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Shape coexistence in neutron-deficient Kr isotopes: Constraints on the single-particle spectrum
of self-consistent mean-field models from collective excitations
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We discuss results obtained in the study of shape coexistence in the neutron-deficient 72−78Kr isotopes.
The method that we used is based on the mixing of axial mean-field configurations after their projection on
particle number and angular momentum. The calculations are performed with a Skyrme interaction and a
density-dependent pairing interaction. Although our calculation reproduces qualitatively and quantitatively many
of the global features of these nuclei, such as coexistence of prolate and oblate shapes, their strong mixing at low
angular momentum, and the deformation of collective bands, the ordering of our calculated low-lying levels is
at variance with experiment. We analyze the role of the single-particle spectrum of the underlying mean field for
the spectrum of collective excitations.

DOI: 10.1103/PhysRevC.74.024312 PACS number(s): 21.60.−n, 21.10.Re, 21.10.Ky, 27.50.+e

I. INTRODUCTION

In a mean-field framework [1], the presence of low-lying
0+ states in the spectrum of an even-even nucleus is usually
interpreted as the manifestation of shape coexistence [2]:
each of the 0+ states, including the ground state, corresponds
to a mean-field configuration of a different shape. Nuclei
around the neutron-deficient Kr and Sr have very early been
considered as among the most favorable ones for the presence
of shape coexistence. The first studies were performed for
72Kr and a few neighboring odd nuclei with the help of the
Nilsson-Strutinsky approach [3]. Detailed calculations have
been carried out since then with an improved microscopic-
macroscopic model [4] and with self-consistent mean-field
models using nonrelativistic Skyrme [5] and Gogny [6] inter-
actions, as well as relativistic Lagrangians [7]. They confirm
the presence of oblate and prolate minima in the deformation
energy surface of some light Kr, Sr, and Zr isotopes.

The existence of nearly degenerate structures correspond-
ing to different deformations raises immediately the question
of their stability against dynamical effects beyond a mean-field
approach. One can expect that the physical states result in fact
from a mixing of states with spherical, prolate, and oblate
deformations. Such mixings were obtained from models with
parameters specifically adjusted to the data: the proton-neutron
interacting boson model (IBA-2) [8] and a Bohr-Hamiltonian
calculation built on a microscopic-macroscopic model [9].

An alternative to a mean-field description of shape coex-
istence is given by the shell model. However, the number of
active particles and holes necessary to describe the neutron-
deficient Kr isotopes is prohibitively large, and this mass region
is out of reach of the conventional shell model. The problem
is tractable in models by performing a clever truncation of
the configuration space, as in the complex excited VAMPIR
approach using a phenomenologically modified nuclear matter
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G matrix as residual interaction [10,11] or in the shell-model
Monte Carlo (SMMC) method. A SMMC calculation using
a schematic pairing + quadrupole interaction is presented in
Ref. [12].

The first experimental evidence for ground-state deforma-
tion in neutron-deficient Kr isotopes was found in Ref. [13].
Subsequent experiments revealed the rich structure of the
low-lying excitation spectrum in these nuclei, with coexisting
and mixed bands in 72–78Kr [14–16]. Much more data on
transition probabilities, both in and out of bands, have also
now become available [17–27].

The description of such nuclei is a challenge for nuclear
structure models. In general, their excitation spectrum varies
very rapidly along a given isotopic line. For this reason, they
constitute a testing ground for beyond-mean-field approaches
built on Skyrme-Hartree-Fock [28,29]. In this paper, we
present an application of an angular-momentum-projected
generator coordinate method to the description of the low-
energy excitations in 72–78Kr. At present, our implementation
of the method is limited to axial mean-field states that are in-
variant under spatial inversion and time reversal. Applications
of the same method to shape coexistence in neutron-deficient
Pb isotopes were presented in Refs. [30,31]. A good qualitative
agreement with the data was obtained, in particular for the
relative position of the coexisting bands that result from
a mixing of oblate, spherical, and prolate configurations.
However, the mixing is extremely sensitive to many details of
the model and to the effective interaction, preventing a detailed
quantitative agreement with the data. Compared to the neutron-
deficient Pb isotopes, the description of the neutron-deficient
Kr isotopes looks simpler. The coexisting bands result from
the mixing of only two kinds of structures, oblate and prolate.
The number of spherical j shells that contribute to the shell
structure is smaller than for Pb, and the shells are the same
for neutrons and protons. It is therefore easier to relate the
collective states to the underlying mean field.
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Our calculated values presented in the following have
already been used for comparison in the experimental report
of Refs. [24,25].

II. THE METHOD

The starting point of our method is a set of axial HF + BCS
wave functions. They are generated by self-consistent mean-
field calculations on a three-dimensional mesh in coordinate
space [5,32], with a constraint on a collective coordinate, the
axial quadrupole moment 〈Q20〉. In a spherical nuclear shell
model picture, such mean-field states incorporate particle-
particle correlations through pairing and many-particle many-
hole correlations through nuclear deformation. As a result,
the mean-field states break several symmetries of the exact
many-body states. These symmetry violations make it difficult
to connect mean-field results, expressed in the intrinsic frame
of reference of the nucleus, to spectroscopic data, obtained in
the laboratory frame of reference. This motivates the second
step of our method, the restoration of the symmetries associ-
ated with particle numbers and rotation. Another ambiguity
in the interpretation of mean-field results arises when the
deformation energy varies slowly as a function of a shape
degree of freedom, in particular when a potential energy
surface presents several minima separated by a low barrier.
In such a case, to assign a physical state to each minimum is
not a well-founded approximation. This problem is eliminated
by the third step of our method: for each angular momentum,
states obtained by projecting mean-field configurations of
different deformation are used as the generating functions
of the generator coordinate method (GCM). The weight
coefficients of the mixing are determined by varying the energy
and by solving the Hill-Wheeler-Griffin equation [33]. The
configuration mixing removes the contribution of vibrational
excitations from the ground-state wave function. It also permits
construction of a spectrum of excited states. A detailed
introduction to the method has been given in Ref [34].

The same effective interaction is used to generate the
mean-field states and to perform the configuration mixing:
the Skyrme interaction SLy6 [35] in the particle-hole channel
and a density-dependent, zero-range interaction in the pairing
channel. As required by the SLy6 parametrization, the full two-
body center-of-mass correction is included in the variational
equations to generate the mean field and in the calculation
of the projected GCM energies. The strength of the pairing
interaction is the same as in previous studies of light and
medium-mass nuclei, that is,−1000 MeV fm3 for protons and
neutrons in connection with cutoffs above and below the Fermi
energy, as defined in Ref. [36]. Similar implementations of
the angular-momentum-projected GCM have been developed
also for the nonrelativistic Gogny interaction [37] and for
relativistic mean-field Lagrangians [38].

To define a dimensionless deformation parameter, we
use the sharp edge liquid drop relation between the axial
quadrupole moment Q

(i)
2 and a parameter β

(i)
2 :

β
(i)
2 =

√
5

16π

4πQ
(i)
2

3R2A
, (1)

with R = 1.2A1/3 fm. The mass dependence of the quadrupole
moment is partly removed in this parameter β2. It should not
be compared with the multipole expansion parameters used
in microscopic-macroscopic models, whose origin is not the
same and usually are significantly smaller.

With our method, B(E2, J → J ′) values for in-band and
out-of-band transitions as well as spectroscopic multipole
moments Qs(J ) are determined directly in the laboratory
frame of reference [39]. As we use the full model space of
occupied states, we do not have to distinguish between valence
particles and a core, nor is there a need for effective charges.

To make a comparison with other approaches easier,
it is useful to define quantities similar to intrinsic frame
deformations from the spectroscopic and transition moments.
An intrinsic transition charge quadrupole moment Q(t) can be
derived from the B(E2) values within the static rotor model:

Q(t)(J ) =
√

16π

5

B(E2, J → J − 2)

(J0 20|J − 20)2e2
. (2)

In the same way, an intrinsic charge quadrupole moment can
be related to the spectroscopic quadrupole moment Qc(J ) via
the relation

Q(s)(J ) = (J + 1)(2J + 3)

3K2 − J (J + 1)
Qc(J ). (3)

For axially symmetric shapes (i.e., pure K = 0 states), this
relation reduces to Q(s)(J ) = −Qc(J ) (2J + 3)/J , with a
change of sign between Q(s) and Qc(J ). Dimensionless
deformation parameters β

(t)
2 and β

(s)
2 can be determined from

Q(t) and Q(s), respectively, through an equation similar to
Eq. (1), with A replaced by Z. Within a given band, Q(s) and
Q(t) might still depend strongly on angular momentum.

Q(s) and Q(t) measure different properties: Q(s) depends on
a single state, whereas Q(t) probes the geometry of the initial
and final states whose wave functions can correspond to very
different mixings of projected mean-field states. In general,
these two moments take different values. Their near equality
indicates that the assumptions of the static-rotor model are
fulfilled; that is, there is a well-deformed rotational band not
mixed with other bands.

III. RESULTS

A. Potential landscapes

Figure 1 provides the Nilsson diagram of the self-consistent
single-particle energies for neutrons. The diagram for protons
looks very similar, but shifted in energy. One can see two
main differences with the single-particle energies used in some
other methods. In the Woods-Saxon and the Folded-Yukawa
potentials used in the microscopic-macroscopic calculations
of Refs. [4] and [40], respectively, as in the Woods-Saxon
potential used to generate the single-particle spectrum for the
SMMC calculations of Ref. [12], the p3/2 and p1/2 levels
are closer to the g9/2 level by approximately 2 MeV and the
separation between the f5/2 and the g9/2 levels is larger. As a
result, the p3/2 and the f5/2 levels are much closer and their
order is even changed in the case of the latter two models.
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FIG. 1. Nilsson plot of neutron single-particle energies with
positive (solid lines) and negative (dotted lines) parity as a function
of the intrinsic mass deformation β

(i)
2 , as obtained for 74Kr.

These modifications have a strong effect on the deformed gaps,
which may correspond to quite different deformations and
vary in size. The spin-orbit splittings for the f and p levels in
the three potentials are very similar to ours. The differences
between the single-particle spectra must thus be related to
the relative position of states with different orbital angular
momentum within a given shell.

Figure 2 shows the mean-field and J = 0 projected en-
ergy curves for 72–78Kr obtained with the SLy6 Skyrme
parametrization. Throughout this paper, the projected energy
is plotted as a function of the intrinsic β

(i)
2 value of the

mean-field states from which they are obtained. In our opinion,
this quantity provides the most convenient and intuitive label
that can be defined for all states, irrespective of the level of
modeling. However, it should not be misinterpreted as an
observable. With our method, one calculates transition and
spectroscopic multipole moments in the laboratory frame,
which can be directly compared to experimental data. How-
ever, the spectroscopic moments that characterize a state do
not provide useful coordinates to plot potential energy curves
because they scale with angular momentum and are even
identically zero for J = 0. For projected states with J > 0 and
large intrinsic deformation in nuclei with A larger than 100,
β

(i)
2 is very close to the intrinsic deformation β

(s)
2 determined

from the laboratory-frame quadrupole moment Q(s) through
the static rotor model, Eq. (3). Note that any coordinate might
be misleading for the GCM, as the metric is related to the
inverse of the overlap matrix, which has no direct connection
to any deformation.

The mean-field energy landscapes (dotted lines in Fig. 2)
show that the energies of the four nuclei vary quite slowly with
deformation. Our calculations also predict a transition from a
nucleus with coexisting prolate and oblate minima in 72Kr to a
soft, spherical, anharmonic vibrator in 78Kr. The many shallow
local minima and plateaus in the total energy curves can be
directly related to the gaps in the Nilsson diagram in Fig. 1.

The two minima in the mean-field energy curve (dotted line)
of 74Kr reflect the N = 38 gaps in the Nilsson diagram at small
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FIG. 2. Mean-field (dotted) and J = 0 projected deformation
energy curves (solid) for 72–78Kr (see text).

oblate and large prolate deformations. For 76Kr, the spherical
mean-field minimum is related to the large spherical N =
40 subshell closure, whereas the shallow oblate and prolate
structures correspond to two deformed N = 40 gaps in the
Nilsson diagram. The prolate minimum has moved to smaller
deformation than in 74Kr, with the deformed N = 38 gap being
at larger deformations than the N = 40 gap. The spherical N =
40 subshell closure is strong enough to stabilize the spherical
shape up to the N = 42 isotope 78Kr.

As can be seen from the solid lines in Fig. 2, the energy
landscapes are qualitatively modified by the projection on
J = 0. Since a spherical mean-field state is already a J = 0
state, the energy gain by projecting it on angular momentum
is zero whereas the projection of a deformed mean-field
state always leads to an energy gain, which increases very
rapidly at small deformation. In almost all spherical and soft
nuclei, this creates minima at prolate and oblate deformations
with |β(i)

2 | values around 0.1. These states usually have a
large overlap close to 1, which means they are not two
different states but represent the same one, which can be
associated with a “correlated spherical state.” In nuclei with
shallow mean-field minima at small deformations as in the Kr
isotopes, the projection merges this near-spherical spherical
minimum with the slightly oblate one into a broad structure.
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Because the prolate mean-field minimum is at larger defor-
mation, two distinct structures appear on the prolate side in
74–78Kr, a “spherical” one at a β2 value around 0.15 and a
well-deformed one at a β2 value around 0.5.

The topology of the 72Kr energy surface on the oblate side
can hardly be explained by a single, large oblate N = 36 gap
in the Nilsson diagram. The mean field and J = 0 minima
at large oblate deformations seem to result from a delicate
balance of shell effects from N = 34 to N = 40, which reduce
the level density around the Fermi surface sufficiently to create
a shallow oblate minimum and a very soft energy surface. The
shallow minimum on the prolate side can be associated with
two close N = 36 gaps.

The fact that the structures in the potential landscapes can
be easily associated with gaps in a Nilsson diagram is an
attractive feature of our approach, which makes the connection
with simpler models straightforward. This is an advantage
compared to the interacting shell model, in which states are
constructed as nonintuitive np-nh states in a spherical basis.

One may wonder whether it is meaningful to restrict the
description of the light Kr isotopes to axial shapes. There
have been a few explorations of the triaxial degree of freedom,
which can help answer this question. Yamagami et al. [41] have
calculated the potential landscape of 72Kr along several shape
degrees of freedom, including nonaxial octupole deformations,
using the Skyrme SIII interaction. Their potential energy curve
is similar to ours for purely quadrupole axial deformations.
They found that the prolate and oblate energy minima are
separated by a triaxial barrier of 500 keV and that the oblate
shapes are soft with respect to nonaxial octupole deformations.
Bonche et al. [5] have obtained rather large triaxial barriers
for 74Kr and 76Kr, also using the SIII interaction. Let us also
mention that Almehed and Walet [42] have self-consistently
determined a collective path in 72Kr for different values of the
angular momentum in a small model space using a schematic
interaction. For J = 0, they obtain a purely axial path that
connects the oblate ground state and the prolate minimum. For
J = 2, the path that they obtain does not cross the spherical
configuration and makes a small excursion through triaxiality,
as can be expected from the projected energy curves. From
these studies of triaxiality, one can conclude that, in most
models, the oblate and prolate minima found as a function
of the axial quadrupole moment are true minima. The barrier
between the minima in the γ degree of freedom may not be
very high, but to restrict the model to axial symmetry can be
expected to provide a valid first approximation.

B. Spectroscopy

We first focus on the three isotopes for which very complete
sets of experimental data are available. This enables us to
introduce our notation and all the ingredients necessary for a
comparison between our results and the data. We will return
to the more prospective case of 72Kr at the end.

1. 74Kr

In Fig. 3 are given the lowest projected GCM levels for
J = 0 up to 8 together with the corresponding projected
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FIG. 3. (Color online) Mean-field energy curve, angular-
momentum-projected energy curves, and projected GCM for 74Kr.
The projected energy curves are plotted as a function of the intrinsic
deformation of the mean field from which they are projected; the
projected GCM levels are plotted at the average deformation β̄2,
Eq. (4). The labels on the right-hand side give the total binding energy
as calculated; the labels on the left-hand side give the energy relative
to the J = 0 GCM ground state.

energy curves. The collective levels are plotted at the mean
deformation β̄

(i)
2 of the mean-field states from which they are

constructed, defined as

β̄
(i)
2 =

∑
β

(i)
2

β
(i)
2 g2

J,k

(
β

(i)
2

)
, (4)

which provides in many cases an intuitive picture of the band
structure in a nucleus. Figure 4, however, illustrates the limits
of the meaning of β̄2, showing the collective wave functions gJ

i

for J = 0, 2 and 4. All low-lying 0+ states result from a strong
mixing between prolate and oblate mean-field configurations.
The values of β̄2 for the ground state and the second excited
state reflect the dominance of oblate and prolate deformations.
For the ground state 0+, the very small value of β̄2 does
not mean that this state is nearly spherical but, rather, that
the weights of prolate and oblate shapes are nearly equal.
For higher J values, the mixing between oblate and prolate
configurations is less pronounced and the value of β̄2 better
represents the structure of the states.

As can be seen in Fig. 2, the J = 0 projected energy curve
for 74Kr presents two nearly degenerate minima at oblate
and large prolate deformations and a third shallow excited
minimum at small deformation. This structure is reflected in
the spectrum of GCM states plotted in Fig. 3 and in the wave
functions drawn in Fig. 4.

As can be seen in Fig. 4, the J = 0 GCM wave functions
strongly mix projected oblate, near-spherical, and prolate
configurations. The near degeneracy of the oblate and prolate
minima is lifted; the first excited 0+ state has an excitation
energy of 0.49 MeV. The situation becomes simpler for larger
angular momenta. The first 2+ level still strongly mixes prolate
and oblate deformations and has a wave function rather similar
to the first excited 0+ state. In contrast, the second 2+ state
is mainly constructed from oblate mean-field configurations
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FIG. 4. (Color online) Collective wave functions g
(J )
k for the

lowest states with J = 0, 2, 4, and 6 for 74Kr as a function of the
intrinsic deformation of the mean-field states from which they are
constructed. The corresponding energies and average deformations
β̄2 are plotted together with the projected energy surface.

projected on J = 2 with a negative mean deformation larger
in modulus than that of the ground state. The two first 4+ and
6+ states are dominated by only prolate or oblate deformations.
One can thus expect that an approximation based on a fixed
mean-field configuration, like the cranked mean-field methods,
is justified beyond J = 4.

The nodal structure of the collective wave function is
more complicated than the structure that one would obtain
in a one-dimensional potential well. It reflects the fact that
the rotation of a deformed wave function around the y axis
generates wave functions that cannot be represented along
a single axis: the exchange of the x and z axes generates
prolate and oblate shapes for two different values of the
angle γ . For this reason, the angular-momentum-projected
GCM wave functions is not one dimensional, even when only
axial states are mixed [39]. 74Kr provides an excellent example
that a comparison between the intrinsic deformation of a
mean-field minimum and the transition quadrupole moment
derived from a B(E2) value might be misleading. There are
three reasons for that: (i) For light and medium-mass nuclei,
the minima of the projected energy curve are usually at larger
prolate and oblate deformations than the minima of the mean-
field energy curve, (ii) the minima of the projected J = 0 and
J = 2 energy curves correspond to the projection of mean-field
states with different deformation and the assumption of a static
rotor is not valid at low angular momentum, and (iii) the wave
functions of the low-lying states are quite broad and strongly
mix oblate or prolate configurations; moreover, the mixing is
different for the 0+ states and 2+ states.

A schematic two-level-mixing model has been used by
Becker and co-workers [15,43] to analyze the experimental
data. In this model, the energies of “pure” prolate and oblate
configurations are deduced from an extrapolation to low spins
of the high spin parts of the bands. This is valid if configuration
mixing decreases with spin, which seems reasonable in view
of our results. Data are described well by assuming that the
unperturbed levels are nearly degenerate with only a 20-keV
energy difference. This leads to nearly equal contributions
from the oblate and prolate unperturbed states. This result
is consistent with our calculations, although the assumption
that one has to mix only two configurations is too crude.
The complicated structures that we obtain for the collective
wave functions, of Fig. 4 cannot be reduced to the mixing of
two or even three configurations with a well-defined shape. It
does not therefore seem possible to connect our results with a
phenomenological two-level mixing model.

Theoretical and experimental excitation spectra and B(E2)
values are compared in Fig. 5. As in the experiment, the
theoretical levels are ordered in bands on the basis of their
spectroscopic quadrupole moments and of the dominant E2
transitions. A low-lying γ band, which has a 2+ bandhead at
1.74 MeV, has been omitted since K = 2 states are outside our
model space. The B(E2) values are always given for transitions
from J → J − 2 or from J → J , although values found in the
literature correspond sometimes to B(E2, J → J + 2) values,
which are by definition larger by a factor 5. Our calculation is
only partly consistent with experiment. We reproduce the co-
existence of oblate and prolate bands, strongly mixed at low an-
gular momentum, but the lowest 0+ states do not have the right
ordering. Our calculated ground state is predominantly oblate,
but the prolate band becomes yrast already at J = 2. For higher
spins the spectrum is too stretched out, a problem that has
already been encountered in previous GCM studies [34,35].

The in-band transition probabilities are slightly overesti-
mated for both bands, which hints at a slightly too large

FIG. 5. Spectrum of collective states for 74Kr as seen in experi-
ment (left) and as obtained from our calculation (right). The arrows
with numbers denote the B(E2, J → J − 2) values for transitions
between states with different J and B(E2, J → J ) for transitions
between states with the same J , both given in e2 fm4. Experimental
values for the B(E2) values are taken from [24,25]. The labels
“oblate” and “prolate” given to the bands correspond to the main
components of the collective wave functions.
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FIG. 6. (Color online) Comparison of calculated and experimen-
tal Q(s)(J ) and Q(t)(J → J − 2) moments for states in the prolate
and oblate bands, assuming that all states are purely axial. Note that
−Q(t) is plotted for oblate states for better comparison with Q(s).
Experimental values are taken from [25].

deformation of the dominating configurations in both bands.
Nevertheless, all calculated values are within a factor of 2 of the
experimental ones. Out-of-band transitions between states at
the bottom of the bands are large, in particular the experimental
value of B(E2, 2+

pro → 0+
obl) of 938+110

−91 e2 fm4 given in [25]
or 1120 ± 460 e2 fm4 given in [16] Our predicted out-of-band
B(E2) values become weak already at J = 4.

The theoretical spectroscopic quadrupole moments are
compared with experiment in Fig. 6. These moments provide
by their sign the only unambiguous way to assign a prolate or
an oblate character to a band. To compare them with in-band
B(E2) values as well, Q(s) and Q(t) values derived from the
static rotor model assuming K = 0 are shown. Except for
the oblate 2+ state, our calculated Q(s) and Q(t) values are
very similar. Experimental values for Q(s) and Q(t) are also
similar within the large error bars of Q(s). Our calculation
gives systematically larger deformation for both the prolate
and oblate states, as already discussed.

2. 76Kr

The projected energy curves in 76Kr, plotted in Fig. 7,
are very similar to those obtained for 74Kr, with coexisting

.
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.
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. .

..
.
.

. .
..

FIG. 7. (Color online) The same as Fig. 3 for 76Kr.

. .. . ..

.. . .. .

FIG. 8. (Color online) The same as Fig. 4, but for 76Kr.

prolate and oblate bands, except that the prolate minima at β2

values around 0.45 are less pronounced. As a consequence,
the ground-state wave function is more dominated by oblate
configurations than that of 74Kr, as confirmed by the shape of
the collective wave functions given in Fig. 8. This is at variance
with experiment, which indicates a prolate ground state (see
also Fig. 9). Again, we omit from Fig. 9 the experimental states
assigned to a γ band with a 2+ bandhead at 1.222 MeV (see,
e.g. [21,25]). The calculated prolate bandhead has a higher
excitation energy than that for 74Kr. The prolate band becomes
yrast at J = 4. Compared to 74Kr, the increased “purity” of
states within the prolate and oblate bands happens at higher
angular momenta, which is reflected in the large out-of-band
B(E2) values up to J = 4 in Fig. 9.

Figure 10 compares the intrinsic quadrupole moments. As
for 74Kr, our calculated values for Q(s) and Q(t) are very

FIG. 9. The same as Fig. 5, but for 76Kr. Experimental data are
taken from Ref. [25].
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FIG. 10. (Color online) The same as Fig. 6, but for 76Kr.
Experimental values are taken from Ref. [25].

similar, with small deviations at low J . Notably, this is not
the case for the experimental values when assuming K = 0,
which might hint at a small admixture of triaxial shapes to the
prolate band, which is outside the scope of our calculation.
Our calculated Q(t) values are very close to the experimental
values for the prolate band, whereas the Q(t) of the 2+ state in
the oblate band is underestimated.

3. 78Kr

Among the Kr isotopes, 78Kr has the lowest excitation
energy for the first 2+ state and the largest B(E2, 2+

1 → 0+
1 )

value, corresponding to a transition quadrupole deformation
β

(t)
2 of 0.35. The rotational band built on the ground state has

been seen up to J = 24. Two additional bands are known at low
excitation energy, a first usually interpreted as a γ band built
on a low-lying 2+ state at 1.148 MeV and a second one built
on a 0+ state at 1.017 MeV, originally assumed to be oblate.
According to the recent analysis of [26], the spectroscopic
quadrupole moment of the 2+ state in this band is negative,
which indicates that this band should, in fact, be prolate.

Looking to the energy curves of 78Kr, the collective states
obtained from the projected GCM, Fig. 11, and the collective
wave functions, Fig. 12, one can attribute to the ground state
a dominating oblate structure and to the bandhead of the first

.
..

.
.

.
. .

. .
... ..

..

FIG. 11. (Color online) The same as Fig. 3, but for 78Kr.

. .. . . .. .

. . . .. .

FIG. 12. (Color online) The same as Fig. 4, but for 78Kr.

excited band, located at 2 MeV, a well-deformed prolate shape.
All low-lying states are strongly mixed, which leads to large
out-of-band B(E2) values up to J = 6.

Data for transition moments are taken from a recent
Coulomb excitation experiment [26]. Values for in-band
transitions in the yrast band were published earlier in
Refs. [20,27], with a B(E2; 2+

1 → 0+
2 ) value of 91(5) e2 fm4

in [17], compatible with the value of 130(40) e2 fm4 obtained
in [26].

As can be seen in Figs. 13 and 14, our values are close to
the experimental data for the low-lying states in the prolate
band. The slight increase of Q(t) with J that we obtain can be
related to the gradual disappearance of the prolate minimum
at β2 values around 0.45 and to the deepening of the shoulder
at β2 values around 0.6, which becomes the prolate minimum

FIG. 13. The same as Fig. 5, but for 78Kr. Experimental values
for the B(E2) values are taken from Ref. [26].
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FIG. 14. (Color online) The same as Fig. 6, but for 78Kr.
Experimental values are taken from Refs. [20,26].

at J � 8 (see Fig. 11). In contrast, the experimental Q(t) values
are constant or slightly decreasing with J , see also [20,27].

The large mixing between the prolate 0+ state with
another excited 0+ state considerably reduces the in-band
B(E2; 2+

pro → 0+
pro) value, as the E2 strength from the 2+

pro level
is nearly equally distributed. Therefore, our B(E2; 2+

pro →
0+

pro) probability is slightly smaller than the experimental
B(E2; 2+

1 → 0+
1 ) from the corresponding experimental state.

As a consequence of this strong mixing, the calculated Q(s)

and Q(t) values differ more than for 74Kr and 76Kr, with
Q(s) being larger than Q(t) except for J = 4. Experim-
entally, Q(s) values are smaller than Q(t) ones [26].

4. 72Kr

Rotational bands at high spin in 72Kr have been investigated
extensively, mainly motivated by the quest for fingerprints of
T = 0 proton-neutron pairing [44,45]. Much less is known
about the structure of this nucleus at low excitation energy.
Only one band and two states that cannot be grouped into bands
have been observed at low spin [16]. The precise structure of
the low-spin yrast states is not completely clear either, as the
ground state is argued to be oblate, in parts by consistency
with theoretical predictions, whereas at higher spin the yrast
states are assumed to be prolate. It was also argued in Ref. [18]

.
. .

.
.

.
.. .

.
.

.. .
...

FIG. 15. (Color online) The same as Fig. 3, but for 72Kr.

. . . . ..

. .. . ..

FIG. 16. (Color online) The same as Fig. 4, but for 72Kr.

that the large Q(t) value obtained from the B(E2; 8+ → 6+) =
2090(780) e2 fm4 values favors its interpretation as a transition
between prolate states.1 We obtain, however, a much larger
B(E2) for the 8+

pro → 6+
pro transition than the experimental

value, which is in fact consistent with our 8+
obl → 6+

obl value.
In view of the systematic overestimation of the experimental
B(E2)’s at large spins given by our method for the heavier
Kr isotopes, one cannot draw a conclusion on the nature of the
8+ state in 72Kr. However, it is clear that these large B(E2)
values do not exclude an oblate band as previously argued.

The potential energy curves, together with the GCM
spectra, are shown in Fig. 15 and the collective wave functions
in Fig. 16. According to the usual interpretation of the
two low-lying 0+ states, our calculation reproduces their
order with a dominantly oblate ground state. In Fig. 17, the
experimental and theoretical excitation energies and B(E2)
values are compared. According to the usual interpretation
of the two low-lying 0+ states, our calculation reproduces
their order with a dominantly oblate ground state. The first
excited 2+ state is at about the same excitation energy as
the experimental one, whereas the first excited 0+ state is
slightly too high. Our calculated oblate states are yrast up
to J = 6. With the exception the low-lying 0+ states, which
strongly mix oblate, spherical, and prolate states, the mixing
between the prolate and oblate configurations is less important
than for the heavier Kr isotopes. Within the accuracy that
can be expected from our model, our B(E2) value for the
2+

obl → 0+
obl transition is consistent with the experimental one,

1The authors of Ref. [18] use a definition of β2 different from ours,
so the values cannot and should not be compared.
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FIG. 17. The same as Fig. 5, but for 72Kr. There is no unam-
biguous assignment of the experimental yrast states into a prolate or
oblate band (see text). Experimental data for the B(E2) values are
taken from [18] (8+ → 6+) and [22] (2+

1 → 0+
1 ).

B(E2; 2+
1 → 0+

1 ) = 1000(130) e2 fm4. 72Kr is the only Kr
isotope studied here for which we can assume to reproduce
the ordering of the low-lying states.

C. E0 transitions and radii

The nuclear matrix element entering the monopole decay
rate of a Jπ state to a state with the same spin and parity is
given by [46]

ρ2
E0(Jk′ → Jk) =

∣∣∣∣ 〈JMk|r̂2|JMk′〉
R2

∣∣∣∣
2

, (5)

where R = 1.2A1/3 fm. Within a simple model [47], this
matrix element can be related to the amount of mixing of
configurations with different deformations in the physical
states. As it is a nondiagonal matrix element, it is also very
sensitive to the detailed structure of the initial and final states.
Within the error bars, the experimental ρ2

E0 values are very
close for 72−76Kr and slightly smaller for 78Kr. The variation of
the GCM values is much larger, but in view of their sensitivity
to model details it is encouraging that our calculated ρ2

E0
values are within the experimental error bars for 74Kr and
78Kr and underestimate the value for 72Kr by only a factor of
2. The large underestimation for 76Kr can be related to the
much smaller mixing between the oblate and prolate 0+ states
that we obtain for this isotope.

The reasonable description of the ρ2
E0 states indicates that,

with the exception of 76Kr, we have about the right amount
of mixing between the oblate and prolate 0+ states, which is
independent of the relative placement of the energy levels.
In contrast, the systematics of ground-state radii is not well
described, as our calculations give the “wrong” ground state
for 74–78Kr. This can be seen from the right panel of Fig. 18,
where the isotopic shifts of the mean-square charge radii,

δr2(N ) = r2(N ) − r2(N = 50), (6)

are plotted. The Kr radii present an anomaly [48,49]: they are
larger for 74–84Kr than for the N = 50 isotope 86Kr. The stan-
dard interpretation is that the ground states have an increasing

. . .
. .

.
. .

FIG. 18. (Color online) Left panel: Comparison of calculated
values for ρ2

E0(0+
2 → 0+

1 ) with experiment. Experimental values are
taken from [16] (72−74Kr) and [17] (76−78Kr). Right panel: Isotopic
shift of the mean-square charge radii for the lowest (dominantly)
oblate 0+ state (triangles) and the lowest (dominantly) prolate 0+ state
(squares). The ground state predicted by our calculation is always
oblate.

admixture of prolate states of large deformation when going
to more neutron-deficient nuclei, which overcompensates the
volume effect of decreasing mass. Because our calculations
always predict dominantly oblate ground states, we obtain a
negative isotopic shift for all isotopes (triangles in the right
panel of Fig. 18). Our calculated excited dominantly prolate
0+ states, by contrast, lead to positive isotopic shifts for all four
isotopes. It is unclear how well the ground state of 86Kr itself
is described within our method, so one has to be careful with
the interpretation of the absolute values of the isotopic shifts.
However, the δr2 data confirm once again that the prolate states
should have a much larger contribution to the ground state.

The relativistic mean-field calculations with the NL-SH
interaction presented in Ref. [7] do reproduce the systematics
of the isotopic shifts, which hints at the more realistic single-
particle spectrum of this interaction in the fp shell.

IV. DISCUSSION AND CONCLUSIONS

Our results show that in medium-mass nuclei with coex-
isting shallow minima in soft potential energy landscapes,
one has to be very cautious when comparing experimental
data and the mean-field states corresponding to local minima.
Projection on good angular momentum significantly alters
the potential energy surfaces. After configuration mixing, the
collective wave functions present a very large spreading and
may extend over several mean-field minima. We also find
rotational bands, for example in 78Kr, that, rather then being
related to a minimum in the mean-field energy landscape, are
related to a plateau.

Although our calculations reproduce many of the global
features of the neutron-deficient Kr isotopes, in closer detail
there remain a couple of discrepancies with experiment.

(i) The collective spectra are too spread out in excitation
energy, which appears to be a general problem of GCM
of angular-momentum-projected axial mean-field states
[34,35]. This problem could probably be cured by a larger
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variational space for the projected GCM, in particular
by treating dynamically the pairing, by breaking axial
symmetry or time-reversal invariance. Breaking axial
symmetry will also permit the description of γ bands.
Work in these various directions is underway.

(ii) Our study of neutron-deficient Kr isotopes clearly points
at a problem with the SLy effective interactions in the
fp shell, related to the relative position of a few single-
particle levels.

As already discussed in the literature, (see, e.g., the discussion
in [12]), the spectroscopic properties of the neutron-deficient
Kr region are extremely sensitive to the details of the shell
structure. The number of levels around the Fermi energy
is quite small, which results in several shell gaps for every
neutron and proton number from 34 to 42. Any change in the
relative position of levels and of their ordering will modify the
size and deformation of the gaps in Fig. 1.

Our results, and those of models with adjustable single-
particle spectra that perform better for Kr isotopes, suggest
a few necessary modifications of the single-particle spectra
obtained with the SLy6 Skyrme parametrization:

(i) The experimental evidence that there are no spherical
0+ states in the spectrum of 76Kr shows that the N = 40
spherical shell gap is too strong. This is consistent with
our results for the N ≈ Z ≈ 40 region obtained in a
systematic study of mass and deformation where the
obtanined ground state for 80Zr was spherical with a
very pronounced shell effect [50], whereas experiment
suggests that it is a well-deformed rotor [51]. A g9/2

level closer to the p1/2 orbital would decrease the
N = 40 spherical gap It would also decrease the oblate
N = 38 gap, and shift the prolate N = 38 gap to smaller
deformation, probably reducing the deformation of 74Kr.

(ii) If we take the Woods Saxon single-particle level schemes
of Fig. 17 in [40] as an example, a decrease of the sepa-
ration between the f5/2 and the p3/2 levels should change
the single-particle spectra at small prolate deformation: a
gap at N = 38 that extends from oblate shapes to prolate
shapes would replace the gap at N = 36 around β2 = 0.2.
It can be expected that this would drive 74Kr toward
prolate shapes.

We have checked that all modern successful Skyrme interac-
tions give single-particle spectra in the fp shell that are similar
to those obtained with SLy6. This points to a deficiency of the
standard Skyrme interaction in general and not to a difficulty
intrinsic to SLy6. Other models such as the relativistic mean-
field (RMF) model might seem to work more satisfactorily
in the fp shell and to predict potential landscapes in better
qualitative agreement with the Kr data than ours [7]. However,
those models do not describe correctly the neutron-deficient
Pb region [52,53], where many Skyrme forces perform quite
well [30,31].

Altogether, the present study confirms the conclusions
drawn in [50] that the current functional form of the Skyrme
energy functional is not yet flexible enough to cover the
relevant aspects of nuclear structure with the same good quality
for all regions of the nuclear chart.

The combined analysis of Figs. 1 and 2 suggests that the
structure of collective states in the neutron-deficient krypton
isotopes provides a sensitive testing ground for future attempts
to construct better effective interactions. It has been pointed out
recently that a tensor interaction, absent in the existing standard
mean-field models, introduces a particle-number dependence
of single-particle spectra [54–56]; this might resolve at least
some of the deficiencies in the fp shell that we encounter here
and that are known for other regions of the nuclear chart. Work
in that direction is underway.

ACKNOWLEDGMENTS

Work by M.B. was performed within the framework of
L’Espace de Structure Nucléaire Théorique (ESNT). We
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