiltonians, the difference
between the semimicroscopical and the phenomenonological
approaches is less significant. In particular, when our interest
is restricted to a single sector of the spin-isospin degrees
of freedom, which is going to be the case in what follows,
exactly the same interactions can be applied. Thus, the
formalisms of the two models coincide from the viewpoint
of the Hamiltonians. In this respect, both models can be
characterized by the

SUC1 (3) ⊗ SUC2 (3) ⊗SUR(3) ⊃ SUC(3) ⊗ SUR(3) ⊃
(λ1, µ1)(λ2, µ2) (nπ, 0) (λC,µC)

SU(3) ⊃ SO(3) ⊃ SO(2)

(λ,µ) κL M, (3)

group structure, where (λk, µk) refers to the SUCk
(3) irre-

ducible representations (irreps) of the individual clusters,
which are coupled to the intermediate irrep (λC,µC). nπ is
the number of relative oscillator quanta, while (λ,µ) is the
total SU(3) irrep. L and M are the angular momentum and its
projection, and κ is used to distinguish multiple. Accurrances
of a given L in (λ,µ). It is worth mentioning here that the
same dynamical symmetry is relevant for the interactions of
the nuclear vibron model.

We apply the Hamiltonian

H = x(h̄ωnπ − a1C2(SU(3))) + (1 − x)a2 P4 + aL2. (4)

The first and the third terms correspond to the SU(3) dynamical
symmetry of the model, as described by group chain (3).
The second and third terms represent the SO(4) dynamical
symmetry of the vibron model, describing the relative motion.
x is a control parameter that we vary between 0 and 1, thus
x = 0 indicates the SO(4) limit, while x = 1 corresponds to
the SU(3) dynamical symmetry. In particular, the first member
of the interactions h̄ωnπ contains the linear invariant operator
of the UR(3) subgroup of the vibron model, and the h̄ω is
usually chosen as (45A−1/3 − 25A−2/3) for light [23] and
41A−1/3 for heavy nuclei [24]. C2(SU(3)) is the second-order
Casimir-invariant of the united SU(3) group of (3), having
contributions from both the internal cluster part and the relative
motion:

C2(SU(3)) = 1
4 Q2 + 3

4 L2,

→ (λ2 + λµ + µ2 + 3λ + 3µ),
(5)

Q = QC + QR,

L = LC + LR,

where Q and L stand for the quadrupole momentum and angu-
lar momentum, respectively. The relations of the momentum
operators to the C

(1,1)
2m generators of the SU(3) group, expressed

in terms of SU(3)-coupled π -boson creation and annihilation

operators [25], are

Q2m = 1√
3
C

(1,1)
2m ,

(6)
L1m = C

(1,1)
1m ,

C (1,1)
lm =

√
2[π † ⊗ π ](1,1)

lm . (7)

Here the superscripts denote SU(3), while the subscripts
denote SO(3) and SO(2) quantum numbers. The parameters
a1 and a2 are introduced in order to allow a similar scale in
energy for the x = 0 and x = 1 cases

The SO(4) part consists of the pairing operator [26]

P4 = 1
4 ((π † · π †) − (σ †)2)((π · π ) − (σ )2)

= 1
4 N(N + 2) − 1

4 C2(SO(4))

→ 1
4N (N + 2) − 1

4ω(ω + 2) (8)

[where the second-order Casimir operator of C2(SO(4))
deviates from the definition given in [26] by a factor of 1

2 ].
The eigenvalue, shown in the last line in (8), is correct only in
the full SO(4) basis, i.e., when it is not truncated by the Pauli
principle. When a truncation is applied due to the exclusion
principle, one has to diagonalize P4 in the SU(3) basis of (3)
with a minimal number of relative oscillation quanta larger
than zero. Then the eigenvalues will differ from those given
in (8). The angular momentum term L2 is common in both of
the dynamical symmetries.

The matrix elements of the interaction terms can be calcu-
lated by standard SU(3) coupling and recoupling techniques
[25]; the relevant formulas are collected in the Appendix.

III. GEOMETRICAL MAPPING

The algebraic models usually have the advantage of being
simple in structure and easy to solve numerically. On the
other hand, their disadvantage is that they are fairly abstract
and have no connection to the familiar geometrical concepts,
such as shape. To overcome this difficulty, the study of the
geometrical mapping of the group theoretical models can be
very helpful. The geometrical connection can be developed
via the concept of the mean field. In boson models, like the
models studied here, the mean field emerges as a result of
the interaction of the bosons. The shape can be determined
via the energetically most favored state.

Several algebraic models have been studied in this respect
(see, e.g., Refs. [26–31], and their relation to the geometrical
models [24] have been revealed.

In this section, we discuss the geometrical mapping of the
two algebraic cluster models that we introduced in the previous
section (PACM and SACM) from the viewpoint of the phase
transitions. First, we do so for the phenomenological model,
which is the simpler one, and then for the semimicroscopical
model.

As is usual in studies of the phase transitions of algebraic
models in the large N limit [6,8], we investigate the behavior of
the energy minimum as a function of the control parameter x.
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A. Phenomenological approach

We concentrate on the relative motion part of the model.
The lowest energy state will be a boson condensate, which can
be written as [32]

|α〉 = 1√
N !(1 + (α · α))N

(σ † + (α · π †))N |0〉. (9)

Here, α is a short-hand notation for αm (m = 1, 0,−1). Please
note that the operator with complex α coefficients is the most
general linear combination of the boson creation operators of
the vibron model. For static problems, the requirement of time
reversibility,

α�
m = (−1)mα−m, (10)

reduces the number of real parameters to three. In relation to
the interacting boson models, the (9) type of state is called
a projective coherent state [6]. It can also be considered as
a trial state of the generator coordinate method [33] in the
Gaussian overlap approximation without the zero point energy.
The geometrical mapping of the relevant operators are given
in Table I.

The potential V (α) = 〈α|H|α〉, sometimes also called the
energy functional, is given (for L = 0) by

V (α) = xN

(
h̄ω

(α · α)

(1 + (α · α))
− a1

[
C2(λC,µC)

+ 3
N

(1 + (α · α))
(α · α) + N (N − 1)

(1 + (α · α))2
(α · α)2

])

+ (1 − x)a2
N (N − 1)

4(1 + (α · α))2
[(α · α) − 1]2 + · · · ,

(11)

TABLE I. Geometrical mapping of some relevant operators in
terms of the coherent state variable α : αm(m = 1, 0, −1) in the limit
of N → ∞ [when (α · α) � 1] for L = 0. The α̂2 : α̂2m(k)(m =
2, 1, 0, −1, −2, k = 1, 2) are the quadrupole variables of the cluster
number k. N0,k is the total number of oscillation quanta plus 3

2 (Ak −
1) for the cluster k, where Ak is the number of nucleons in that
cluster. C2(λ,µ) is the second-order Casimir operator of the SU(3)
group, while C2(λC, µC) = (λ2

C + λCµC + µ2
C + 3λC + 3µC) is

the eigenvalue of the second-order Casimir operator of SUC(3). The
mapping in terms of the relative distance vector rm is obtained via

αm =
√

µωr

2Nh̄
r̃m, where r̃m is rm for the PACM while it is (rm − r0,m)

for the SACM. Here, the absolute value r0 of the vector r0 is given by
Eq. (18). The number operator of the π bosons is given by
[π † ⊗ π][0]

0 .

Operator α map

[π † ⊗ π][L]
M N [α ⊗ α][L]

M

Qa
m(k)

√
5
π
N0,kα̂2m(k)

(π † · π †)(π · π ) N 2(α · α)2

(π † · π †)(σ )2 N 2(α · α)
(σ †)2(π · π ) N2(α · α)
(σ †)2(σ )2 N 2

C2(λ,µ) C2(λC, µC) + 3N (α · α) + N2(α · α)2

+ ([N0,1α̂2(1) + N0,2α̂2(2)] · [α ⊗ α][2])

where terms, indicated by “+. . .”, which depend on the
deformation of the individual clusters, have been skipped.
They introduce a dependence on the relative orientation [21],
but they do not change our main conclusions. Using the relation
of the relative distance to the variables αm [34]

rm ≈ 〈α|rm|α〉 ≈
√

2Nh̄

µωr

αm, (12)

where rm is the approximate distance between the clusters, µ is

the reduced mass, and ωr =
√

A1+A2
A1A2

ω such that µω2
r = mω2

(in [34]mω was used but later it was corrected in [35]), and
with the procedure explained in Ref. [34] the potential acquires
the form

W (r) ≈ x

(
µω2

r

2
r2 − a1

[
C2(λC,µC) + 3

(µωr

2h̄

)
r2

+
(µωr

2h̄

)2
r4

])
+ (1 − x)a2

(µωr

2h̄

)2

×
(

r2 − 2Nh̄

µωr

)2

+ · · · . (13)

In this expression, there is a minimum corresponding to
the SU(3) limit at r = 0, and another one corresponding
to the SO(4) limit (for positive sign in front of P4) at
r = (2Nh̄/µωr )

1
2 . (This latter minimum increases with N ,

indicating a dissociation of the two clusters for N → ∞; it
could be kept at finite distance only with some renormalization.
This observation is in line with the procedure of [36], where
the parameter R2 in front of (σ †)2 and (σ )2 was introduced,
which may cancel the N dependence; if R2 is proportional
to 1/N , however, it moves the system away from the SO(4)
limit.)

The competition of the SU(3) and SO(4) minima (by chang-
ing the control parameter x) determines the global energy
minimum. A simplified analysis can be carried out easily
for the a1 = 0 case (this parameter is normally small). The
minimum values of the SU(3) and SO(4) parts at the relevant
r values (as mentioned above) are WSU(3)(0) = (1 − x)a2N

2

and WSO(4)(
√

2Nh̄/µωr ) = xNh̄ωr . They are equal at

x0 = 1

1 + h̄ωr

a2N

, (14)

and this value gives an estimation of where the transition sets
in.

The derivative shows a jump at the point of transition,
as can be seen using Eq. (13): taken at the minimum
position of the SU(3) part (r = 0) and putting a1 = 0,
we obtain dW (r)

dr
|r=0,a1=0 = 0; while taken at the minimum

position of the SO(4) part [r = r0 = √
2Nh̄/µωr )], we obtain

dW (r)
dr

|r=r0,a1=0 = xωr

√
2Nh̄ωrµ. Since the first derivative of

the energy-minimum is discontinuous at the transition, it is
called a first-order phase transition.

An alternative derivation gives a similar result in the
following way. Starting from Eq. (11) and setting a1 = 0, the
extrema of the potential are (given by the absolute value of
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FIG. 1. Phenomenological model calculations for the 16O+α system. Parameters of the Hamiltonian are h̄ω = 13.2, a1 = 0.1, a2 = 1.0, a =
0.1 (all in MeV), while x0 = 0.46.

αm) α = 0, and

α2 = (1 − x)a2(N − 1) − xh̄ω

(1 − x)a2(N − 1) + xh̄ω
. (15)

α2 is positive (as it has to be) in the range of x

0 � x �
1

1 + h̄ω
a2(N−1)

= xl. (16)

It turns out that α = 0 is an absolute minimum when x > xl ,
and it is a maximum when x < xl . In the latter case, the root
value of Eq. (15) gives the position of the minimum. For large
N values, the estimation of Eqs. (14) and (16) coincide.

B. Semimicroscopical approach

When the Pauli principle is taken into account, there is a
minimal number (n0) of nπ bosons; therefore, the coherent
state for the relative motion has a different form [34]:

|α〉 = NN ′n0 (α · π )n0 [σ † + (α · π †)]N
′ |0〉, (17)

where the total number of quanta is N = N ′ + n0. In the limit
N → ∞, the corresponding potential has the same form as in
(13), except that the distance variable r has to be substituted
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FIG. 2. Semimicroscopical model calculations for the 16O+α system.

by r̃ , with r̃ = (r − r0), and r0 is given by [34]

r0 ≈
√

h̄

µωr

n0, (18)

W (r) ≈ x

(
µω2

r

2
(r − r0)2 − a1

[
C2(λC,µC) + 3

(µωr

2h̄

)

× (r − r0)2 +
(µωr

2h̄

)2
(r − r0)4

])
+ (1 − x)a2

×
(µωr

2h̄

)2
(

(r − r0)2 − 2Nh̄

µωr

)2

+ · · · . (19)

This potential has a minimum in both its SU(3) and its
SO(4) parts at finite distance (r > 0). (Please note that the
exclusion principle moves the minimum of the potential from
zero to a finite value even for the Hamiltonian of SU(3)
dynamical symmetry.) The two minima are at r1 = r0, and r2 =
r0 + √

2Nh̄/µωr , respectively. [The SO(4) part also has an
extremum at r1 = r0; however, it is a maximum; furthermore,
it has another local minimum at r = 0, but it turns out that
this can never become a global minimum.] Their competition
determines the global minimum, similar to the case of the
phenomenological model. The transition takes place again at
the x0 value of Eq. (14), and the first derivative of the potential
is again discontinuous at this point; thus, the phase transition
is of first order in this case, too.
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FIG. 3. Phenomenological model for the 20Ne+α system. Parameters of the Hamiltonian are h̄ω = 12.6, a1 = 0.085, a2 = 0.055, a = 0.1
(all in MeV), while x0 = 0.08.

IV. NUMERICAL STUDIES

In this section, we present the results of the numerical
solution of the energy-eigenvalue problem for the Hamiltonian
(4), for various x. In this way we can see how the phase
transition shows up in finite N systems, as well as the
persistence of the quasidynamical SU(3) symmetry. The three
examples we have chosen represent binary cluster systems
with zero (16O+4He), one (20Ne+4He), and two (12C+8Be)
open-shell clusters.

The model spaces, characterized by nπ , are as follows.
16O+4He phenomenological: 0 � nπ � 12, semimicroscopi-
cal: 8 � nπ � 20; 20Ne+4He phenomenological: 0 � nπ � 12,

semimicroscopical: 8 � nπ � 20; i.e. the size of the model
space is the same for these cases. For the third system,
12C+8Be, we took a bit smaller space because of the
large dimensions caused by the coupling to two open-shell
clusters; phenomenological: 0 � nπ � 10, semimicroscopical:
8 � nπ � 18.

Figures 1–6 show the results for the phenomenological
and semimicroscopical description of the three systems. The
parameters of the Hamiltonian, shown in the figure captions,
were identical in the phenomenological and semimicroscopi-
cal calculations. In each figure, the upper four parts give the
decomposition of the wave function of the lowest-lying states
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FIG. 4. Semimicroscopical model calculations for the 20Ne+α system.

with angular momentum 0, 2, 4, 6, and 8 in terms of SU(3)
basis states for different x values. The weights of the basis
states are plotted vs the expectation value of the second-order
Casimir operator. The x values are chosen such that the region
of expected phase transition is displayed as well as some points
beforehand and afterward. The critical x0 values, based on the
estimation of the previous section, are also given in the figure
captions. These parts indicate whether the quasidynamical
symmetry is present in the system (at a given x) in the following
way. When the contribution of an SU(3) basis state is similar to
the energy eigenstates with different angular momentum, i.e.,
their symbols are close to each other, then the quasidynamical
symmetry is (approximately) valid. (This is relevant, of course,
for the nonzero contributions. Some missing coincidence of

the symbols for different L values on the horizontal axis are
unimportant in this respect, reflecting merely the uncertainty of
the plotting procedure for the practically zero contributions.)

The two lower parts of each figure show the behavior of the
ground-state energy and the expectation value of the number
of π bosons 〈nπ 〉 as a function of x. The expectation value
〈nπ 〉 is given by

〈nπ 〉 = N
α2

1 + α2
. (20)

Due to Eq. (15), 〈nπ 〉 is different from zero for x < xl , and it is
zero for x > xl . The abrupt change in these quantities indicate
the phase transition; however, for finite systems, it may be
smoothed out or even disappear. (That is why we investigate
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FIG. 5. Phenomenological model calculations for the 12C+8Be system. Parameters of the Hamiltonian are h̄ω = 13.2, a1 = 0.15, a2 =
0.025, a = 0.1 (all in MeV), while x0 = 0.04.

two quantities, instead of the single energy, as we did in the
case of the infinite system of the previous section.)

The figures show some changes in both the phenomenolog-
ical and the semimicroscopical description around the critical
values of the control parameter in each system, though the
discontinuity of the infinite system is smoothed out to a large
extent in each case.

As for the persistence of the quasidynamical symmetry,
the following can be said. Those systems that contain some
nonclosed-shell clusters (20Ne+α,12C+8Be) show similar
behavior. The SU(3) quasidynamical symmetry survives until
the critical point, in both the phenomenological and semimi-
croscopical descriptions. It seems that the large model space,

obtained as a result of the coupling of the relative motion
degrees of freedom to some internal structure, helps to develop
some similar mixture of basis states in both descriptions.

The system of two closed-shell structures (16O+α) shows
some different characteristics. The phenomenological model
does not associate a single SU(3) irrep to the ground state (and
other) band even in the limit of the SU(3) dynamical symmetry.
Therefore, in this case, no quasidynamical symmetry appears.
In the semimicroscopic description, however, when the real
SU(3) dynamical symmetry associates well-defined SU(3)
quantum numbers to the bands, it survives as a quasidynamical
symmetry not only up to the critical point of the control
parameter, but even farther, up to the real SO(4) limit.
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FIG. 6. Semimicroscopical model calculations for the 12C+8Be system.

This might be understood as being the consequence of the
close similarity between the rotational spectrum, appearing
also in the SO(4) limit, and an SU(3) irrep. (In case there is a
coupling to the internal degrees of freedom, this rigid structure
in the SU(3) basis content of the relative motion seems to be
dissolved.)

V. SUMMARY

In this paper, we have studied the phase transitions of
algebraic cluster models. Two models were considered, a
phenomenological one, containing no Pauli principle, and a

semimicroscopical one, which is based on a microscopically
determined model space, being free from the Pauli-forbidden
states. The interactions were treated in a phenomenological
and algebraic way in both cases. In this respect, the two
models have similar group structures. We have studied the
SU(3)-SO(4) phase transition, related to the description of
the relative motion in terms of the vibron model (in its
simplest form in the phenomenological model and in a properly
truncated form in the semimicroscopical description).

The analytical study of the large-N limit of both models
shows a first-order phase transition. We also carried out
numerical calculations. Three binary cluster systems were
chosen, in which the number of open-shell clusters were zero,
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one, and two, respectively. The numerical studies show that
the phase transition is smoothed out for finite N systems, but
some fingerprints of it still can be seen.

The appearance of the quasidynamical SU(3) symmetry
has also been studied, when moving away from the limit
of the real SU(3) dynamical symmetry. It turned out that in
each case, when there is a real dynamical symmetry in the
limiting case (in the sense that a well-defined SU(3) quantum
number can be associated to a band), this symmetry survives
as quasidynamical at least up to the critical value of the
control parameter. This finding is very similar to those of
the investigations of the models of quadrupole collectivity [8].
In the case of the semimicroscopical description of the two
closed-shell clusters, it turned out to be valid in the whole
range of the control parameter.
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APPENDIX

Here we present the formulas needed for the calculation
of the matrix elements of the Hamiltonian (4). The only
nondiagonal interactions are those related to the SO(4) pairing
interaction.

We use the formulas of Ref. [25], as listed in its Appendix.
In that work, Eq. (A.7) gives the triple reduced matrix elements
of the bilinear products of creation and annihilation operators
of the relative quanta. In our notation, they read

〈(n′
π , 0)|||[π † ⊗ π †](2,0)|||(nπ, 0)〉 = √

n′
π (n′

π − 1)δn′
π ,nπ +2,

〈(n′
π , 0)|||[π ⊗ π ](0,2)|||(nπ, 0)〉 = √

(n′
π + 3)(n′

π + 4)

× δn′
π ,nπ −2. (A1)

Using Eq. (C.29) of Ref. [25], the triple reduced matrix
elements of a pair of boson creation operators is given by

〈ρ ′
C(λ′

C, µ′
C), (n′sπ , 0), (λ′, µ′)|||[π † ⊗ π †](2,0)

× |||ρC(λC,µC), (nπ, 0), (λ,µ)〉1

=




(λC,µC) (0, 0) (λ′
C, µ′

C) 1

(nπ, 0) (2, 0) (n′
π , 0) 1

(λ,µ) (2, 0) (λ′, µ′) 1

1 1 1




〈(n′
π , 0)|||[π † ⊗ π †](2,0)

× |||(nπ, 0)〉1δ(λ′
C,µ′

C ),(λC,µC )δρ ′
C,ρC

(A2)

and a similar relation holds for the two annihilation operators.
Here { } stands for the 9-(λ,µ) symbol. Please note that the
total number of bosons N is conserved, thus the number of σ

bosons is determined by nπ ; so our short-hand notation for the
basis states is complete.

The next type of interaction is the product of two creation
and two annihilation operators, where Eq. (C.28) of Ref. [25]

is used, i.e.,

〈ρ ′
C(λ′

C, µ′
C), (n′

π , 0), (λ′, µ′)

× |||[[π † ⊗ π †](2,0) ⊗ [π ⊗ π ](0,2)
](λ,λ)

× |||ρC(λC,µC), (nπ, 0), (λ,µ)〉1

=




(λC,µC) (0, 0) (λ′
C, µ′

C) 1

(nπ, 0) (λ, λ) (n′
π , 0) 1

(λ,µ) (λ, λ) (λ′, µ′) 1

1 1 1




δ(λ′
C,µ′

C ),(λC,µC )δρ ′
C,ρC

×〈(n′
π , 0)||| [π † ⊗ π †](2,0) |||(nπ − 2, 0)〉1

×〈(nπ − 2, 0)||| [π ⊗ π](0,2) |||(nπ, 0)〉1

× U[(nπ, 0)(0, 2)(n′
π , 0)(20); (nπ − 2, 0)11(λ, λ)11],

(A3)

with λ = 0, 2 and U[· · ·] is the SU(3) Racah coefficient [25].
In the Hamiltonian, only those products of two creation

and two annihilation operators appear, which are coupled to
zero angular momentum. Their relation to the SU(3) tensor
products are

(π † · π †) =
√

3〈(1, 0)11, (1, 0)11||(2, 0)10〉1[π † ⊗ π †](2,0)
100 ,

(π · π ) =
√

3〈(0, 1)11, (0, 1)11||(0, 2)10〉1[π ⊗ π ](0,2)
100 ,

(A4)

and

(π † · π †)(π · π) = 3
∑

λ

〈(1, 0)11, (1, 0)11

× ||(2, 0)10〉1〈(0, 1)11, (0, 1)11||
× (0, 2)10〉1〈(2, 0)10, (0, 2)10||(λ, λ)10〉1

× [
[π † ⊗ π †](2,0) ⊗ [π ⊗ π](0,2)

](λ,λ)
100 ,

(A5)

where the subindex in the last line refers to the multiplicity κ ,
angular momentum L, and its projection, respectively.

The matrix elements of the σ † and σ operators are

〈n′
σ |σ †|nσ 〉 = δn′

σ nσ +1

√
nσ + 1,

〈n′
σ |σ |nσ 〉 = δn′

σ nσ −1
√

nσ ,

〈n′
σ |σ †σ |nσ 〉 = δn′

σ nσ
nσ , (A6)

〈n′
σ |(σ †)2|nσ 〉 = δn′

σ nσ +2

√
(nσ + 1)(nσ + 2),

〈n′
σ |(σ )2|nσ 〉 = δn′

σ nσ −2

√
nσ (nσ − 1),

where we denoted the basis states by the nσ = N − nπ

quantum number.
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G. Lévai and J. Cseh, Phys. Lett. B381, 1 (1996); Zs. Fulop et al.,
Nucl. Phys. A604, 286 (1996); J. Cseh, G. Lévai, A. Ventura,
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[21] H. Yépez-Martı́nez, P. O. Hess, and Ş. Mişicu, Phys. Rev. C 68,
014314 (2003).

[22] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus
(Vieweg, Braunschweig, 1977).

[23] J. Blomqvist and A. Molinari, Nucl. Phys. A106, 545 (1968).
[24] J. M. Eisenberg and W. Greiner, Nuclear Theory I: Nuclear

Models (North-Holland, Amsterdam, 1987).
[25] J. Escher and J. P. Draayer, J. Math. Phys. 39, 5123 (1998).
[26] O. S. Roosmalen, Ph.D. thesis (Univ. Grooningen, Netherland,

1982).
[27] J. N. Ginocchio and M. W. Kirson, Phys. Rev. Lett. 44, 1744

(1980); Nucl. Phys. A350, 31 (1980).
[28] D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985).
[29] O. Castaños, P. O. Hess, P. Rocheford, and J. P. Draayer, Nucl.

Phys. A524, 469 (1991).
[30] O. Castaños, P. O. Hess, J. P. Draayer, and P. Rochford, Phys.

Lett. B277, 27 (1992).
[31] H. vanGeel, P. O. Hess, J. A. Maruhn, W. Greiner, and

D. Troltenier, Nucl. Phys. A577, 605 (1994).
[32] A. Leviatan and M. W. Kirson, Ann. Phys. (NY) 188, 142

(1988).
[33] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer, Heidelberg, 1980).
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