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Beyond mean field study of excited states: Analysis within the Lipkin model
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We compare the generator coordinate method (GCM) and the random-phase approximation (RPA) in the
framework of the exactly solvable Lipkin-Meshkov-Glick model. We show that the discretized GCM works quite
well and permits to obtain results close to the exact results with a small number of discretization points.
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I. INTRODUCTION

Self-consistent mean-field methods are one of the standard
microscopic approaches in nuclear structure theory [1]. At
present, they are the only available microscopic method that
can be systematically applied on a large scale for medium and
heavy nuclei.

Despite its successes, the self-consistent mean-field method
has a number of well-known limitations. From a conceptual
point of view, the mean-field approach is designed to describe
ground-state properties, and gives only access to the properties
of very specific excited states, like collective rotational bands
or high K-states. This is in contrast to the ab initio methods
that are available for light nuclei, like the no-core shell
model and the shell-model Monte Carlo, which also describe
excitation spectra. A systematic way to resolve these problems
is offered by symmetry restoration and configuration mixing.
Several groups now develop methods going beyond a mean-
field approach based on the generator coordinate method
(GCM), either with nonrelativistic Skyrme [2,3] or Gogny [4]
interactions, or with relativistic Lagrangians [5], see also [6,7]
and references given therein. The aim is to obtain a unified
description of ground states and of excited states of all nuclei,
including collective correlations which cannot be included in
a mean-field approach, even at the effective interaction level.

First applications have demonstrated that such a method
permits to describe the energies of low-lying collective
excitations and electric transition probabilities, in-band and
out-of-bands. However, in many cases it has also been found
that whenever states can be grouped into rotational bands, the
spectra obtained with the GCM are too spread and that the ex-
citation energies are too high. For spherical nuclei, in particular
those close to doubly-magic ones, the low-energy collective
spectra are only qualitatively in agreement with the data.

The origin of this problem is not obvious and it cannot be
expected to be unique. A possible source of error could be
the inadequacies of effective interactions to describe spectra.
Another source of uncertainty comes from the choice of
the variational space in which the configuration mixing is
performed. It is usually constructed by introducing in the
mean-field equations constraints on one or a few collective
variables related to the shape of the nuclear density. Such a
choice may be more appropriate to describe the properties of
ground states than those of excited states, for which additional
degrees of freedom might have to be included.

The random-phase approximation (RPA), or quasiparticle
RPA (QRPA) when including pairing, has a reputation of
working much better than the GCM for spherical nuclei. One
reason is that in the limit of vanishing residual interactions, the
lowest excited states in spherical nuclei might be broken-pair
two-quasiparticle states. In the RPA framework, excited states
are explicitly constructed as coherent superpositions of all
possible two-quasiparticle states; hence, the RPA automati-
cally contains the proper noninteracting limit for which the
ground state is an HFB vacuum. In the standard GCM, by
contrast, the excited states are constructed in a basis of HFB
vacua which differ in one or several collective coordinates,
as for example quadrupole deformation. The choice of the
collective coordinates is usually such that they correspond
to a superposition of decorrelated-pair two-quasiparticle and
2n-quasiparticle states when expressed through the Thouless
theorem in terms of a single reference HFB vacuum; hence,
the standard GCM might not contain the proper noninteracting
limit of HFB. Including broken-pair two-quasiparticle states
into the projected GCM is less a conceptual problem than
a practical one, as many of the simplifications that can be
used in the calculation of GCM kernels between time-reversal
invariant HFB vacua are not longer valid for kernels involving
explicitly quasiparticle states.

A comparison of projected GCM and QRPA in semimagic
or doubly-magic nuclei for realistic cases is not a simple task,
however, as it is very difficult to perform the calculations under
exactly the same conditions. There are issues of convergence
and consistency of the residual interaction which cause
difficulties, but are not insurmountable. One more fundamental
difficulty is caused by the breakdown of the HFB method
to describe pairing correlations in the weak-pairing regime.
The GCM has to be performed with pairing correlations,
otherwise the overlap kernel between states on both sides of a
level crossing at the Fermi surface vanishes, which artificially
decouples regions with different deformation and causes insta-
bilities when solving the Hill-Wheeler-Griffin equation. The
problem is easily solved when enforcing pairing correlations in
the generating states through the Lipkin-Nogami prescription.
Such states, however, are not HFB ground states anymore,
which makes it impossible to use the same procedure in the
context of QRPA.

We have performed a direct comparison of the GCM and
the RPA calculation of the first 2+ excitation in tin isotopes
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which has not been very conclusive. The two main results may
be summarized as followed. The experimental 2+ energy is
overestimated by the RPA, which points out to a deficiency
of the effective interaction that was used (the Skyrme SLy4
parametrization). On the other hand, the 2+ GCM energy is
significantly larger than the RPA one, indicating probably a
deficiency in the variational space of the GCM. However,
too many differences remain between the GCM and the RPA
calculations. As we discussed above, there was always some
pairing for neutrons and protons in the GCM, while the proton
pairing was always absent in the RPA. Several small energy
terms were also not treated in a completely equivalent way in
the RPA and the GCM and to make both treatments completely
similar seems to be hopeless.

One therefore needs a view on the problem from another
perspective. Exactly solvable models constitute a very fruitful
ground for the test of and comparison between many-body
methods. They also permit to explore new developments at a
very limited cost. For our purpose, we need a model where
collective variables similar to deformations can be introduced
and where a discretized version of the GCM can be defined
in a way similar to that of the realistic applications. The
Lipkin-Meshkov-Glick (LMG) model, introduced in Ref. [8],
has the required properties. Depending upon the strength of
the interaction, two different kinds of solutions are obtained at
the Hartree-Fock level [9]: “spherical” ones at low values of
the strength, and “deformed” ones beyond a critical strength.

The rest of the paper will be devoted to a detailed discussion
of excited states in the context of the LMG model.

II. EXCITED STATES IN THE LIPKIN-MESHKOV-GLICK
MODEL

A. The model

Lipkin, Meshkov, and Glick introduced an exactly solvable
model [8], usually called “Lipkin model” or “LMG model”
in the literature, that has been widely used to test methods of
approximation for the nuclear many-body problem.

The model consists of N fermions distributed in two N-fold
degenerate shells separated by an energy ε. In their original
paper, two different Hamiltonians were proposed. The one
which is the most usually studied contains a monopole-
monopole interaction and is given by

Ĥ = εĴ0 − 1
2V (Ĵ+Ĵ+ + Ĵ−Ĵ−), (1)

where V is the interaction strength and Ĵ0, Ĵ± are quasispin
operators [8–10]

Ĵ0 = 1

2

N∑
p=1

(ĉ†+pĉ+p − ĉ
†
−pĉ−p),

Ĵ+ =
N∑

p=1

ĉ
†
+pĉ−p, (2)

Ĵ− = Ĵ
†
+

with the algebra

[Ĵ+, Ĵ−] = 2Ĵ0, [Ĵ0, Ĵ±] = ±Ĵ±. (3)

The operators ĉ
†
+p and ĉ

†
−p create a particle in the upper or

lower shells, respectively, where p labels the N degenerate
levels within the shells. The operator Ĵ0 measures half of the
difference between the number of particles in the upper and
the lower levels.

The exact wave functions are eigenstates of two operators,
the total quasispin operator Ĵ 2 = 1

2 (Ĵ+Ĵ− + Ĵ−Ĵ+) + Ĵ 2
0 with

eigenvalue J (J + 1), and a signature operator eiπĴ0 , which, for
an even number of particles, has two eigenvalues equal to ±1.
Therefore, as discussed in detail in Ref. [8], the interaction
does not mix states which have different eigenvalues of Ĵ 2 and
eiπĴ0 and the Hamiltonian matrix splits into blocks, which are
multiplets in J of order 2J + 1. The multiplets separate further
into blocks of size of J and J + 1 corresponding to the two
values for the signature.

To understand the connection between the LMG model
and realistic nuclear models, it is interesting to identify the
structure of its eigenstates [11]. In the limit of vanishing
interaction strength V = 0, the exact ground state corresponds
to an independent particle state with all the lower single-
particle levels occupied, while the exact first excited state is
given by a 1p-1h excitation on top of the ground state, the
second excited state by 2p-2h excitations, etc.

As the Hamiltonian does not mix states with different J
values, the exact wave functions are linear combinations of the
2J + 1 eigenfunctions of the operator Ĵ0 within a multiplet of
given J [8]. There is one state of each possible np-nh content
in each multiplet. The non-interacting ground state has J0 =
−N/2, and belongs to the multiplet with maximum J, i.e.,
J = N/2. The first noninteracting excited state is a 1p-1h state
which has J0 = −N/2 + 1. Pure 1p-1h states are admixtures
of states from the J = N/2 and J = N/2 − 1 multiplets,
while pure 2p-2h states are admixtures of states within the
J = N/2, J = N/2 − 1 and J = N/2 − 2 multiplets, etc.,
for higher np-nh excitations until n = N .

For small values of the interaction strength V, the mixing
within the multiplets should be small and low-lying levels
should have a similar structure as the noninteracting ones. By
contrast, for large values of V, the eigenstates will exhibit
a complicate mixing of many p-h excitations. Thus, the
model exhibits a transition between shell-model-like states
and collective states.

B. Mean-field approximation

In mean-field, or Hartree-Fock (HF), approximation, the
many-body wave function |α, ϕ〉 is given by a Slater determi-
nant

|α, ϕ〉 =
N∏

p=1

â
†
0p|−〉, (4)

characterized by two real degrees of freedom α and ϕ, that will
be specified below. The particle- and hole-creation operators
of the corresponding HF single particle basis are given by a
unitary transformation among the operators corresponding to
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the noninteracting basis [9,10]:(
â
†
1p

â
†
0p

)
=

(
cos(α) − sin(α)e−iϕ

sin(α)eiϕ cos(α)

)(
ĉ
†
+p

ĉ
†
−p

)
. (5)

The subscripts 0 and 1 denote hole and particle states,
respectively. The variables α and ϕ vary both in the interval
[−π/2, π/2]. They can be identified as constraints, that,
due to the low dimensionality of the LMG model, map the
entire space of mean-field states. New quasispin operators
corresponding to the states with finite α and ϕ can be easily
constructed, as described, for example, in Ref. [10]. An
alternative manner to write the constrained HF states will
be useful in the context of the GCM. Using the Thouless
theorem [12], the normalized constrained HF states |α, ϕ〉
can be obtained from the noninteracting ground state, that
corresponds to α = ϕ = 0, as

|α, ϕ〉 = cosN (α) exp[tan(α) exp(iϕ)Ĵ+]|α = 0, ϕ = 0〉. (6)

A pointed out by Bhaumik et al. [13], the constrained HF states
of the LMG model can also be formulated in the language
of coherent states, which allows to make use of generating
functional techniques to calculate matrix elements [14].

The constrained HF ground-state energy is a function of the
variables α and ϕ:

EHF
gs (α, ϕ) = −εN

2

[
cos(2α) + 1

2
χ sin2(2α) cos(2ϕ)

]
, (7)

where

χ = (N − 1) V

ε
. (8)

Note that, for a given value of α, the lowest HF state always
corresponds to ϕ = 0. The eigenvalues of the single-particle
Hamiltonian, usually called single-particle energies, depend
on α only for any mean-field state |α, ϕ〉.

One can identify the variable α as a deformation parameter.
There is a phase transition at χ = 1 from a spherical (α = ϕ =
0) to a “deformed” ground state. In the latter case, the value
of α is obtained by solving the equation χ cos(2α) = 1. The
phase transition and the properties of exact and approximated
ground states in this regime were first discussed by Agassi
et al. [15].

While the HF states remain eigenstates of Ĵ 2, “deformed”
HF states break the signature symmetry of the exact solutions
(which is often called “parity” in the literature) for any nonzero
value of α. The HF states mix the np-nh states with even
and odd n within a given J multiplet. As a consequence, the
constrained HF states for nonzero interaction strength contain
0p-0h, 1p-1h, 2p-2h, 3p-3h, etc., states. The np-nh components
with even and odd n can be separated with a projection
operator [15,16]. Due to the simple structure of the LMG
model with one relevant coordinate only, minimization of the
energy obtained by projection after variation is equivalent to
projection before variation [16].

The signature symmetry is a discrete symmetry, in contrast
to the continuous rotational symmetry broken in nuclei with
a quadrupole deformation. Li et al. [17] have introduced a
generalization of the LMG model that can been used to test

techniques for approximate angular-momentum projection,
see Ref. [18] and references therein. The structure of the
original LMG model is closer to parity projection in octupole-
deformed nuclei [16].

The interpretation of the ϕ degree of freedom is less
intuitive. It enters the HF states as a phase. It is explored
by time-dependent HF (TDHF) states, hence a necessary
ingredient of any dynamical model [19,20]. Using the variables
α and ϕ, one can form a set of two canonically conju-
gate variables with which, for example, the time-dependent
HF equations can be transformed to classical equations of
motion [19].

C. Random phase approximation

The RPA of the LMG model was formulated for the first
time in Ref. [8]. The RPA is usually constructed on top of the
“spherical” HF state |α = 0, ϕ = 0〉, which is the ground state
for χ < 1. In this regime, the RPA phonon creation operator,
defined as a superposition of all possible 1p-1h excitations, is
given by

Q̂† = 1√
N

(XĴ+ − Y Ĵ−). (9)

One assumes that the ground state is the RPA phonon vacuum
|0〉, i.e., Q̂|0〉 = 0. The first excited state is given by Q̂†|0〉
with the normalization condition:

〈0|[Q̂, Q̂†]|0〉 = X2 − Y 2 = 1. (10)

Profiting from the simplicity of the LMG model, the authors
of Ref. [8] have solved Q̂|0〉 = 0 exactly. The usual way is to
solve the RPA equations in the space of 1p-1h excitations by
linearization. Making use of the equation-of-motion approach
[21,22]:

〈0|[δQ̂, [Ĥ , Q̂†]]|0〉 = (E − E0)〈0|[δQ̂, Q̂†]|0〉, (11)

where E is the absolute energy of the RPA state, and E0 the
energy of the RPA ground state, one obtains the RPA equations:(

A B
−B −A

) (
X

Y

)
= (E − E0)

(
X

Y

)
, (12)

where A = ε and B = −(N − 1)V = −εχ .
From these equations, the excitation energy of the first

excited state of the Hamiltonian (1) within the RPA is found
to be

E − E0 = ε
√

1 − χ2. (13)

This energy is equal to zero for χ = 1, where the system
undergoes a phase transition, and becomes imaginary for even
larger values of χ .

The RPA is explicitly constructed as a superposition of
1p-1h states; hence, it automatically contains the right physics
of the lowest excited state in the limit χ → 0 and should be
accurate in the limit of small χ .

The RPA correlation energy [9] in the ground state is given
by

�E = 1
2 (E − E0 − ε). (14)
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D. Generator coordinate method

1. Continuous GCM

Most applications of the GCM to the LMG model are
restricted to a study of the GCM ground state and test the
correlations in the ground state [23]. In such cases, one can
take the “deformation” α as a single generator coordinate. We
are here also interested in the description of excited states and
will also introduce ϕ as a generator coordinate.

One can write the N-particle GCM wave functions as a
linear combination of the constrained HF states |α, ϕ〉 (6) with
an unknown weight function fk (α, ϕ)

|�k〉 =
∫ π

2

− π
2

dα

∫ π
2

− π
2

dϕ fk(α, ϕ) |α, ϕ〉. (15)

Variation of the energy yields the so-called Hill-Wheeler-
Griffin (HWG) equation [24], an integral equation for
fk(α, ϕ) ∫ π

2

− π
2

dα

∫ π
2

− π
2

dϕ
(〈α′, ϕ′|Ĥ |α, ϕ〉

−Ek〈α′, ϕ′|α, ϕ〉)fk (α, ϕ) = 0. (16)

The two kernels entering Eq. (16) are the norm kernel

〈α′, ϕ′|α, ϕ〉 = [cos(α) cos(α′) + sin(α) sin(α′)ei(ϕ−ϕ′)]N,

(17)

and the Hamiltonian kernel

〈α′, ϕ′|Ĥ |α, ϕ〉 = −εN

2
〈α′, ϕ′|α, ϕ〉

× cos2(α) cos2(α′) − sin2(α) sin2(α′)e2i(ϕ−ϕ′) + χ [sin2(α) cos2(α′)e2iϕ + cos2(α) sin2(α′)e−2iϕ′
]

[cos(α) cos(α′) + sin(α) sin(α′) ei(ϕ−ϕ′)]2
.

A set of orthonormal collective wave functions are obtained
by an integral transformation of fk

Gk(α′, ϕ′) =
∫ π

2

− π
2

dα

∫ π
2

− π
2

dϕ 〈α′, ϕ′|α, ϕ〉 1
2 fk(α, ϕ). (18)

The HWG integral equation can be solved exactly [9].
Thanks to the simplicity of the LMG model, the GCM with a
single generator coordinate α gives already the exact solutions
of the model. The GCM is build on signature-symmetry
breaking constrained HF states; hence, a priori the GCM
wave function mixes 0p-0h, 1p-1h, 2p-2h, 3p-3h, etc., states.
However, one can easily see that the signature symmetry is
restored by mixing of HF wave functions corresponding to ±α

with weights equal in modulus, which comes out automatically
from Eq. (15). This situation is similar to realistic applications
of the GCM when a discrete symmetry, like parity, is broken
at the mean-field level but not for continuous symmetries like
rotations.

2. Discretized GCM

In realistic calculations [2–5], the HWG equation is solved
by discretization of the collective variables

|�k〉 =
∑

α

∑
ϕ

fk(α, ϕ) |α, ϕ〉. (19)

The discretized GCM equations are obtained by replacing all
integrals in Eqs. (15)–(18) by sums over discretization points.
The integral equation (16) becomes a matrix equation which
can be solved by diagonalization.

As our aim is to understand why the GCM overestimates
excitation energies in realistic applications, we will solve the
HWG equation of the LMG model by discretization. Since
the continuous GCM permits to find the exact eigenstates of

the LMG Hamiltonian, the number of discretization points
must be small enough to avoid a trivial reproduction of the
exact solution.

We have solved the LMG model for 30 and 50 particles,
with a discretization on meshes symmetric around zero in α

and ϕ and with an odd number of points. The meshes in α

and ϕ have been limited to the region in which the collective
wave function has a sizable amplitude, typically less than half
the total range of variation of α. The mean-field potentials
that are obtained for two values of χ , above and below the
phase transition, are plotted in Fig. 1. The mean-field ground
state corresponds to α and ϕ equal to zero when χ is smaller
than 1, and to a nonzero value of α otherwise. The energy
surface is very flat for small values of ϕ; it is only when
α is large that the energy increases rapidly with ϕ. Such a
topography is representative of the deformation energy curve
that is obtained for spherical nuclei (χ < 1) and for nuclei soft
as a function of deformation (χ > 1).

In Fig. 2, the exact and GCM energies for the ground state
and for the first two excited states are plotted as a function of
the two-body interaction strength χ for a system of 30 particles.
We have used α as the only generator coordinate. The GCM
equations are solved with seven equidistant discretization
points chosen in the region where the collective wave functions
have a sizable amplitude. In realistic applications of the GCM,
the overlap kernel is used to define the mesh, the requirement
being that the overlap between two adjacent points is of the
order of 0.8. However, in the LMG model, this kernel does not
depend on the two-body interaction strength. Since we want
to be as close as possible to realistic applications, where the
exact solutions are not known, we have taken the same mesh
for all interaction strengths. From the collective wave function
obtained for a value of χ around 0.5, we have chosen points
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FIG. 1. Mean-field potentials
for two values of the interaction
strength, χ = 0.4 and χ = 1.2,
for N = 30 particles.

in the interval (−0.707,+0.707). Since the wave functions of
the model are either even or odd with respect to α, only four
discretization points are significant.

For χ < 1, the HF ground-state energy does not depend on
χ , as the ground state is always “spherical.” The HF excited
states are then p-h states whose energy also does not vary with

FIG. 2. Comparison between the exact and GCM energies of the
first three states of the LMG model for 30 particles. The solid lines
are the exact result, while the dashed and dotted lines represent the
GCM solutions obtained with the two different meshes (see text)
with seven points in α. The HF results are indicated by a dash-dotted
line.

χ . The correlations beyond mean-field significantly improve
the HF result for the ground state and bring it very close to
the exact value for all values of the interaction strength. The
situation is less satisfactory for excited states: in particular,
their excitation energies are far from the exact values when
the interaction is switched off, while the HF method gives the
exact energies. The discretized GCM becomes more accurate
than HF only for χ larger than 0.25 for the second excited state
and than 0.45 for the first one.

To understand this surprising result, let us analyze in more
details how the continuous GCM works in the χ = 0 limit.
Let us first note that, while the exact ground state wave
function, corresponding to α and ϕ equal to zero, is included
in the generating functions |α, ϕ〉, the first excited states
corresponding to pure 1p-1h and 2p-2h excitations are not.
One can easily verify that the weight functions that permit to
extract the exact eigenstates are the Dirac δ(α) distribution for
the ground state, its first derivative for the first excited state and
combination of δ(α) and its derivatives for higher excitations.
The collective wave functions, given by Eq. (18), are regular
functions but with rather sharp peaks. One of them is located at
α equal to 0 for even signature states, while the odd signature
states vanish at 0. Moreover, for very small values of χ , the
collective wave-functions have very small amplitudes at the
most extreme mesh points, leaving only a very small number
of significant discretization points.

Replacing one of the mesh points by a point close to the
extrema of the wave functions of the first and second excited
state for χ equal to zero, the discretized GCM results become
very close to the exact values for the three first states and
for low interaction strengths. For the first excited state, which
has a node at the origin, this discretization is superior to the
one based on the χ = 0.5 ground state wave function up to
χ = 0.75.

3. The role of the second generator coordinate

The influence of a second generator coordinate is shown in
Fig. 3, where are plotted the energies of the first three states
of a system with 50 particles. The calculations are performed
with seven and nine points in α, and one or three points in ϕ.
For the mesh in α we choose equidistant points in the interval
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FIG. 3. Comparison between the exact and GCM energies of the
first three states of the LMG model for a system with N = 50. Two
generator coordinates, α and ϕ are used in the GCM. The exact result
are represented by solid lines. The dotted and dashed lines lines are
GCM results with seven and nine points in α; the dash-dotted lines
are results of calculations with seven points in α and three points
in ϕ.

(−0.660,+0.660). Since the mesh in ϕ is symmetric and ϕ = 0
is always a mesh point, there is in practice one active point in
ϕ. All discretizations give accurate results for the ground state.
With a mesh in α only, the energies of the first excited state
are inaccurate, for all interaction strengths with seven points,
and below χ equal to 0.4 for a nine point discretization. The
second excited state is slightly better described although the
accuracy is still limited for small interaction strengths. Adding
points in ϕ to the calculation with seven points in α corrects
the behavior near the origin and leads to very accurate results
for the ground state and the second excited state. The energy
of the first excited state is also improved although there still
remains a small discrepancy for small interaction strengths.
The combination of nine points in α and three points in ϕ

leads to results indistinguishable from the exact ones.

4. Comparison between the GCM and the RPA

The RPA permits to determine excited states as well as
correlation energies in the ground state. The correlations that
are given by Eq. (14) are very accurate and make the RPA

ground state energies very close to the exact values up to
interaction strength equal to 0.9. Beyond this value, the GCM
with seven discretization points is more accurate than the RPA.

The GCM and RPA results for the excitation energies of
the first two excited states are compared to the exact values
in Fig. 4. It is the accuracy of this energy difference which
is the most interesting in usual applications of the GCM. The
use of a mesh adjusted for an intermediate interaction strength
(χ = 0.5) and on the ground state gives values for the energies
of the second excited state close to the exact ones when the
interaction strength is large but it fails for weak interactions.
The situation is even worse for the first excited state which
does not have the same symmetry as the ground state. In this
case, results are close to the exact ones only beyond χ equal to
0.75, the error being as large as 60% for χ close to zero. The
results are by far better when the mesh is adapted for low-χ
values, as discussed above. Then, even for a small number
of mesh points, the exact results for both excited states are
correctly reproduced by a discretized GCM calculation. The
RPA results have a very different behavior. They reproduce
the exact results quite well for small interaction strengths. The
first excited state becomes inaccurate above χ equal to 0.7;

FIG. 4. Excitation energies of the first two excited states as a
function of the interaction strength χ . Exact results are given by solid
lines, the RPA results by dotted lines. The dashed and dash-dotted
lines correspond to GCM calculations with the same choices of points
as in Fig. 2.
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the second one deteriorates more quickly and is worse than the
blind GCM discretization above χ around 0.5.

III. CONCLUSIONS

In this paper, we have analyzed the quality of GCM and
RPA to describe excited states within the LMG model. To the
best of our knowledge, we have analyzed for the first time the
application of the discretized GCM to the LMG model. To
summarize our results, one can say first that the discretized
version of the GCM works remarkably well and permits to
reproduce the exact results with a very limited number of
points. Of course, the dimension of the LMG model is very
limited but nearly exact results are obtained for the three first
states using only approximately 1% of the total number of
independent vectors of the LMG space. A second result is
that correlations in the ground state are better described than
correlations in excited state. We have also seen that results
are closer for the second excited state which has the same

symmetry as the ground state than for the first one. The fact
that an appropriate choice of a small number of discretization
points permits to obtain excellent results, better than the RPA,
seems to be an artefact of the LMG model, hard to transpose
on realistic cases. On the other hand, it seems encouraging
that the excited states are well described by the GCM when the
collectivity due to the generator coordinate is large. Finally, the
introduction of a second generator coordinate, with which one
can form a coordinate conjugate to the first one, also improves
the GCM results and seem to make them more independent on
the way the discretization is performed.
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