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We study the ground and low-lying excited states of 15O, 17O, 15N, and 17F using modern two-body nucleon-
nucleon interactions and the suitably designed variants of the ab initio equation-of-motion coupled-cluster theory
aimed at an accurate description of systems with valence particles and holes. A number of properties of 15O, 17O,
15N, and 17F, including ways the energies of ground and excited states of valence systems around 16O change
as functions of the number of nucleons, are correctly reproduced by the equation-of-motion coupled-cluster
calculations performed in up to eight major-oscillator shells. Certain disagreements with experiment are in
part because of the degrees of freedom such as three-body interactions not accounted for in our effective
two-body Hamiltonians. In particular, the calculated binding energies of 15O/15N and 17O/17F enable us to
rationalize the discrepancy between the experimental and recently published [Phys. Rev. Lett. 94, 212501
(2005)] equation-of-motion coupled-cluster excitation energies for the J π = 3− state of 16O. Our calculations
demonstrate the feasibility of the equation-of-motion coupled-cluster methods to deal with valence systems
around closed-shell nuclei and to provide results for systems beyond A = 16.
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I. INTRODUCTION

The way shell closures and single-particle energies evolve
as functions of the number of nucleons is presently one of the
greatest challenges to our understanding of the basic features
of nuclei. The properties of single-particle energies and states
with a strong quasiparticle content along an isotopic chain are
moreover expected to be strongly influenced by the nuclear
spin-orbit force. The latter can be retraced to contributions
from both two-body and three-body models of the nuclear
forces (see, for example, Refs. [1,2]). A fully microscopic
ab initio description of masses, shell closures, excited states,
and single-particle energies in terms of the underlying nuclear
forces is an unresolved problem in nuclear physics that awaits
a satisfactory and computationally tractable solution.

For light nuclei with mass numbers A ∼ 12, both Green’s
function Monte Carlo methods [3] and large-scale no-core
shell-model calculations [4,5] provide almost converged
benchmarks for selected two- and three-body Hamiltonians,
where typically the models for the two-body nucleon-nucleon
interactions reproduce the available scattering data, whereas
the three-body interaction models are normally fit to reproduce
the binding energies of selected nuclei. The agreement with
experimental data for many light nuclei is quite reasonable
in these calculations. Unfortunately, for medium-mass and
heavier nuclei the dimensionality of the corresponding many-
particle problem becomes intractable by the Green’s function
Monte Carlo methods and ab initio no-core shell-model
techniques, and one typically has to resort to a simplified shell-
model description within a smaller space, the so-called model
space. To solve the corresponding many-body Schrödinger
equation, one needs then to derive effective two- and/or
three-body interactions for the chosen small model space.

Many-body perturbation theory is normally employed to derive
effective interactions [6], but unless these interactions are fitted
to reproduce selected properties of nuclei [7,8], one cannot
correctly recover the experimentally derived single-particle
and excitation energies and shell closures (see, for example,
Ref. [9]).

Two key points make it imperative to investigate new
theoretical methods that will allow for an accurate description
of closed- as well as open-shell nuclei with A � 12. First,
present and proposed nuclear structure research facilities will
open significant territory into regions of medium-mass and
heavier nuclei, where the majority of the studied nuclei will be
open-shell systems and where many of the nuclei produced in
experiment will be unstable or short lived. Second, existing
shell-model and Green’s function Monte Carlo techniques
have prohibitive computer costs that scale factorially or
exponentially with the system size. In addition to an increased
dimensionality, one needs to account for the fact that many of
the medium-mass and heavier nuclei can be weakly bound and
couple to resonant states. Moreover, to examine new nuclei that
have not been discovered or studied before, one may not be able
to rely on fitting the effective Hamiltonians to the experimental
data for the known nuclei, as has been traditionally done for
many years. Microscopic ab initio methods, in which nuclear
properties are obtained from the underlying nucleon-nucleon
interactions, will become increasingly important as the new
information about the medium-mass and heavier nuclei is
obtained in various experiments. In addition to these practical
aspects, ab initio calculations of nuclear properties, including,
for example, the way the binding and excitation energies
change as a function of the number of nucleons around
closed-shell nuclei, may provide important new insights into
our understanding of nuclear forces.
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Clearly, if we wish to extend ab initio methods to nuclei with
A�12, we have to consider alternatives to the existing Green’s
function Monte Carlo and no-core shell-model techniques. In
this work, we focus on coupled-cluster theory [10–13], which
is a promising candidate for the development of practical
methods for fully microscopic ab initio studies of nuclei in the
A � 12 mass region. As has been demonstrated in numerous
quantum chemistry applications (see, e.g., Refs. [14–24] for
selected reviews), coupled-cluster methods are capable of
providing a precise description of many-particle correlation
effects at relatively low computer costs, when compared to
shell-model or configuration interaction techniques aimed
at similar accuracies. Based on the remarkable success of
coupled-cluster methods in chemistry and molecular physics,
where one has to obtain a highly accurate description of many-
electron correlation effects, we believe that the field of nuclear
physics may significantly benefit from the vast experience
in the development of accurate and computationally efficient
coupled-cluster approximations and algorithms developed by
quantum chemists.

Although historically coupled-cluster theory originated in
nuclear physics [10,11], its applications to the nuclear many-
body problem have been relatively rare (see, e.g., Refs. [25–27]
and references therein), particularly when compared to quan-
tum chemistry. For many years, part of the problem has been an
inadequate understanding of nucleon-nucleon interactions and
lack of adequate computer resources in the 1970s and 1980s.
This situation has changed only in the past few years. The
successful construction of realistic nucleon-nucleon potentials
(cf., e.g., Refs. [28–31]) and spectacular improvements in
computer technology have led to renewed interest in ap-
plying coupled-cluster methods in ab initio nuclear physics
calculations. In particular, using bare interactions, Mihaila and
Heisenberg performed impressive coupled-cluster calculations
for the binding energy and the electron scattering form factor
of 16O [32–35]. Because of their use of bare interactions, the
convergence with increasing model-space size was quite slow.
We have taken an alternative route and combined a few basic
coupled-cluster techniques with the renormalized form of the
Hamiltonian to determine ground and selected excited states
of 4He and 16O [36–41], demonstrating promising results
when compared with the results of the exact shell-model
diagonalization in the same model space [37] and, at least
for some properties, with the experimental data [36,38–41].
In particular, in our most recent study of the ground and
excited states of 16O [38], we obtained fully converged results
that are very close to those obtained with more expensive
large-scale no-core shell-model calculations of Navrátil and
collaborators [42]. This has been possible thanks to the use
of the diagram factorization techniques [43], which lead to
almost perfectly vectorized [24,44,45] and highly scalable
parallel [36] computer codes, enabling routine calculations
for systems in the A ∼ 20 region with large single-particle
basis sets, including seven or even eight major oscillator shells
(336 and 480 single-particle states, respectively).

Our initial coupled-cluster calculations [36–41] focused on
closed-shell nuclei; however, one long-term objective of our
research program is to study open-shell nuclei with one or more

valence nucleons. We would like, for example, to examine
how the binding and excitation energies vary with the number
of nucleons in valence systems around closed-shell nuclei.
This is particularly interesting when we examine the A = 15
and A = 17 nuclei around 16O. For example, the splittings
between the (3/2)−1 and (1/2)−1 states in 15O and 15N and the
splittings between the (3/2)+1 and (5/2)+1 states in 17O and 17F
should arise from the nuclear spin-orbit force, which may or
may not be affected by three-nucleon interactions. One would
like to examine such issues by comparing the results of ab
initio calculations employing two-body interactions with the
experimental energy spacings. This requires an appropriate
extension of the usual single-reference ground-state coupled-
cluster theory [10–13] to ground and excited states of valence
systems around closed-shell nuclei.

In this article we examine, for the first time, the appli-
cability of two quantum-chemistry-inspired coupled-cluster
approaches, referred to as the particle-attached (PA) (in chem-
istry, electron-attached or EA [46–50]) and particle-removed
(PR) (in chemistry, ionized or IP [16,46,50–56]) equation-of-
motion coupled-cluster (EOMCC) methods [46,57,58], in the
converged calculations of the binding and excitation energies
of A = 15 (15O, 15N) and A = 17 (17O, 17F) nuclei. For these
calculations, we use modern nucleon-nucleon interactions
derived from the effective-field theory [59,60], such as N3LO
[31], and their slightly older phenomenological counterparts,
including the charge-dependent Bonn interaction model (CD-
Bonn) [29] and the V18 model of the Argonne group [28]. In
the PA- and PR-EOMCC methods, one calculates ground and
excited states of the (A + 1)- and (A − 1)-particle systems
by diagonalizing the similarity-transformed Hamiltonian of
the coupled-cluster theory, resulting from the ground-state
calculations for the A-particle closed-shell nucleus, in the
relevant (A + 1)- and (A − 1)-particle subspaces of the Fock
space. As shown in this article, the PA- and PR-EOMCC
approaches provide us with practical computational techniques
for potentially accurate ab initio studies of valence systems
around the closed-shell nuclei. Application of these methods
may provide several important insights into the effects of
the underlying nucleon-nucleon interactions on the calculated
properties of such systems. We also provide in this article
several details of the PA-EOMCC, PR-EOMCC, and under-
lying ground-state coupled-cluster calculations, including the
factorized forms of the relevant amplitude equations.

This article is divided into four sections. In Sec. II, we
present our formalism for deriving an effective two-body
Hamiltonian for coupled-cluster calculations, which takes into
account short-range nucleon-nucleon correlations, and present
the details of the PA-EOMCC and PR-EOMCC theories
that enable us to deal with valence systems around closed-
shell nuclei within the framework of the single-reference
coupled-cluster formalism. The results of PA-EOMCC and
PR-EOMCC calculations for the 15O, 17O, 15N, and 17F nuclei
are discussed in Sec. III and the conclusions and perspectives
are outlined in Sec. IV. The factorized forms of the PA-
EOMCC and PR-EOMCC equations for the (A ± 1)-particle
systems and the corresponding ground-state coupled-cluster
equations, exploited in this work, are given in the Appendix.
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II. COUPLED-CLUSTER EQUATIONS FOR
VALENCE SYSTEMS

Our theoretical considerations start with the introduction
of an appropriate two-body effective interaction for the large-
scale coupled-cluster calculations. The relevant information
used to renormalize the bare nucleon-nucleon Hamiltonians
and to generate the final effective Hamiltonians corrected for
the center-of-mass contaminations are discussed in Sec. II A.
We then provide in Sec. II B the most essential information
about the underlying closed-shell coupled-cluster calculations
that precede the PA- and PR-EOMCC steps. In Sec. II C, we
discuss the most essential details of the PA- and PR-EOMCC
calculations for the ground and excited states of the (A +
1)- and (A − 1)-particle valence systems around the closed-
shell A-particle nucleus. In Sec. II D we briefly discuss further
computational details of the PA- and PR-EOMCC calculations.

A. Effective two-body interaction for coupled-cluster
calculations

In this work, we concentrate on results obtained from the
N3LO [31] nucleon-nucleon interaction, and we also give
some results for the CD-Bonn [29] and V18 [28] potentials.
The Coulomb interaction was included perturbatively in all
of our calculations (to distinguish between 15O/17O and
15N/17F). This lack of renormalization of the Coulomb leads,
however, to a weak dependence on the oscillator energy
when we compare the binding energies of these systems.
To remove the hard-core part of the interaction and enable
realistic calculations in manageable model spaces, we follow
the procedure exploited in our earlier work [36–41]. Thus,
we renormalize the Hamiltonian through a no-core G-matrix
procedure, described in considerable detail in Refs. [6,36]. The
no-core G-matrix approach introduces a starting-energy (ω)
dependence in the effective two-body matrix elements G(ω)
defining the renormalized two-body interactions (obtained by
analyzing the exactly solvable proton-proton, proton-neutron,
and neutron-neutron two-body problems), but much of the
ω dependence can be eliminated through the use of the
Bethe-Brandow-Petschek theorem [61] and the appropriate
summation of the class of folded diagrams to infinite order at a
given starting energy (see Refs. [6,36] for further information).
For nuclei like 16O, the dependence on the chosen starting
energy ω is weak. In our calculations the starting energies are
defined by the energy of the hole states and are typically in the
range ω ∈ [ − 50,−10] MeV. This introduces an uncertainty
of 0.1–0.2 MeV per particle for the binding energies.

After renormalizing bare interactions with the G-matrix
approach, our effective Hamiltonian is given by the formula

Heff(ω) = H0 + G(ω), (1)

where H0 is the translationally invariant kinetic energy

H0 =
A∑

i=1

p2
i

2m
− P2

2mA
, (2)

and m is the nucleon mass. Here the center-of-mass momentum
for an A-body system is P = ∑A

i=1pi. The momenta pi are the
single-particle momenta. In our actual calculations we rewrite

Eq. (2) as

H0 =
(

1 − 1

A

) A∑
i=1

p2
i

2m
−

A∑
i<j

pi·pj

mA
. (3)

The last term of this equation is computed separately as an
expectation value, after we have optimized the total center-of-
mass contribution, as discussed in the next steps.

To complete the process of preparing the Hamiltonian
for coupled-cluster calculations, we correct the renormalized
Hamiltonian Heff(ω), Eq. (1), resulting from exploiting the no-
core G-matrix procedure, for center-of-mass contaminations
using the expression

H ≡ H (ω, βCoM) = Heff(ω) + βCoMHCoM

= zβ
αaαaβ + 1

4v
γ δ

αβaαaβaδaγ , (4)

where zβ
α = 〈α|z|β〉 and v

γ δ

αβ = 〈αβ|v|γ δ〉−〈αβ|v|δγ 〉 are the
relevant one- and two-body matrix elements in a single-particle
basis set {|α〉} and aα (aα) are the usual creation (annihilation)
operators. We use the Einstein summation convention over
repeated upper and lower indices.

In our coupled-cluster derivations, we use the normal-
ordered form of the Hamiltonian, HN , relative to the A-particle
Fermi vacuum reference state |�〉,
HN = H − 〈�|H |�〉 = f β

α N [aαaβ] + 1
4v

γ δ

αβN [aαaβaδaγ ],

(5)

where f β
α ≡ 〈α|f |β〉 = zβ

α + v
βi

αi are matrix elements of the
Fock matrix and N [ . . . ] designates the normal product.

The center-of-mass term is given by

HCoM = P2

2MA
+ 1

2
mA�2R2 − 3

2
h̄�, (6)

where R =
(∑

i=1,A
ri

)
/A. The term HCoM can be rewritten

as a one-body harmonic potential and a two-body term that
depends on both the relative and center-of-mass coordinates
of the two interacting particles. The parameter βCoM is
chosen such that the expectation value of the center-of-
mass Hamiltonian HCoM with the ground-state coupled-cluster
wave function, 〈HCoM〉, obtained for the βCoM-dependent
Hamiltonian H, Eq. (4), is 0.0 MeV [62]. This can be done
by relying on the Hellmann-Feynman theorem and calculating
〈HCoM〉 as the first derivative of the coupled-cluster energy
with respect to βCoM. As pointed out in our earlier articles
[38,40,41], one of the advantages of this procedure is the
ease of separation of intrinsic and center-of-mass contaminated
states by analyzing the dependence of coupled-cluster energies
on βCoM. As shown in Refs. [40,41], the physical states
obtained in coupled-cluster calculations are independent of
βCoM, whereas the center-of-mass contaminated states show
a strong, nearly linear dependence of excitation energies on
βCoM.

Once we have determined the center-of-mass-corrected
renormalized Hamiltonian H, Eq. (4), we solve the nuclear
many-body problem using coupled-cluster theory. To construct
the coupled-cluster equations for the closed-shell A-body sys-
tem and the related PA-EOMCC and PR-EOMCC equations

024310-3



GOUR, PIECUCH, HJORTH-JENSEN, WŁOCH, AND DEAN PHYSICAL REVIEW C 74, 024310 (2006)

for the (A+1)- and (A−1)-body nuclei in the computationally
most efficient way, we sort the one- and two-body matrix
elements of HN according to the particle-hole (p-h) character
of the single-particle indices that label them prior to the
coupled-cluster work. This is a common practice in the
most efficient implementations of coupled-cluster methods by
quantum chemists and we follow the same recipe here.

B. Brief synopsis of the single-reference coupled-cluster theory
and the basic CCSD approximation

The single-reference coupled-cluster theory [10–13] is
based on the exponential ansatz for the ground-state wave
function of the A-body system,∣∣∣	(A)

0

〉
= eT (A) |�〉, (7)

where T (A) is the cluster operator (a p-h excitation operator)
and |�〉 is the corresponding reference determinant (defining
the Fermi vacuum) obtained by performing some mean-field
calculation or by simply filling A lowest-energy single-particle
states (this is what we have done in the calculations discussed
in this article). Here and elsewhere in the present article,
we use superscripts, such as (A), which indicate the number
of particles in a system under consideration, at the relevant
operators and energies.

Formally, Eq. (7) is a direct consequence of the connected-
cluster theorem, first clearly stated by Hubbard [63], which is,
in turn, related to the linked cluster theorem of many-body
perturbation theory [63–66]. According to the connected-
cluster theorem, the cluster operator T (A) generates connected
wave function diagrams summed through infinite order. Opera-
tionally, T (A) is a simple many-body excitation operator, which
in all standard coupled-cluster approximations is truncated at
a given (usually low) p-h excitation level M<A.

The general form of the truncated cluster operator, defining
a standard single-reference coupled-cluster approximation
characterized by the excitation level M, is

T (A)(M) =
M∑

n=1

Tn, (8)

where

Tn =
(

1

n!

)2

t i1...in
a1...an

aa1 . . . aanain . . . ai1 (9)

are the many-body components of T (A)(M) and t i1...in
a1...an

are
the corresponding cluster amplitudes. The cluster amplitudes
t i1...in
a1...an

are determined by solving a coupled system of nonlinear
and energy-independent algebraic equations of the form:〈
�

a1...an

i1...in

∣∣ H̄N (M)|�〉 = 0, i1< · · · <in, a1< · · · <an,

(10)

where n = 1, . . . ,M . Here,

H̄N (M) = e−T (A)(M)HNeT (A)(M) =
(
HNeT (A)(M)

)
C

(11)

is the similarity-transformed Hamiltonian of the coupled-
cluster theory truncated at Mp-Mh excitations, subscript C
designates the connected part of the corresponding operator

expression, and |�a1...an

i1...in
〉 ≡ aa1 . . . aanain . . . ai1 |�〉 are the

np-nh or n-tuply excited determinants relative to |�〉. The
basic CCSD (coupled-cluster singles and doubles) [67–69]
method corresponds to M = 2 and the cluster operator T (A) is
approximated by

T (A)(CCSD) ≡ T (A)(2) = T1 + T2, (12)

where

T1 = t iaa
aai (13)

and

T2 = 1
4 t

ij

aba
aabajai (14)

are 1p-1h or singly excited and 2p-2h or doubly excited
cluster components, t ia and t

ij

ab are the corresponding singly
and doubly excited cluster amplitudes, and i, j, . . . (a, b, . . .)
are the single-particle states occupied (unoccupied) in the
reference determinant |�〉.

The standard CCSD equations for the singly and doubly
excited cluster amplitudes t ia and t

ij

ab, defining T1 and T2,
respectively, can be written as〈

�a
i

∣∣ H̄N (CCSD)|�〉= 0, (15)

〈
�ab

ij

∣∣ H̄N (CCSD)|�〉 = 0, i < j, a < b, (16)

where

H̄N (CCSD) ≡ H̄N(2) = e−T (A)(CCSD)HNeT (A)(CCSD)

=
(

HNeT (A)(CCSD)
)

C

(17)

is the similarity-transformed Hamiltonian of the CCSD ap-
proach.

The system of coupled-cluster equations, Eq. (10), is
obtained in the following way (suggested by Čı́žek [12]). We
first insert the coupled-cluster wave function |	(A)

0 〉, Eq. (7),
into the A-body Schrödinger equation,

HN

∣∣∣	(A)
0

〉
= 
E

(A)
0

∣∣∣	(A)
0

〉
, (18)

where


E
(A)
0 = E

(A)
0 − 〈�|H |�〉 (19)

is the corresponding energy relative to the reference energy
〈�|H |�〉, and premultiply both sides of Eq. (18) on the left by
e−T (A)

to obtain the connected-cluster form of the Schrödinger
equation [12,14,20,70],

H̄N |�〉 = 
E
(A)
0 |�〉 , (20)

where

H̄N = e−T (A)
HNeT (A) =

(
HNeT (A)

)
C

(21)

is the similarity-transformed Hamiltonian. Next, we project
Eq. (20), in which T (A) is replaced by its approximate form
T (A)(M), Eq. (8), onto the excited determinants |�a1...an

i1...in
〉,

corresponding to the p-h excitations included in T (A)(M).
The excited determinants |�a1...an

i1...in
〉 are orthogonal to the

reference determinant |�〉, so that we end up with nonlinear
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and energy-independent algebraic equations of the form of
Eq. (10).

Once the system of equations, Eq. (10), is solved for
T (A)(M) or t i1...in

a1...an
[or Eqs. (15) and (16) are solved for T1 and

T2 or t ia and t
ij

ab], the ground-state coupled-cluster energy is
calculated using the equation

E
(A)
0 (M) = 〈�|H |�〉 + 
E

(A)
0 (M)

= 〈�|H |�〉 + 〈�|H̄N (M)|�〉
= 〈�|H |�〉 + 〈�|H̄N,close(M)|�〉, (22)

where H̄N,close(M) is the closed part of H̄N (M) which is

represented by those diagrams contributing to H̄
(M)
N that have

no external (uncontracted) Fermion lines. It can easily be
shown that if H contains only up to two-body interactions
and 2 � M � A, we can write

E
(A)
0 (M) = 〈�|H |�〉 + 〈�| [HN

(
T1 + T2 + 1

2T 2
1

)]
C

|�〉.
(23)

In other words, we need only T1 and T2 clusters to calculate
the ground-state energy E

(A)
0 (M) of the A-body (A � 2)

system even if we solve for other cluster components Tn with
n > 2. As long as the Hamiltonian contains up to two-body
interactions, the above energy expression is correct even in
the exact case, when the cluster operator T is not truncated.
In that case, however, to obtain the exact values of the T1

and T2 clusters and, thus, the exact ground-state energy, we
would also need to solve the coupled system of equations for
all higher-order clusters Tn with n > 2. Equation (22) can
be most easily obtained by projecting the connected-cluster
form of the Schrödinger equation, Eq. (20), on the reference
configuration |�〉 and replacing T (A) by T (A)(M).

The nonlinear character of the system of coupled-cluster
equations of the form of Eq. (10) does not mean that the
resulting equations contain very high powers of T (A)(M). For
example, if the Hamiltonian H does not contain higher-than-
pairwise interactions, the CCSD equations for the T1 and T2

clusters, or for the amplitudes t ia and t
ij

ab that represent these
clusters, become

〈
�a

i

∣∣[HN

(
1 + T1 + T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1

)]
C
|�〉 = 0,

(24)

〈
�ab

ij

∣∣ [HN

(
1 + T1 + T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1

+ 1
2T 2

2 + 1
2T 2

1 T2 + 1
24T 4

1

)]
C

|�〉 = 0. (25)

The explicitly connected form of the coupled-cluster
equations, such as Eqs. (10) or (24) and (25), guarantees that
the process of solving these equations leads to connected terms
in cluster components Tn and connected terms in the energy
E

(A)
0 (M), independent of the truncation scheme M used to

define T (A)(M). The absence of disconnected terms in T (A)(M)
and E

(A)
0 (M) is essential to obtain the rigorously size-extensive

results.

C. Equation-of-motion coupled-cluster methods for valence
systems: the PA-EOMCCSD and PR-EOMCCSD

approximations

In addition to providing natural intermediates for setting up
coupled-cluster equations (see the Appendix), the use of the
similarity-transformed Hamiltonians, H̄N (M) or H̄N (CCSD),
Eqs. (11) or (17), respectively, in coupled-cluster calculations
provides a natural mechanism for extending the ground-state
coupled-cluster theory to excited states of a given A-body
system or to ground and excited states of the (A + k)- or
(A − k)-particle systems obtained by attaching k particles to
or removing k particles from the A-particle closed-shell core.
This can be most efficiently done by exploiting the EOMCC
formalism [46,57,58] and its PA-EOMCC (in chemistry, EA-
EOMCC [46–50]) and PR-EOMCC (in chemistry, IP-EOMCC
[16,46,50–56]) variants, and their various multiply attached
and multiply removed or ionized (cf., e.g., Refs. [50,71–73])
extensions (see, also, Refs. [74–78] and [79–84] for the related
linear response and symmetry-adapted cluster configuration
interaction formalisms, respectively). In all of these methods,
we obtain excited states |	(A)

µ 〉 (µ > 0) of the A-particle
system or ground and excited states |	(A±k)

µ 〉 (µ � 0) of the
(A ± k)-particle (k > 0) systems by applying the suitably
defined excitation (R(A)

µ ) or particle-attaching/particle-
removing (R(A±k)

µ ) operator to the ground state obtained in the
single-reference coupled-cluster calculations for the closed-
shell A-body system. Operators R(A)

µ and R(A±k)
µ are obtained

by diagonalizing the similarity-transformed Hamiltonians,
such as H̄N (M), Eq. (11), in the case of coupled-cluster theory
truncated at M-tuple excitations, or H̄N (CCSD), Eq. (17), in
the CCSD case, in the relevant A-particle and (A ± k)-particle
subspaces of the Fock space.

In the basic EOMCC approximation, EOMCCSD [57,58],
for the calculations of excited states of the A-particle system,
we represent excited states |	(A)

µ 〉 as

∣∣	(A)
µ

〉 = R(A)
µ

∣∣∣	(A)
0

〉
= R(A)

µ eT (A) |�〉 (26)

and replace T (A) by the cluster operator T (A)(CCSD), Eq. (12),
obtained in the CCSD calculations, and R(A)

µ by

R(A)
µ (CCSD) ≡ R(A)

µ (2) = Rµ,0 + Rµ,1 + Rµ,2, (27)

where
Rµ,0 = r0 1, (28)

Rµ,1 = ri
a aaai, (29)

and
Rµ,2 = 1

4 r
ij

ab aaabajai (30)

are the reference, 1p-1h, and 2p-2h components of
R(A)

µ (CCSD), and r0, r
i
a , and r

ij

ab are the corresponding
excitation amplitudes [1 in Eq. (28) is a unit operator].

The ri
a and r

ij

ab amplitudes of the standard EOMCCSD
theory and the corresponding excitation energies ω(A)

µ (CCSD)
of the A-body system are obtained by diagonalizing the open
part of the similarity-transformed Hamiltonian of the CCSD
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approach,

H̄N,open(CCSD) = (
HNeT (A)(CCSD)

)
C,open

= e−T (A)(CCSD)HNeT (A)(CCSD)−H̄N,close(CCSD)

= e−T (A)(CCSD)HNeT (A)(CCSD)−
E
(A)
0 (CCSD), (31)

in the subspace spanned by the singly and doubly excited
determinants |�a

i 〉 and |�ab
ij 〉 used to set up and solve the

ground-state CCSD equations. The EOMCCSD approach can
easily be generalized to higher-order excitation amplitudes by
considering higher-than-two-body terms in R(A)

µ .
The idea of diagonalizing the similarity-transformed

Hamiltonian of the coupled-cluster theory defining the EOM-
CCSD and other EOMCC approximations can be extended
to ground and excited states of open-shell nuclei with
(A ± k) particles by replacing the particle-conserving p-h
excitation operator R(A)

µ in Eq. (26) by the suitably defined
particle-attaching or particle-removing operator R(A±k)

µ . In the
basic PA-EOMCCSD [47,48] and PR-EOMCCSD [16,51–53]
approaches (cf., also, Ref. [46,50]) exploited in this work, we
define the wave functions of the (A + 1)- and (A − 1)-particle
systems, respectively, as∣∣	(A±1)

µ

〉 = R(A±1)
µ eT (A) |�〉, (32)

where T (A) is approximated by T (A)(CCSD), Eq. (12), obtained
in the CCSD calculations for the A-particle closed-shell sys-
tem, and R(A+1)

µ and R(A−1)
µ are replaced by the appropriately

truncated operators,

R(A+1)
µ (2p-1h) = Rµ,1p + Rµ,2p-1h = raa

a + 1
2 r

j

aba
aabaj

(33)

and

R(A−1)
µ (2h-1p) = Rµ,1h + Rµ,2h-1p = riai + 1

2 r
ij

b abajai,

(34)

respectively, which generate the (A + 1)- and (A − 1)-particle
states from the A-particle CCSD wave function eT1+T2 |�〉. The
1p and 2p-1h amplitudes ra and r

j

ab, respectively, entering
Eq. (33) and defining the PA-EOMCCSD model, and the
1h and 2h-1p amplitudes ri and r

ij

b , respectively, entering
Eq. (34) and defining the PR-EOMCCSD model, are deter-
mined by solving the eigenvalue problem,(

H̄N,open(CCSD)R(A±1)
µ

)
C
|�〉 = ω(A±1)

µ R(A±1)
µ |�〉, (35)

in the relevant subspaces of the (A + 1)- and (A − 1)-particle
subspaces, H(A+1) and H(A−1), respectively, of the Fock space.
The subspace of H(A+1) used to solve the PA-EOMCCSD
eigenvalue problem is spanned by the |�a〉 = aa|�〉 and
|�ab

j 〉 = aaabaj |�〉 determinants. The subspace of H(A−1)

used to solve the PR-EOMCCSD problem is spanned by
the |�i〉 = ai |�〉 and |�b

ij 〉 = abajai |�〉 determinants. By
solving Eq. (35), we directly obtain the energy differences,
ω(A+1)

µ = E(A+1)
µ − E

(A)
0 in the PA-EOMCCSD case, and

ω(A−1)
µ = E(A−1)

µ − E
(A)
0 in the PR-EOMCCSD case, where

E(A+1)
µ and E(A−1)

µ are the energies of ground (µ = 0) and

excited (µ > 0) states of the (A + 1)- and (A − 1)-particle
systems, respectively, and E

(A)
0 is the ground-state coupled-

cluster (in this case, CCSD) energy of the A-particle reference
system. Note that these methods naturally extend to higher-
order excitations. The detailed discussion of the relationships
between truncation schemes in the R(A±1)

µ and T (A) operators
in the PA-EOMCC and PR-EOMCC calculations can be found
in Ref. [46] (cf., also, Refs. [50,85] for additional comments
and numerical tests).

The PA-EOMCC and PR-EOMCC methods, as described
above, and their extensions to two or more valence par-
ticle or holes via multiply attached or multiply ionized
schemes [50,71–73] offer several advantages compared to
the equally accurate, but usually much more complicated,
genuine multireference coupled-cluster methods of either
the valence-universal [86,87] or the Hilbert-space or state-
universal [88] type that are specifically designed to handle
general classes of open-shell problems. Although there has
been significant progress in recent years in the development
of genuine multireference coupled-cluster theories [89–101],
multireference coupled-cluster calculations are often plagued
by intruder states; unphysical, singular, and multiple solutions;
and mathematical difficulties with the proper adaptation of
the corresponding equations to symmetries of the Hamil-
tonian if one aims at the general-purpose computer codes
(cf., e.g., Refs. [90,102–109] for further information). Some
of these issues are currently being addressed (cf., e.g.,
Refs. [92–99,101]), but none of these problems are present in
the PA-EOMCC and PR-EOMCC calculations, which could
be viewed as the physically motivated, intruder-state-free,
state-selective modifications of the powerful and elegant
valence-universal multireference coupled-cluster schemes
pioneered by Mukherjee and Lindgren [86,87].

Our calculations for the ground and low-lying excited states
of the 15- and 17-particle nuclei around 16O, reported in this
work, have been performed with the basic PA-EOMCCSD and
PR-EOMCCSD methods, in which the ground state of 16O
is represented by the CCSD wave function eT1+T2 |�〉 and the
nucleon-attaching and nucleon-removing operators R(A+1)

µ and
R(A−1)

µ are defined by Eqs. (33) and (34), respectively. As a first
approximation we can describe the (A+1)-particle nuclei 17O
and 17F with the PA-EOMCCSD method, in which we include
the 1p and 2p-1h excitations from the 16O core to form the
17-particle systems, because the ground states of the 17O and
17F nuclei that we have singled out in this work are essentially
one-quasiparticle states. On the other hand, the (3/2)+1 excited
states of 17O and 17F are resonances that can strongly couple
to more complicated excitations that are neglected in the PA-
EOMCCSD calculations. This may apply to the (1/2)+1 states
as well. We can, however, study the (A−1)-particle nuclei 15O
and 15N with the basic PR-EOMCCSD approach, in which we
include the 1h and 2h-1p excitations from the 16O closed-
shell core, because the low-lying states of these nuclei are
expected to be dominated by one-quasihole states with respect
to the A-body reference 16O nucleus. As discussed in Ref.
[1], there is, for example, almost no experimental evidence
for the fragmentation of the quasihole p1/2 and p3/2 states
of 16O.

024310-6



COUPLED-CLUSTER CALCULATIONS FOR VALENCE . . . PHYSICAL REVIEW C 74, 024310 (2006)

The fact that we use the 1p and 2p-1h excitations in
the PA-EOMCCSD calculations to form the (A + 1)-body
systems and the fact that we use the 1h and 2h-1p excitations
in the PR-EOMCCSD calculations for the (A − 1)-body
systems mean that we include many of the same correlations
as Fujii et al. [110,111]. Their approach is analogous to a
Hermitian coupled-cluster approach (see Ref. [111]). Another
approach is the Green’s function approach, see the work of
Barbieri and Dickhoff [112]. There are, however, differences
between our PA-EOMCCSD and PR-EOMCCSD calculations
and the calculations reported by Fujii et al. In particular, we
use a biorthogonal EOMCC formalism, based on diagonal-
izing the non-Hermitian similarity-transformed Hamiltonian
H̄N (CCSD), Eq. (17), obtained in CCSD calculations for the
A-body closed-shell nucleus, which brings a lot of correlations
within basic truncation schemes, such as EOMCCSD, PA-
EOMCCSD, and PR-EOMCCSD, through the presence of
high-order correlation terms in H̄N (CCSD).

We also differ in the definition of the model space, since
Fujii et al. use a model space similar to that used in the
no-core shell-model calculations [4], in which a “triangular”
energy cutoff is applied to Slater determinants included in the
diagonalization of the Hamiltonian, in addition to the usual
single-particle basis set cutoff. Such a model space cannot
be used in coupled-cluster calculations because it violates
the Pauli principle in the summations over the intermediate
states that emerge through products of many-body components
of the cluster operator T (A) in coupled-cluster equations. As
mentioned earlier, the use of a given truncation scheme for
the cluster operator T (A) implies specific truncation schemes
for the EOMCC operators, such as R(A+1)

µ and R(A−1)
µ . Thus,

we use all 1p and 2p-1h or 1h and 2h-1p excitations in
the PA-EOMCCSD and PR-EOMCCSD calculations and all
1p-1h and 2p-2h cluster amplitudes t ia and t

ij

ab that are
allowed by a given single-particle basis set, without imposing
additional energy cutoffs on the determinants that these
excitations correspond to, producing many additional and
important correlations that are outside model spaces used in
the no-core shell-model calculations. In principle, however,
our approach will miss center-of-mass excitations that will
be included in a translationally invariant no-core shell-model
calculation, if all excitations are allowed in large spaces. As
we show below, however, the expectation value of spurious
center-of-mass components become negligible as we increase
the size of the model space.

D. Further computational details of the PA-EOMCCSD and
PR-EOMCCSD calculations

Once the one- and two-body matrix elements of the
center-of-mass-corrected effective Hamiltonian, Eq. (4), are
determined and properly sorted out, we set up and solve the
CCSD equations for 16O, the PA-EOMCCSD equations for
17O and 17F, and the PR-EOMCCSD equations for 15O and
15N. Our ground-state CCSD computer codes rely on the
DIIS solver [113] (see, also, Refs. [44,114]), whereas the
PA-EOMCCSD and PR-EOMCCSD equations for ground and
excited states of the (A + 1)- and (A − 1)-particle nuclei are

solved with the Hirao-Nakatsuji generalization [115] of the
Davidson diagonalization algorithm [116] to non-Hermitian
eigenvalue problems.

The computationally efficient form of the CCSD, PA-
EOMCCSD, and PR-EOMCCSD equations in terms of re-
cursively generated intermediates can be derived diagram-
matically. From the point of view of code efficiency, it is
important to realize that some of the intermediates entering
the CCSD and other CCSD-based equations represent matrix
elements of the one- and two-body components of the CCSD
similarity-transformed Hamiltonian H̄N,open(CCSD), Eq. (31).
If H̄ n is the n-body component of H̄N,open(CCSD), for the one-
and two-body components H̄ 1 and H̄ 2, respectively, we can
write

H̄ 1 = h̄
β

αN [aαaβ] (36)

and
H̄ 2 = 1

4 h̄
γ δ

αβN [aαaβaδaγ ], (37)

where h̄
β

α and h̄
γ δ

αβ are the one- and two-body matrix elements
of H̄N,open(CCSD) that enter the CCSD, PA-EOMCCSD,
and PR-EOMCCSD equations. As shown in the Appendix,
matrix elements h̄

β

α and h̄
γ δ

αβ are calculated using the one-
and two-body matrix elements of the Hamiltonian in the
normal-ordered form, f β

α and v
γ δ

αβ , respectively [cf. Eq. (5)],
and the singly and doubly excited cluster amplitudes t ia and
t
ij

ab, defining T1 and T2, respectively. The computationally
efficient form of the CCSD equations for the case of pairwise
interactions in H, in terms of selected types of h̄

β

α and h̄
γ δ

αβ

and other recursively generated intermediates, is given in the
Appendix.

We also give in the Appendix the computationally efficient
form of the equations defining the PA-EOMCCSD and PR-
EOMCCSD eigenvalue problems. These are obtained by
applying diagrammatic methods to the PA-EOMCCSD and
PR-EOMCCSD equations, which can be given the following
general form:

〈�a|
[

(H̄ 1Rµ,1p)C +
2∑

n=1

(H̄ nRµ,2p-1h)C

]
|�〉 = ω(A+1)

µ ra,

(38)

〈
�ab

j

∣∣ [
(H̄ 2Rµ,1p)C +

3∑
n=1

(H̄ nRµ,2p-1h)C

]
|�〉 = ω(A+1)

µ r
j

ab,

(39)

in the PA-EOMCCSD case, and

〈�i |
[

(H̄ 1Rµ,1h)C +
2∑

n=1

(H̄ nRµ,2h-1p)C

]
|�〉 = ω(A−1)

µ ri,

(40)

〈
�b

ij

∣∣ [
(H̄ 2Rµ,1h)C +

3∑
n=1

(H̄ nRµ,2h-1p)C

]
|�〉 = ω(A−1)

µ r
ij

b ,

(41)
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in the PR-EOMCCSD case. Although formally the PA-
EOMCCSD and PR-EOMCCSD equations require the con-
sideration of the three-body components of H̄N,open(CCSD)
[cf. the n = 3 terms in Eqs. (39) and (41)], we do not
have to calculate the corresponding six-index matrix elements
h̄

δεη

αβγ explicitly. With the help of diagrammatic techniques,
the three-body components of H̄N,open(CCSD) that enter
the PA-EOMCCSD and PR-EOMCCSD equations can be
rigorously factorized and rewritten in terms of the one- and
two-body components of H̄N,open(CCSD). In consequence,
the final working equations of the PA-EOMCCSD and PR-
EOMCCSD methods in terms of one- and two-body matrix
elements of the Hamiltonian, f β

α and v
γ δ

αβ , respectively, T1

and T2 cluster amplitudes defining the underlying A-particle
ground-state CCSD problem, and the Rµ,1p, Rµ,2p-1h, Rµ,1h,
and Rµ,2h-1p excitation amplitudes defining the particle-
attaching and particle-removing operators, R(A+1)

µ (2p-1h) and
R(A−1)

µ (2h-1p), respectively, can be reexpressed in terms of the

one- and two-body matrix elements of H̄N,open(CCSD), h̄
β

α and

h̄
γ δ

αβ , respectively, and a few additional recursively generated
intermediates, leading to a fully vectorizable algorithm.

In addition to code vectorization, another advantage of
deriving the CCSD, PA-EOMCCSD, and PR-EOMCCSD
equations in the form shown in the Appendix is the possibility
of obtaining the relatively low CPU operation count that
characterizes these methods. The CCSD equations and the
determination of the full set of one- and two-body matrix
elements of H̄N,open(CCSD) are characterized by the n2

on
4
u

steps, where no and nu are the numbers of occupied and
unoccupied orbitals, respectively, in the single-particle basis
set. Once the CCSD equations are solved and all one- and
two-body matrix elements of H̄N,open(CCSD) are determined,
the most expensive steps of the PA-EOMCCSD and PR-
EOMCCSD methods employing the factorized equations
shown in the Appendix are non

4
u and n2

on
3
u, respectively. These

relatively low, N 5 − N 6 scalings of the costs of the CCSD,
PA-EOMCCSD, and PR-EOMCCSD calculations with the
system size (N ), which are often orders of magnitude smaller
than the costs of shell-model calculations aimed at similar
accuracies, are among the most important advantages of the
coupled-cluster methodology pursued in this work.

III. RESULTS AND DISCUSSION

A. Results of the PR-EOMCCSD and PA-EOMCCSD
calculations with the N3LO interaction and their

convergence properties

We focus first on the convergence of our PR-EOMCCSD
and PA-EOMCCSD results for the ground and excited states
of 15O, 15N, 17O, and 17F with the size of the single-particle
basis set used in the coupled-cluster calculations and address
the issue of the dependence of these results on the choice of
the oscillator parameter h̄� (see Tables I – V). For comparison
purposes, we also list our previously published ground-state
CCSD results with 〈TCoM〉 subtracted for 16O [38], because
16O serves as a reference nucleus for the PR-EOMCCSD

TABLE I. Total binding energies and binding energies per particle
(in parentheses) for 15O and 15N (the PR-EOMCCSD values), 16O
(the CCSD values), and 17O and 17F (the PA-EOMCCSD values),
computed with the N3LO interaction model [31], as functions of
the number of major oscillator shells N. All entries (except for the
unitless parameter βCoM) are in MeV. The results for 16O are taken
from Ref. [38]. The acronym Expt. stands for the experimental values,
taken from Ref. [117]. All energies were calculated at the optimum
values of h̄� (the second last row; determined by identifying the
h̄� value at which the CCSD energy of 16O reaches the minimum
value) and βCoM (the last row; determined by the condition that the
expectation value of HCoM with the CCSD wave function is 0.0 MeV).
For eight major oscillator shells, βCoM = 0.0.

Nucleus N = 5 N = 6 N = 7 N = 8 Expt.

15O 113.904 101.151 99.869 99.646 111.955
(7.594) (6.743) (6.658) (6.643) (7.464)

15N 116.983 103.811 102.335 102.360 115.492
(7.799) (6.921) (6.823) (6.824) (7.699)

16O 131.800 120.720 119.096 118.491 127.619
(8.787) (7.545) (7.444) (7.406) (7.976)

17O 132.075 122.913 121.977 121.547 131.762
(8.805) (7.230) (7.175) (7.150) (7.751)

17F 128.954 120.248 119.432 118.780 128.220
(8.597) (7.073) (7.026) (6.987) (7.542)

h̄� 13 11 10 11
βCoM 1.50 0.15 0.05 0.0

and PA-EOMCCSD calculations. We limit our discussion
of the convergence properties of the PR-EOMCCSD and
PA-EOMCCSD results for 15O, 15N, 17O, and 17F to the
N3LO interaction model [31]. The PR-EOMCCSD and PA-
EOMCCSD results for the CD-Bonn [29] and Argonne V18

[28] interactions exhibit almost identical qualitative features in
terms of their convergence with the number of major oscillator
shells and the way they depend on h̄�.

As shown in Table I, the PR-EOMCCSD binding energies
of 15O and 15N, the results of the CCSD calculations for
the binding energy of 16O, and the PA-EOMCCSD binding
energies of 17O and 17F are practically converged at the level
of eight major oscillator shells. As demonstrated earlier for

TABLE II. Dependence of the total binding energies on h̄� for
15O and 15N (the PR-EOMCCSD values), 16O (the CCSD values),
and 17O and 17F (the PA-EOMCCSD values), computed with the
N3LO interaction model [31] for N = 6 and N = 7 oscillator
shells. All entries (except for the unitless parameter βCoM) are in
MeV. The optimum value of βCoM is given in the last row.

Nucleus N = 6 N = 6 N = 6 N = 7 N = 7

15O 101.151 100.731 99.708 99.869 95.328
15N 103.811 103.731 103.034 102.341 98.686
16O 120.720 119.781 118.171 119.096 113.864
17O 122.913 121.952 120.082 121.977 116.409
17F 120.248 118.977 116.792 119.432 113.230
h̄� 11 12.5 14 10 14
βCoM 0.15 0.3 0.5 0.05 0.3
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TABLE III. Energies of the low-lying excited states of 15O, 15N,
17O, and 17F, relative to the corresponding ground-state energies
[the (1/2)−1 states of 15O and 15N and the (5/2)+1 states of 17O
and 17F], computed with the N3LO interaction model [31] and
the PR-EOMCCSD (15O,15N) and PA-EOMCCSD (17O and 17F)
methods, as functions of the number of major oscillator shells N.
All entries are in MeV. Note that the experimentally observed (3/2)+1
states in 17O and 17F are resonances. The experimental data (Expt)
are from Ref. [121]. For the optimum values of h̄� and βCoM, see
Table I.

Excited state N = 5 N = 6 N = 7 N = 8 Expt.

15O (3/2)−1 6.515 6.602 6.166 6.264 6.176
15N (3/2)−1 6.354 6.680 6.256 6.318 6.323
17O (3/2)+1 6.298 6.031 5.489 5.675 5.084
17O (1/2)+1 0.328 0.130 −0.349 −0.025 0.870
17F (3/2)+1 6.460 6.207 5.686 5.891 5.000
17F (1/2)+1 0.748 0.544 0.088 0.428 0.495

16O [36], the dependence of these results on the oscillator
energy h̄� ∈ [10, 20] MeV is small, particularly for seven or
eight major oscillator shells. However, because the Coulomb
interaction is included perturbatively in all calculations, this
leads to a weak dependence on the oscillator energy when
we compare the binding energy difference between 15O and
15N and 17O and 17F. The not renormalized two-body Coulomb
contribution increases with increasing h̄� (to see this it suffices
to set up the Coulomb integral in a harmonic oscillator basis).
The reader should keep in mind that for every given oscillator
energy our results are converged at the level of N = 8 major
shells.

In Table II we display the dependence of the ground-state
energy on h̄� for N = 6 and N = 7 major shells for the nuclei
investigated here. Note that the A = 15 nuclei show less energy
dependence as a function of h̄� than their A = 17 coun-
terparts. We see from this Table that for six major shells
and h̄� = 14 MeV we have a binding energy difference
BE(15N)−BE(15O) = 3.326 MeV and BE(17O)−BE(17F)
= 3.290 MeV, to be compared with the experimental values
BE(15N)−BE(15O) = 3.537 MeV and BE(17O)−BE(17F)
= 3.542 MeV. We note that the BE(15N) − BE(15O) =
2.47 and 2.71 MeV in the N = 7, h̄� = 10 MeV, and
N = 8, h̄� = 11 MeV calculations, respectively. (Similar
results hold for the 17O, 17F binding energy difference.) This

TABLE IV. Dependence on h̄� of the excited state spectrum for
the N = 6 model space, computed with N3LO at the optimal values
of βCoM, which are βCoM = 0.05, 0.3, and 0.5, for h̄� = 10, 12.5, and
14 MeV, respectively.

Excited state h̄� = 11 h̄� = 12.5 h̄� = 14 Expt.

15O (3/2)−1 6.602 6.841 6.990 6.176
15N (3/2)−1 6.680 6.889 7.034 6.323
17O (3/2)+1 6.031 6.536 7.129 5.084
17O (1/2)+1 0.130 0.440 1.219 0.870
17F (3/2)+1 6.207 6.740 7.199 5.000
17F (1/2)+1 0.544 0.884 1.219 0.495

TABLE V. Dependence on h̄� of the excited state spectrum for
the N = 7 model space, computed with N3LO at the optimal values
of βCoM, which are βCoM = 0.05 for h̄� = 11 MeV and βCoM = 0.3
for h̄� = 14 MeV.

Excited state h̄� = 11 h̄� = 14 Expt.

15O (3/2)−1 6.166 6.668 6.176
15N (3/2)−1 6.256 6.703 6.323
17O (3/2)+1 5.489 6.419 5.084
17O (1/2)+1 −0.349 0.481 0.870
17F (3/2)+1 5.686 6.672 5.000
17F (1/2)+1 0.088 1.002 0.495

observable clearly shows that either we need to treat the
Coulomb as more than a perturbative quantity or that we
still have some way to go to obtain a total convergence with
oscillator space. The Coulomb energy difference is actually a
derivative quantity and so will be more difficult to converge
than the energies themselves. The charge radius for the ground
state of 16O, which is our reference system, also does not
change much. The charge radius for six major shells changes
from 2.647 to 2.572 fm for h̄� = 11 and 14 MeV, respectively.
For seven major shells, the result for h̄� = 14 MeV is
2.595 fm, indicating a good convergence of the underlying
CCSD calculations for 16O.

Except for our perturbative treatment of the Coulomb
interaction, our results indicate that the renormalization of
the short-range part of the nucleon-nucleon interaction with
the no-core G-matrix approach combined with the inclusion
of singly and doubly excited clusters and the corresponding
1p, 2p-1h, 1h, and 2h-1p excitations in the coupled-cluster
and PR-EOMCC/PA-EOMCC calculations for the valence
systems around 16O leads to reasonably well converged
ground-state energies of these systems. It is true that the
N3LO interaction model has a rather soft core, since it carries
a cutoff in relative momentum of  = 500 MeV. Thus, in
developing the effective two-body interaction based on N3LO
by diagonalizing the deuteron in an oscillator basis, one
obtains a converged result to six leading digits with 50 to
60 oscillator shells for h̄� ∈ [5, 50] MeV. For the CD-Bonn
and V18 interactions, one needs more than 100 major shells
to obtain a converged result for the deuteron. However, the
advantage of the G-matrix approach used in this work is that
we can renormalize the short-range part of the interaction
exactly, because the free part of the G matrix is computed in a
momentum basis first, with the relative momenta |p|∈[0,∞).
Thus, the renormalization problems of the short-range part of
the two-body interaction, seen, for example, in the no-core
approach [4], with a relatively slow convergence as a function
of the harmonic oscillator excitations, are not present here.
This means, in turn, that when we use this G matrix in coupled-
cluster calculations, the results for all modern nucleon-nucleon
potentials, such as N3LO, CD-Bonn, and V18 used here, are
converged for 16O within eight major shells, although some
slight h̄� dependence may remain.

As shown in Table I, our coupled-cluster calculations miss
the experimental binding energies (taken from Ref. [117]) by
approximately 0.8–0.9 MeV per nucleon for the A = 15 nuclei
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and by approximately 0.4–0.6 MeV per nucleon for the A = 16
and A = 17 systems. Several factors can contribute to these
differences, but we believe that the three-body interactions
are the primary source. It is true, for example, that we are
using the solution to a two-body problem (our G matrix)
as the starting point for defining a many-body Hamiltonian
with pairwise interactions for the A = 15–17 nuclei, and
it is known that a two-body interaction derived from the
diagonalization of a three-body problem is different from the
corresponding two-body interaction derived by diagonalizing
the two-body problem (e.g., deuteron) [4,118,119]. However,
as the size of the model space is increased, both two-body
interactions yield very similar results (see the discussion in
Ref. [118]). Because we use large model spaces with seven
or even eight major oscillator shells, the differences between
these two types of effective two-body interactions are minimal
and cannot, as such, contribute to the differences between
the coupled-cluster and experimental data observed in our
calculations.

We are missing some correlations in our coupled-cluster
calculations, which ignore, for example, T3 clusters in the
ground state calculations for 16O and 3p-2h and 3h-2p

components of R(A+1)
µ and R(A−1)

µ in the PR-EOMCC
and PA-EOMCC calculations for the 15- and 17-particle
nuclei. We earlier reported that for the 16O ground state (see
Refs. [38,40,41]) the T3 clusters bring in at most a total of
1 MeV (less than 0.1 MeV per nucleon) and cannot, therefore,
account for the observed differences between the binding
energies per nucleon.

We also see indications that the ground states in the 15O/15N
and 17O/17F systems are relatively stable as a function of
increasing model space size, although there is still some
h̄� dependence, particularly in the A = 17 systems. Part of
this dependence comes from our treatment of the Coulomb
interaction, but the one-particle ground states may be more
affected by higher-order correlations in which the 3p-2h terms
play a larger role. Experimentally, the one-particle states in the
A = 17 nuclei are more fragmented than the one-hole states
found in the A = 15 systems.

We can thus summarize this part of our discussion by
stating that much of the discrepancy between experiment and
theory observed in Table I may be ascribed to the missing
three-body interactions, which are not included in our effective
Hamiltonians. One advantage of the nuclear interaction models
based on effective field theory is that they allow for a
consistent derivation of three-body terms (see, for example,
Refs. [31,120]), and an exploration of such interactions in the
coupled-cluster context would be very interesting.

We end this subsection by tabulating the results of the PR-
EOMCCSD and PA-EOMCCSD calculations for the low-lying
excited states of 15O, 15N, 17O, and 17F obtained with the N3LO
potential (see Table III; the experimental data are taken from
Ref. [121]). Except for the (3/2)+1 resonance states in 17O
and 17F, the other states listed in Table III are expected to be
strongly dominated by one quasiparticle or quasihole states,
meaning that the inclusion of the 1p and 2p-1h excitations
in the PA-EOMCCSD calculations and the 1h and 2h-1p

correlations in the PR-EOMCCSD calculations should provide
a reasonable description of these states. This is confirmed in

Table III. The PR-EOMCCSD/N3LO results for the (3/2)−1
states of 15O and 15N, employing seven or eight major oscillator
shells, are particularly impressive, producing errors relative to
experiment that do not exceed 0.1 MeV. For the (1/2)+1 states
we note, however, that our results are not fully converged. This
could indicate that one may need more than 2p-1h excitations
in the particle-attaching operator used in the PA-EOMCC
calculations for these states as well.

In Tables IV and V we indicate the dependence of the
excited states on the oscillator energy h̄� for the N = 6
and N = 7 shell-model spaces, respectively. For N = 6, the
excited states of the A = 15 system change by approximately
0.4 MeV in the h̄� = 11–14 MeV window, whereas the A =
17 states change by approximately 0.7–1.1 MeV in the same
h̄� window. This would indicate a stronger dependence on h̄�

for the A = 17 nuclei than for the states in the A = 15 and
16O nuclei. We see a similar but decreasing dependence in the
N = 7 calculations, where we only performed the check at
h̄� = 14 MeV. The above tables demonstrate that at least for
the hole states we obtain results that stabilize as function of the
number of shells. For the excited states of 17O and 17F there
is still a relatively strong dependence on the number of shells
and h̄�. The (3/2)+1 states are known resonances and we do
therefore expect that our approximation at the PA-EOMCCSD
level may miss some important correlations in this case. This
seems to apply to the (1/2)+1 states as well.

Within a single-particle picture, the splitting between the
(3/2)−1 excited and (1/2)−1 ground states in 15O and 15N and
the splitting between the (3/2)+1 excited and (5/2)+1 ground
states in 17O and 17F should receive important contributions
from the nuclear spin-orbit force. It is interesting to analyze
to what extent the three-nucleon interactions may affect these
splittings. At least for hole states there is strong evidence
for this behavior, see Refs. [1,2]. The nucleon-nucleon in-
teraction contains a short-range spin-orbit force, which in a
meson-exchange model picture originates from heavier vector
mesons. Several partial waves receive significant contribu-
tions from the two-body spin-orbit force. For example, the
3P2 partial wave, crucial for the pairing properties in nuclei and
neutron star matter, yields an attractive interaction up to almost
1 GeV in laboratory energy for the two-nucleon scattering.
This attraction arises from the two-body spin-orbit force,
because both the central and tensor force contributions are
repulsive. Within the framework of many-body perturbation
theory, the largest contribution to the spin-orbit force arises
from the first-order Hartree-Fock diagram. Indeed, for the
N3LO model used here and for an oscillator energy h̄� =
14 MeV, we obtain an excitation energy of 5.412 MeV for
the 0p3/2 state of 15O, in reasonable agreement with the
experimental and coupled-cluster data in Table III [122]. At
the Hartree-Fock diagram level, the origin of the spin-orbit
splitting comes then from the renormalization of the short
range two-body spin-orbit force. The nuclear tensor force gives
also, as a second- and higher-order process, a contribution
to the single-particle spin-orbit splitting (see the detailed
discussion in Ref. [2] for further information). The authors of
Ref. [2] show how the second-order diagrams in many-body
perturbation theory with the 2h-1p and 2p-1h intermediate
states yield repulsive and attractive contributions to the single-
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particle energies, respectively. Depending on the strength of
the nuclear tensor force, the spin-orbit splittings can then be
enhanced or reduced. If the tensor force is weak, as is the
case for the N3LO model, the reduced higher-order quenching
of the tensor force terms enhances the spin-orbit splitting
with respect to the Hartree-Fock diagram. Anticipating the
discussion in Sec. III C, potentials with a stronger tensor
force, such as the V18 model of the Argonne group [28],
result in a smaller spin-orbit splitting than the N3LO model
[and a reduction in the (3/2)−1 − (1/2)−1 and (3/2)+1 − (5/2)+1
spacings in the 15O/15N and 17O/17F nuclei, respectively].
The authors of Refs. [1,2] demonstrated then that a two-pion
three-nucleon interaction also contributes to the spin-orbit
splitting. With the inclusion of such a term, Pieper and
Pandharipande [1], reproduced very well the (3/2)−1 − (1/2)−1
splitting in 15N. These findings were later corroborated by
Heisenberg and Mihaila in their coupled-cluster calculations
with three-body interactions for 16O (see Refs. [32–35] and
the discussion in the next subsection as well). The fact that
we reproduce very well the experimental (3/2)−1 − (1/2)−1
spin-orbit splittings in 15N and 15O with the pairwise N3LO
model may indicate that the spin-orbit force associated with
an eventual three-body force for N3LO should be small. This
may be an important finding for our understanding of the role
of three-body forces in nuclear structure calculations. Whether
this conclusion pertains to spectra of open-shell nuclei as well
is worth further study. The no-core shell-model calculations
of Ref. [4] for 6Li and 10Be with the N3LO interaction with
pertinent three-body interactions indicate larger three-body
contributions.

In Sec. III C, we present results for the binding energies
and spectra of the 15N and 15O nuclei and their 17F and 17O
counterparts using the CD-Bonn [29] and the Argonne V18

[28] interaction models as well in order to see how much
the effects due to three-body interactions may depend on the
underlying two-body forces. However, before we proceed, let
us discuss interesting consequences of our PR-EOMCCSD
and PA-EOMCCSD calculations for 15N, 15O, 17F, and 17O for
the nuclear structure studies of the excited states of 16O.

B. Consequences of the PR-EOMCCSD and PA-EOMCCSD
calculations for the valence systems around 16O for the

studies of excitations in 16O

Based on the N3LO results discussed in the previous
subsection, we attempt to link our findings to nuclear structure
studies of the excitations in 16O. The fact that we obtain nearly
converged results for a given two-body Hamiltonian allows
us to infer that eventual disagreements with experiment in the
results of ab initio calculations for excited states of 16O can
very likely be retraced to the degrees of freedom that are not
included in the existing two-body Hamiltonians.

Here we discuss the excited states of 16O with an expected
1p-1h structure. In our calculations, the lowest-lying excited
state of 16O is of a 1p-1h character. We can therefore
rule out α-cluster correlations. Such states appear at higher
excitation energies in our calculations. In Ref. [38], we
obtained converged results for the lowest-lying 3−

1 state of

16O. For the N3LO interaction, we have an excitation energy
of about 12 MeV, almost 6 MeV above the experimental value
of 6.13 MeV. We have checked in N = 7 shells that the
excitation energy changes from 12.61 at h̄� = 10 MeV to
12.5 MeV at h̄� = 14 MeV. The excited states of 16O we
have studied are almost independent of the oscillator energy
at N = 8 shells.

The low-lying excited states of 16O and, in general, states
that involve cross-shell excitations have always eluded a proper
microscopic description (see, for example, Refs. [123–128]
and references therein). Let us concentrate on the lowest-
energy 3−

1 state of 16O. In a zero-order approximation, this state
may be regarded as a state that arises from the single i → a

excitation from the i = 0p1/2 hole state to the a = 0d5/2

particle state. Relative to the 16O ground state, the energy
required to produce such an excitation equals


επ = επ (0d5/2) − επ (0p1/2)

= [BE(16O) − BE(17F)] + [BE(16O) − BE(15N)]

= 11.526 MeV, (42)

for the proton case, and


εν = εν(0d5/2) − εν(0p1/2)

= [BE(16O) − BE(17O)] + [BE(16O) − BE(15O)]

= 11.521 MeV, (43)

for the neutron case, where the acronym BE in the above
equations represents the relevant total binding energies. In
calculating the above values of the 1p-1h excitation energies

επ and 
εν that provide us with the zero-order estimates of
the excitation energy of the lowest 3−

1 state of 16O, we used
the experimental binding energies listed in Table I. As we can
see from Eqs. (42) and (43), the proton and neutron excitation
energies are nearly identical. This reflects a well-known feature
of spin-isospin saturated systems. Without interactions among
nucleons and with the above single-particle orbits used as the
only active degrees of freedom, all negative parity states with
quantum numbers Jπ = 2−, 3− would be at the above energies
of approximately 11.5 MeV. The interactions among nucleons
lower the energy of the first excited 3− state by 11.5 − 6.1 =
5.4 MeV.

Let us now compare the approximate energy spacing
defining the lowest 3− state of 16O, resulting from the use of
experimental binding energies, as shown above (11.5 MeV),
with the values of 
επ and 
εν based on the results of
coupled-cluster calculations for the binding energies of 16O
and valence systems around 16O obtained with the N3LO
interaction and eight major oscillator shells. These results
are 
επ = 15.846 MeV and 
εν = 15.789 MeV, for proton
and neutron excitations, respectively, with almost the same
difference between the proton and neutron cases as observed
in experiment. The authors of Ref. [110] obtained 14.72
and 14.64 MeV for protons and neutrons, respectively, using
the same N3LO interaction as used here. Using the above
elementary picture of the 1p-1h excitation defining the lowest
3− state of 16O, which involves only two orbits in the
definition of the relevant model space, we can see that we
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are off by approximately 15.8 − 11.5 = 4.3 MeV, when we
compare the 
επ and 
εν energy spacings resulting from
coupled-cluster calculations with the experimental estimates
of these spacings. This difference is obviously an interaction-
and method-dependent result. It is, however, converged as
a function of the number of oscillator shells in a basis set,
showing that the discrepancy of 4.3 MeV between theory and
experiment for the energy gap between the 0p and 1s0d shells
accounts for a large fraction of the missing 6 MeV needed
to reproduce the first 3− state of 16O. This is, perhaps, the
most likely candidate for a consistent explanation of the large
difference between converged coupled-cluster result for the
lowest 3− state of 16O and experiment reported in Ref. [38].
This conclusion is not substantially altered by the slight h̄�

dependence within the calculations.
The above analysis indicates that a large fraction of the

difference between theory and experiment can be traced in this
case to errors in reproducing the experimental binding energies
of 16O and valence systems around 16O by coupled-cluster
methods employing pairwise interactions only. This allows us
to conclude that a 6 MeV difference between coupled-cluster
result and experiment for the lowest 3− state of 16O is
primarily caused by the lack of three-body interactions in
our calculations and much less by the approximate treatment
of particle correlations by the coupled-cluster methods used
in our studies. The above analysis also implies that with
an adjusted gap between the 0p and 1s0d shells, one
should be able to get a better reproduction of the excited
states of 16O which have a well-defined 1p-1h structure,
such as the lowest 3− state discussed here. One possible
strategy for describing excited states of closed-shell nuclei
dominated by 1p-1h excitations might be to keep the original
two-body Hamiltonian and add additional three-body terms
via corrections to the single-particle energies, as advocated
recently by Zuker [129,130].

C. Comparisons among different interaction models

The binding energies per particle for the three interaction
models examined in this work, namely N3LO, CD-Bonn,
and V18, are listed in Table VI. We show only the results
obtained with eight major oscillator shells, because conver-
gence patterns with the number of major oscillator shells that
characterize the N3LO, CD-Bonn, and V18 interactions are
practically identical.

As expected, the CD-Bonn interaction gives more attraction
than N3LO, whereas the Argonne V18 interaction model yields
less attraction than the other two models. The CD-Bonn
potential has the weakest tensor force of the three interactions
studied here, whereas the V18 interaction has the strongest
tensor force component. It is well-known that an interaction
model with a weak tensor force yields less quenching in
the medium for the important 3S1 and 3D1 partial wave
contributions to various matrix elements of the Hamiltonian.
The quenching is ascribed to both a Pauli effect and an energy
dependence reflected in second- and higher-order terms (see,
for example, Ref. [6] for a discussion of this topic in both
nuclei and nuclear matter). Although all interaction models fit

TABLE VI. A comparison of the binding energies per particle for
15O and 15N (the PR-EOMCCSD values), 16O (the CCSD values),
and 17O and 17F (the PA-EOMCCSD values), obtained with the
N3LO [31], CD-Bonn [29], and V18 [28] potentials, and eight major
oscillator shells, with the experimental data taken from Ref. [117].
All entries are in MeV. For the CD-Bonn and N3LO interactions,
we used h̄� = 11 MeV. For V18, we used h̄� = 10 MeV. For eight
major shells βCoM = 0.0.

Nucleus Interaction Expt.

N3LO CD-Bonn V18

15O 6.643 7.584 5.246 7.464
15N 6.824 7.751 5.414 7.699
16O 7.406 8.327 5.897 7.976
17O 7.150 8.032 5.617 7.751
17F 6.987 7.879 5.462 7.542

properties of the deuteron and the scattering data with a χ2 per
datum close to 1, the nonlocalities that are introduced because
of the way the interactions are constructed are responsible for
different results in a many-body context. Indeed, the N3LO
and CD-Bonn models are nonlocal interactions defined in
momentum space. While the N3LO model is based on chiral
Lagrangians with nucleons and pions as degrees of freedom,
including the noniterative 2π diagrams at chiral fourth order,
the CD-Bonn interaction is a traditional meson-exchange
model that includes the six low-mass mesons π, δ, ρ,�, η

and the fictitious σ meson, which is a 2π resonance. The
Argonne V18 model is based on a local r-space parametrization,
dominated by one-pion exchange. The strength of the nuclear
tensor force is intimately connected with the nonlocalities of
the different nucleon-nucleon forces. Depending on how it is
quenched in a many-body context, one may get less or more
attraction. The attractive part of, for example, the 3S1 partial
wave contribution is more attractive in the medium for an
interaction with a weak tensor than for one with a strong tensor
force. Such features are clearly seen in the coupled-cluster
results reported in Table VI, where the potential with the
weakest tensor force, CD-Bonn, yields more binding than the
two other models. Our results for the CD-Bonn interaction
show more binding than the calculations of Fujii et al. [110].

Based on our earlier work [38], the triply excited clusters
and the related 3p-2h and 3h-2p excitations in the particle-
attaching and particle-removing R(A+1)

µ and R(A−1)
µ operators

of the PA-EOMCC and PR-EOMCC theories are expected
to have little impact on the calculated binding energies.
Horoi et al. [131] show that for 4He and up to seven major
shells, the coupled-cluster method agrees excellently (to within
0.1 MeV; often much better) with shell-model calculations and
that corrections to the total binding energy due to T3 clusters
are on the order of 1 MeV or less (see Ref. [37] for similar
findings for smaller basis sets). Furthermore, the results with a
G-matrix applied to a shell-model calculation with eight major
shells exhibit a vanishing starting energy dependence [131].
We claim therefore that, except for a small correction due to
triples and a weak starting energy dependence [38], the lack of
agreement between coupled-cluster and experimental binding
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energies is primarily because of the missing physics in our
Hamiltonians.

The main conclusion that one can derive from the results
of our coupled-cluster calculations with different interactions
is that every nucleon-nucleon interaction model needs its
own three-body potential. The Argonne group has derived
sophisticated three-body interaction terms (see, for example,
the extensive elaboration of Ref. [132]). The parameters
entering their three-body interaction models are fitted to
reproduce properties of light nuclei. These three-body terms
follow much of the same pion-exchange picture adopted in
the construction of the Argonne V18 interaction. For the
CD-Bonn interaction one would need to derive three-body
terms based on a meson-exchange picture, as outlined, for
example, by the Bochum group [133]. However, no such model
that accompanies this interaction has been fully developed.
The situation for models based on effective field theory is
much better as three-body terms arise quite naturally at given
orders in the expansion parameter [120]. Our coupled-cluster
results indicate that every interaction, because of different
nonlocalities, has its own three-body component reflected in
different binding energies and different spin-orbit splittings
[the (3/2)−1 − (1/2)−1 spacings in 15O and 15N and the
(3/2)+1 − (5/2)+1 spacings in 17O and 17F], as demonstrated
in Table VI, which lists binding energies per nucleon, and
Table VII, which lists the corresponding low-lying excited
states of the valence systems around 16O examined in this
work.

As shown in Table VII, the CD-Bonn and the N3LO models
result in the largest spin-orbit splittings (much larger than in
the case of V18). To examine this behavior in some detail,
we have computed all diagrams through third order in the
G matrix for h̄� = 14 MeV, using many-body perturbation
theory as described in Ref. [6], including folded diagrams to
infinite order. For example, at the Hartree-Fock level, which
corresponds to the first order in the G matrix, the spin-orbit
splittings for neutrons between the two hole states in the

TABLE VII. A comparison of the energies of the low-lying
excited states of 15O, 15N, 17O, and 17F, relative to the corresponding
ground-state energies [the (1/2)−1 states of 15O and 15N and the
(5/2)+1 states of 17O and 17F], obtained with the PR-EOMCCSD (15O
and 15N) and PA-EOMCCSD (17O and 17F) methods, the N3LO [31],
CD-Bonn [29], and V18 [28] potentials, and eight major oscillator
shells, with the experimental data taken from Ref. [121]. All entries
are in MeV. For the CD-Bonn and N3LO interactions, we used
h̄� = 11 MeV. For V18, we used h̄� = 10 MeV. For eight major
shells βCoM = 0.0.

Excited state Interaction Expt.

N3LO CD-Bonn V18

15O (3/2)−1 6.264 7.351 4.452 6.176
15N (3/2)−1 6.318 7.443 4.499 6.323
17O (3/2)+1 5.675 6.406 3.946 5.084
17O (1/2)+1 −0.025 0.311 −0.390 0.870
17F (3/2)+1 5.891 6.677 4.163 5.000
17F (1/2)+1 0.428 0.805 0.062 0.495

0p shell are 4.85, 4.41, and 3.91 MeV for the CD-Bonn, N3LO,
and V18 interaction models, respectively. Because we are deal-
ing with spin-isospin saturated systems, the results for protons
are almost the same. The Hartree-Fock term yields the largest
contribution and receives important contributions from the
short-range two-body spin-orbit force. However, there is also
a considerable contribution to the splitting that originates from
the second-order 2h-1p and 2p-1h terms. The corresponding
second-order contributions are 1.81, 1.73, and 1.35 MeV for
the same three interactions, respectively. These perturbation
theory estimates agree with the ways the (3/2)−1 − (1/2)−1
spacings in 15O and 15N and the (3/2)+1 − (5/2)+1 spacings in
17O and 17F, obtained in the corresponding PR-EOMCCSD
and PA-EOMCCSD calculations, vary with the interaction.
This analysis illustrates, at least to some extent, the role
played by the quenching of the tensor force via the second-
and higher-order terms in many-body perturbation theory in
different interaction models. The perturbative results do not
stabilize, however, as functions of the oscillator energy, a result
that is in close agreement with the findings reported by Fujii
et al. [110]. With increasing h̄�, the single-particle splittings
increase if one uses an unperturbed harmonic oscillator basis.
This is mostly because of the way we treat the Coulomb
interaction, as discussed above.

It is interesting to note that despite the apparent differences
between the coupled-cluster results obtained with different
pairwise interaction models, the relative binding energies of
15O, 15N, 16O, 17O, and 17F obtained with different interactions
are in good agreement with experiment and with each other.
For example, as already mentioned the difference between
experimental binding energies of 16O and 17O is 0.225 MeV per
particle. The CCSD and PA-EOMCCSD ground-state energies
in Table VI of 16O and 17O resulting from the calculations
with eight major oscillator shells differ by 0.256 MeV per
particle for N3LO, 0.295 MeV per particle for CD-Bonn,
and 0.280 MeV per particle for V18. Similarly, the difference
between experimental binding energies of 16O and 15O is
0.512 MeV per particle, whereas the CCSD and PR-
EOMCCSD ground-state energies of 16O and 15O differ by
0.763, 0.743, and 0.651 MeV per particle for the N3LO, CD-
Bonn, and V18 potentials, respectively. Here the differences
with experiment are somewhat greater than in the case of 16O
and 17O, but the overall agreement among different potentials
is still good. The differences between the binding energies for
the A = 15 nuclei and for the A = 17 nuclei obtained with
different interactions are close to one another and to the exper-
imental values, too. According to Table VI, the experimental
value of the binding energy difference BE(15N)−BE(15O) is
0.235 MeV per particle. The PR-EOMCCSD calculations
with the N3LO, CD-Bonn, and V18 interactions give 0.181,
0.167, and 0.168 MeV per particle, respectively, for the
same binding energy difference. Similarly, the experimental
value of the binding energy difference BE(17O)−BE(17F) is
0.209 MeV per particle. The PA-EOMCCSD calculations with
the N3LO, CD-Bonn, and V18 potentials give 0.163, 0.153,
and 0.155 MeV per particle, respectively, for the same binding
energy difference. Despite the substantial differences between
binding energies resulting from the calculations with different
interactions, which are likely affected by the three-body forces
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that are expected to be different for different pairwise interac-
tions, the binding energies per nucleon resulting from our PR-
EOMCCSD/CCSD/PA-EOMCCSD calculations with eight
major oscillator shells satisfy 15O < 15N < 17F < 17O < 16O,
independent of the interaction used in coupled-cluster calcu-
lations.

IV. CONCLUSIONS AND PERSPECTIVES

We summarize here our main conclusions and perspectives
for future studies.

(i) To our knowledge, this is the first application of the
ab initio coupled-cluster theory employing the renor-
malized form of the Hamiltonian, combined with the
PA-EOMCC and PR-EOMCC formalisms for open-shell
many-fermion systems, to nuclear valence systems with
one valence particle or one valence hole. We have shown
that one can obtain reasonably well converged results
with given two-body Hamiltonians for both binding
energies and at least some low-lying excited states.
The systems whose properties have been studied in this
work were 15O, 15N, 17O, and 17F. An emphasis has
been placed on states dominated by one-quasiparticle
configurations. The discrepancies between the results
of large-scale coupled-cluster calculations for these
nuclei and the corresponding experimental data for such
states have been traced to the Hamiltonians used in the
calculations and much less to the correlations neglected
in the coupled-cluster approximations employed in this
study, such as triples corrections. These corrections
are, however, small, as demonstrated in comparisons
with shell-model calculations using the same Hamil-
tonian [37,131]. The calculations of Horoi et al. [131]
demonstrate also that the starting energy dependence
is very weak for eight major shells. For the excited
valence particle states there is, however, experimental
and theoretical indication that these states may couple
to more complicated correlations than those included
at the PA-EOMCCSD level. Furthermore, while our
ground-state energies stabilize as functions of the size
of the model space and the chosen oscillator energy, our
Coulomb energy differences depend still on the oscillator
energy.

(ii) Three different nucleon-nucleon interactions have been
used to define our two-body Hamiltonians. These are
the N3LO model [31], the CD-Bonn interaction [29],
and the V18 model of the Argonne group [28]. All of
these interactions yield different binding energies and
different energies of the excited states. The different
binding energies and spin-orbit splittings can be related
to varying nonlocalities in the nucleon-nucleon interac-
tions. Of particular interest here has been the role played
by the nuclear tensor force. The different behavior of the
three interaction models examined in this study points
to the need for the development of interaction specific
three-body forces.

(iii) We have also demonstrated that most of the discrepancy
between theory and experiment for the 1p-1h negative

parity states in 16O, including the lowest 3−
1 state

examined in our earlier work [38], can be retraced to
the difference between the theoretical and experimental
values of the relevant energy gaps between neutron or
proton states in the 0p and 1s0d shells.

(iv) Despite the differences among interactions, the relative
binding energies of the 15O,15N,17F,17O, and 16O re-
sulting from the coupled-cluster calculations seem to be
independent of the interaction and in good agreement
with experiment. The (3/2)−1 − (1/2)−1 spacings in 15O
and 15N resulting from the converged coupled-cluster
calculations with the N3LO interaction are in good
agreement with experiment, indicating that the spin-orbit
force associated with an eventual three-body force for
N3LO should be small.

There are several obvious extensions to this work. First of
all, the need for an inclusion of three-body interactions sets
the agenda for forthcoming studies. Moreover, our Coulomb
energy differences need further studies and it may be useful
to examine the role of 3p-2h and 3h-2p correlations in
the PA-EOMCC and PR-EOMCC calculations, which we
neglected in this study. For the hole states considered here,
3h-2p correlations are expected to be small, because the
states of 15O and 15N that we have examined show relatively
small departures from an independent-particle picture and
because the underlying T3 cluster contributions that define
the reference 16O system are small [37,38,131]. However, the
3p-2h correlations may be important for the excited valence
particles of 17F and 17O. There we have also tacitly assumed
that the 0d3/2 states of 17F and 17O are bound states. These
states are resonances, and it is not yet entirely clear how the
nonresonant continuum may affect the description of these
states. The inclusion of such contributions in the description
of these states is another important point to explore, as
demonstrated in the recent works on the Gamow shell-model
and complex-scaling techniques [134–136].
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APPENDIX: FACTORIZED FORM OF THE CCSD,
PA-EOMCCSD, AND PR-EOMCCSD EQUATIONS

In this appendix, we present the working equations defining
the CCSD, PA-EOMCCSD, and PR-EOMCCSD methods ex-
ploited in this study. All of the equations are expressed in terms
of the one- and two-body matrix elements of the Hamiltonian
in the normal-ordered form, f β

α and v
γ δ

αβ , respectively [cf.

Eq. (5); in our case, f β
α and v

γ δ

αβ are the one- and two-body
matrix elements of the normal-ordered form of the effective
Hamiltonian H, Eq. (4)], the t ia and t

ij

ab cluster amplitudes defin-
ing the underlying A-particle ground-state CCSD problem,
and, in the case of the PA-EOMCCSD and PR-EOMCCSD
approaches, the ra, r

j

ab, r
i , and r

ij

b amplitudes defining the
particle-attaching (ra and r

j

ab) and particle-removing (ri and
r

ij

b ) operators, R(A+1)
µ (2p-1h) and R(A−1)

µ (2h-1p), Eqs. (33)
and (34), respectively. As explained in Sec. II D, the CCSD,
PA-EOMCCSD, and PR-EOMCCSD equations can be cast
into a computationally efficient factorized form expressed in
terms of the one- and two-body matrix elements of the CCSD
similarity-transformed Hamiltonian H̄N,open(CCSD), h̄

β

α and

h̄
γ δ

αβ , respectively, and a few additional intermediates that
are generated in a recursive manner. The complete set of
one- and two-body matrix elements of H̄N,open(CCSD) and
other intermediates that are needed to set up the CCSD,
PA-EOMCCSD, and PR-EOMCCSD equations is given in
Table VIII.

The ground-state CCSD equations for the singly and doubly
excited cluster amplitudes t ia and t

ij

ab, Eqs. (24) and (25), can
be given the following, computationally efficient form:

h̄
i

a ≡ f i
a + I

′e
a t ie − h̄

i

mtma − vie
mat

m
e + h̄

e

mtmi
ea − 1

2 h̄
ie

mnt
mn
ae

+ 1
2vef

amt imef = 0, (A1)

h̄
ij

ab ≡ v
ij

ab + AabAij
[

1
2I ie

abt
j
e − 1

2I
ij

mbt
m
a + 1

2I e
b t

ij
ae

+ 1
8v

ef

abt
ij

ef + 1
8 h̄

ij

mnt
mn
ab − I ie

mbt
mj
ae − 1

2 h̄
j

mt imab

]
= 0.

(A2)

Note that the left-hand sides of Eqs. (24) and (25) [or
Eqs. (A1) and (A2)] represent, respectively, the one- and
two-body matrix elements h̄

i

a and h̄
ij

ab of H̄N (CCSD) [see
Eqs. (15) and (16)]. The relevant intermediates can be found
in Table VIII. The antisymmetrizers Apq = Apq , which enter
Eq. (A2) and other equations presented in this Appendix, are
defined as

Apq ≡ Apq = 1 − (pq), (A3)

with (pq) representing a transposition of two indices. Once
the above equations are solved for t ia and t

ij

ab, the ground-state
CCSD energy is calculated using the formula [cf. Eq. (23)]

E
(A)
0 (M) = 〈�|H |�〉 + f a

i t ia + 1
4vab

ij

(
t
ij

ab + 2t iat
j

b

)
, (A4)

which is valid for any truncation scheme M � 2.

Once the t ia and t
ij

ab amplitudes are determined and the
ground-state CCSD energy of the reference A-body system
is known, we can set up and solve the eigenvalue equations
defining the PA-EOMCCSD and PR-EOMCCSD methods.
The PA-EOMCCSD equations for the energy differences
ω(A+1)

µ = E(A+1)
µ − E

(A)
0 and the 1p and 2p-1h amplitudes,

ra and r
j

ab, respectively, defining the ground and excited states
of the (A + 1)-particle system, can be given the following,

TABLE VIII. Explicit algebraic expressions for the one- and two-
body matrix elements of H̄N,open(CCSD)(h̄

β

α and h̄
γ δ

αβ , respectively)
and other intermediates (designated by I) used to construct the
computationally efficient form of the CCSD, PA-EOMCCSD, and
PR-EOMCCSD equations.

Intermediate Expressiona

h̄
a

i f a
i + vae

imtm
e

h̄
j

i f
j

i + v
je

imtm
e + 1

2 v
ef

mi t
mj

ef + h̄
e

i t
j
e

h̄
b

a I b
a − h̄

b

mtm
a

h̄
bc

ai vbc
ai − vbc

mi t
m
a

h̄
ka

ij vka
ij + vea

ij t k
e

h̄
cd

ab vcd
ab + 1

2 vcd
mnt

mn
ab − h̄

cd

amtm
b + vcd

bmtm
a

h̄
kl

ij vkl
ij + 1

2 v
ef

ij t kl
ef − h̄

le

ij t
k
e + vke

ij t l
e

h̄
jb

ia I
′jb

ia − veb
imtjm

ea − h̄
jb

imtm
a

h̄
ic

ab vic
ab + vec

abt
i
e − h̄

ic

mbt
m
a + I

′ic
mat

m
b

−h̄
c

mt im
ab +h̄

ce

bmt im
ae −vce

amt im
be + 1

2 h̄
ic

nmtnm
ab

h̄
jk

ia v
jk

ia + h̄
jk

mi t
m
a − vke

ia t j
e + Ajkh̄

je

imtkm
ae

+h̄
e

i t
jk
ea + I

′je

ia t k
e − 1

2 v
ef

ai t
jk

ef

I
′b
a f b

a + vbe
amtm

e

I b
a I

′b
a − 1

2 veb
mnt

mn
ea

I ic
ab vic

ab + vec
abt

i
e + vec

mbt
im
ae

I
jk

ia h̄
jk

ia − 1
2 h̄

jk

mi t
m
a

I
jb

ia − 1
2 veb

imtjm
ea

I
′jb

ia v
jb

ia + veb
ia t j

e

Im
1
2 vef

mnr
n
ef

I e − 1
2 vef

mnr
mn
f

aSummation over repeated upper and lower indices is assumed. f β
α =

〈α|f |β〉 and v
γ δ

αβ = 〈αβ|v|γ δ〉 − 〈αβ|v|δγ 〉 are the one- and two-
body matrix elements of the Hamiltonian in the normal-ordered form,
Eq. (5) and the t i

a and t
ij

ab are the singly and doubly excited cluster
amplitudes defining the ground-state CCSD wave function of the
A-body reference system.
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computationally efficient, form:

〈�a|[H̄N,open(CCSD)R(A+1)
µ (2p-1h)

]
C
|�〉

= h̄
e

are + h̄
e

mrm
ae + 1

2 h̄
ef

amrm
ef = ω(A+1)

µ ra, (A5)

〈�ab
j |[H̄N,open(CCSD)R(A+1)

µ (2p-1h)
]
C
|�〉

= Aab

[ − 1
2 h̄

je

abre + h̄
e

ar
j

eb − 1
2 h̄

j

mrm
ab

+ 1
4 h̄

ef

abr
j

ef − h̄
je

mar
m
eb − 1

2Imt
mj

ab

] = ω(A+1)
µ r

j

ab. (A6)

Similarly, we can use the CCSD values of the singly
and doubly excited cluster amplitudes defining the ground-
state wave function of the reference A-body system to set
up the PR-EOMCCSD eigenvalue equations for the energy
differences ω(A−1)

µ = E(A−1)
µ − E

(A)
0 and the 1h and 2h-1p

amplitudes, ri and r
ij

b , respectively, defining the ground and
excited states of the (A − 1)-particle system. The computa-
tionally efficient form of the PR-EOMCCSD equations is as
follows:

〈�i |
[
H̄N,open(CCSD)R(A−1)

µ (2h-1p)
]
C
|�〉

= − h̄
i

mrm + h̄
e

mrim
e − 1

2 h̄
ie

mnr
mn
e = ω(A−1)

µ ri, (A7)

〈� b
ij |[H̄N,open(CCSD)R(A−1)

µ (2h-1p)
]
C
|�〉

= Aij
[ − 1

2 h̄
ij

mbr
m − h̄

i

mr
mj

b + 1
2 h̄

e

br
ij
e + 1

4 h̄
ij

mnr
mn
b

− h̄
ie

mbr
mj
e + 1

2I et
ij

eb

] = ω(A−1)
µ r

ij

b . (A8)
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[4] P. Navrátil and W. E. Ormand, Phys. Rev. C 68, 034305 (2003);

Phys. Rev. Lett. 88, 152502 (2002); P. Navrátil and E. Caurier,
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