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The (t,3He) and (3He, t) reactions as probes of Gamow-Teller strength
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It is shown via a study on a 26Mg target that the (t,3He) reaction at 115 MeV/nucleon reaction is an accurate
probe for extracting Gamow-Teller transition strengths. To do so, the data are complemented by results from
the 26Mg(3He, t) reaction at 140 MeV/nucleon that allows for a comparison of T = 2 analog states excited
via the mirror reactions. Extracted Gamow-Teller strengths from 26Mg(t,3He) and 26Mg(3He, t) are compared
with those from 26Mg(d,2He) and 26Mg(p, n) studies, respectively. A good correspondence is found, indicating
probe independence of the strength extraction. Furthermore, we test shell-model calculations using the new
USD-05B interaction in the sd-model space and show that it reproduces the experimental Gamow-Teller strength
distributions well. In anticipation of further (t,3He) experiments on medium-heavy nuclei aimed at determining
weak-interaction rates of relevance for stellar evolution, a second goal of this work is to improve the understanding
of the (t,3He) and (3He, t) reaction mechanisms at intermediate energies because detailed studies are scarce. The
distorted-wave Born approximation is employed, taking into account the composite structures of the 3He and triton
particles. The reaction model provides the means to explain systematic uncertainties at the 10%–20% level in the
extraction of Gamow-Teller strengths as being because of interference between Gamow-Teller �L = 0, �S = 1
and �L = 2, �S = 1 amplitudes that both contribute to transitions from 0+ to 1+ states.
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I. INTRODUCTION

Charge-exchange reactions have long been used to study
the spin-isospin response in nuclei. They transform a neutron
(proton) into a proton (neutron) (change in isospin �T = 1),
either with or without spin transfer (�S = 1 or �S = 0). In
particular, Gamow-Teller (GT) transitions (�T = 1, �S = 1,
and angular momentum transfer �L = 0) have been the
subject of extensive studies. These transitions are mediated

through the στ± operator and connect the same initial and
final states as β± decays. Weak interaction rates [via electron
capture (EC) and β decay] are pivotal in understanding the late
evolution of stars [1–8]. Because β-decay has access to states
only in a very limited energy window and direct measurements
with neutrinos of the full response are difficult because of
the weakness of the interaction, charge-exchange reactions
with hadronic probes are the preferred tool for mapping the
Gamow-Teller response.
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Here, we present results for extracting Gamow-Teller
strengths in the (n, p) direction using a new tool: the (t,3He)
reaction at 115 MeV/nucleon using a beam of secondary
triton particles at the National Superconducting Cyclotron
Laboratory (NSCL). In preparation for experiments on target
nuclei of importance in stellar evolution (pf and sdg-shell
nuclei), we chose a lighter target, 26Mg, for which the
structure is well known and thus allows for a detailed study of
strength-extraction techniques. The 26Mg(t,3He)26Na data are
combined with results from a 26Mg(3He, t)26Al experiment
at 140 MeV/nucleon, performed at the Research Center for
Nuclear Physics (RCNP). Comparing transitions to analog
(T = 2) states excited in 26Na and 26Al provide a means
for checking consistency under the assumption of isospin
symmetry. In addition, 26Mg(d,2He) [9,10] and 26Mg(p, n)
[11] data are available, allowing for a comparison with results
from 26Mg(t,3He) and 26Mg(3He, t), respectively, and thus
providing insight about the probe dependence of the strength
extraction.

Detailed studies of the mechanism of the (3He, t) and
(t,3He) reactions at energies ∼120–140 MeV/nucleon are rare
[12,13]. A good understanding is important, however. If states
excited via Gamow-Teller transitions cannot be separated from
states of different multipolarity a multipole decomposition
analysis (MDA) most be performed to disentangle the Gamow-
Teller contribution. The MDA relies on the reliable prediction
of angular distributions in the reaction models. Second, to
estimate systematic errors in the extraction of the Gamow-
Teller strengths the reaction model must incorporate the
leading cause(s) for such uncertainties. Therefore, a significant
portion of this paper deals with the development of treatment
of the (3He, t) and (t,3He) reactions in the distorted wave Born
approximation (DWBA). The 26Mg(3He, t) data set contains
many clearly separated states of varying multipolarities and
thus provides an ideal testing ground for the calculations and
the ability to describe the angular distributions and estimate
systematic errors in the extraction of Gamow-Teller strength.

A variety of reactions have been applied to the determina-
tion of Gamow-Teller strengths [B(GT) [14–16], here defined
so that B(GT) = 3 for the decay of a free neutron]. System-
atic studies of Gamow-Teller strength were first performed
at Indiana University Cyclotron Facility (IUCF) (see, e.g.,
Refs. [17–20]) using the �Tx = −1 (p, n) reaction (Tz is
the z component of the isospin). At sufficiently high beam
energies (∼100 MeV and higher), the forward-angle cross
section is dominated by the στ component of the effective
interaction [21,22] that mediates Gamow-Teller transitions and
a proportionality between cross sections at zero-momentum
transfer and Gamow-Teller strength was established [23].
Resolutions vary from about 200 keV for proton energies
of 120 MeV to 0.65–1.9 MeV at proton energies of several
hundred MeV ([15] and references therein, [24]). The (n, p)
reaction was subsequently used to extract Gamow-Teller
strength distributions in the inverse direction [25,26]. The
resolutions that can be obtained with (n, p) reactions are
∼1 MeV. For tests of theoretically predicted Gamow-Teller
strength distributions of importance for stellar evolution, data
with better resolution are important because the electron-
capture rates in the stellar environment are sensitive to the

details of the low-lying transitions [27]. Therefore, probes
to extract these strengths with better resolution have been
developed.

An alternative to the (n, p) reaction is the (d,2He) reaction.
Experiments have been performed at RIKEN [28], Texas
A&M [9], and KVI [29], where the best resolutions have
been achieved [∼130 keV at E(d) = 85 MeV/nucleon]. By
selecting small relative energies of the outgoing protons
in the unbound 2He system, enhanced selectivity for spin-
transfer transitions is achieved [30,31]. The (d,2He) reaction
has been used to extract Gamow-Teller distributions in a
variety of nuclei [32,33] focusing on cases of importance for
astrophysical applications.

The (3He, t) reaction has been used extensively to probe
the spin-isospin response in nuclei. Experiments have been
performed at a variety of institutions and at various beam
energies (for an overview, see Ref. [16]). At present, the
most extensive program is carried out at RCNP using the
spectrometer Grand Raiden [34,35]. 3He beam energies of
140–150 MeV/nucleon are used. Resolutions of 35 keV have
been achieved [36] and reactions on a number of targets have
been performed with the main aim of extracting Gamow-
Teller strength (see, e.g., Refs. [37–40]). The selectivity for
Gamow-Teller transitions at forward angles and intermediate
beam energies is very similar to that of the (p, n) reac-
tion [14].

The (t,3He) reaction is a relatively new tool for study-
ing spin-isospin excitations in the �Tz = +1 reaction. The
only triton beam presently available at energies above
100 MeV/nucleon is the secondary triton beam made at
NSCL. The first (t,3He) experiment, on a series of light
nuclei [41], was performed in a simple spectrometer and
the energy resolution was poor and angular distributions
could not be measured. By applying the dispersion-matching
technique in the S800 spectrometer [42], it was shown that
energy resolutions of ∼200 keV can be obtained and angular
distributions be extracted [43]. Subsequently, states in weakly
bound 6He via 6Li(t,3He) [44] were studied.

This article is structured as follows: In Sec. II the framework
for extracting Gamow-Teller strengths from the (3He, t)
and (t,3He) reactions and the motivation for choosing 26Mg
as a target are discussed. In Sec. III, the details of the
26Mg(3He, t) and 26Mg(t,3He) experiments and the general
features of the measured spectra are described. In Sec. IV, the
strengths extracted from the data are presented and compared
with results from other charge-exchange experiments and
with shell-model calculations. In addition, the exhaustion of
the model-independent Gamow-Teller sum rule is discussed.
Because the reaction calculations in DWBA that are employed
in this section are novel for (3He, t) and (t,3He) reactions, they
are discussed in detail in Sec. V and subsequently employed
to describe the systematic uncertainties in the extraction of
Gamow-Teller strength from the data.

II. PRELIMINARIES

In this article we present measurements of the 26Mg(3He, t)
and 26Mg(t,3He) reactions at 140 MeV/nucleon and
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115 MeV/nucleon, respectively. The 26Mg nucleus provides
an excellent case for testing the reaction mechanism. Its
structure is well known, and full sd-shell wave functions
are available, a prerequisite for the studies of the reaction
mechanism. Here, we test the new USD interaction, USD-
05B [45]. The isospin of 26Mg is T = 1. Thus, final states
with T = 0, 1, and 2 transitions can be observed in the
26Mg(3He, t) reaction. The results for the T = 2 states can
be compared with their analog states excited via (t,3He) to
verify consistency. Assuming isospin symmetry, the strengths
of analog transitions differ only by their Clebsch-Gordan coef-
ficients; in this case, B(GT)26Mg(3He, t)/B(GT)26Mg(t,3 He) =
1
6 . Note that a comparison between analog Gamow-Teller
transitions becomes more difficult for target nuclei with
increasing ground state isospin (larger N -Z) since the ratio
B(GT)(�Tz = −1)/B(GT)(�Tz = +1) decreases, and the
transitions in the �Tz = −1 direction become more difficult
to separate from the continuum and other transitions.

The 26Mg(3He, t) experiment is also important for checking
that the extracted Gamow-Teller strengths are consistent with
those from (p, n) and, therefore, probe independent. Because
26Al has isospin T = 0, the Gamow-Teller strengths for the
transitions to the four lowest-lying is neglected.

1+ states can be extracted from 26Si β+-decay [46] data
if the small contribution from isospin symmetry breaking is
neglected. It can then be used to calibrate the proportionality
between Gamow-Teller strength and cross sections at zero-
momentum transfer (q = 0). In eikonal approximation this
proportionality is written as [23]:

dσ

d�
(q = 0) = KN |Jστ |2B(GT) = σ̂B(GT). (1)

Here, K = EiEf /(h̄2c2π )2, where Ei(f ) is the reduced energy
in the incoming (outgoing) channel, N is the distortion factor
defined by the ratio of distorted-wave to the plane-wave cross
sections, and |Jστ | is the volume-integral of the central στ

interaction. The factor KN |Jστ |2 is referred to as the unit cross
section, σ̂ . The cross section for momentum transfer q = 0,
requiring both the Q value of the transition and the scattering
angle to be zero, is obtained by extrapolating the data using

dσ

d�
(q = 0) =

[
dσ/d�(q = 0)

dσ/d�(Q, 0◦)

]
DWBA

× [dσ/d�(Q, 0◦)]exp.

(2)

In this equation, DWBA refers to calculated values in the
distorted-wave Born approximation described in Sec. V. The
experimental cross section at θ = 0◦ is obtained by fitting
the calculated Gamow-Teller angular distribution in DWBA
to the measured angular distribution. The proportionality of
Eq. (1) also holds for Fermi transitions [23] associated with
the excitation of the isobaric analog state (IAS) via �Tz = −1
reactions. In that case, |Jστ | has to be replaced by |Jτ |.

In addition to the trivial dependence of K on target and
projectile mass and beam energy, also N and Jστ depend
on mass and beam energy. The distortion factor N can be
calculated if the optical potential parameters are known. In
general, the distortion factors for the (3He, t) and (t,3He)
reactions are smaller (meaning larger distortions) than those

for (p, n) and (n, p), respectively, because the latter two
probe the nuclear interior more strongly than the reactions
with composite probes. The στ component of the interac-
tion (Jστ ) is only weakly dependent on the beam energy
[21,22], but because of the exchange terms, the dependence
on target mass is significant, especially for lower mass
numbers.

In practice, the proportionality described by Eq. (1) is
often calibrated by correlating extracted cross sections at zero-
momentum transfer with empirically known Gamow-Teller
strengths from β-decay data.

In the Love-Franey effective interaction [21,22], which
we employ in DWBA cross section calculations for more
detailed comparisons between data and theory, the central
στ and τ interactions are represented by superpositions of
real and imaginary Yukawa potentials with varying ranges
corresponding to the different meson-exchange potentials.
Spin-orbit contributions are represented by a summation over
Yukawa potentials multiplied by the L · S operator. The main
source of systematic errors in the proportionality of Eq. (1) is
interference from �L = 2,�S = 1 amplitudes for transitions
to the Jπ = 1+ Gamow-Teller states, mediated mainly through
the tensor-τ component of the interaction. In the Love-Franey
effective interaction, this component is represented by a
summation over potentials of the form r2 × Yukawa multiplied
by the S12 = (σ1 · r)(σ2 · r)/r2 − σ1 · σ2 operator. The cross-
section calculations and such systematic errors are discussed
further in Sec. V. At beam energies above ∼100 MeV/nucleon
the contributions from multistep processes become small
[35] and are less of a concern in terms of the breaking of
proportionality and are disregarded in this work.

III. EXPERIMENTS

A. The 26Mg(t,3He) experiment at NSCL

The production of the secondary triton beams for (t,3He)
experiments is described in detail in Refs. [43,47] and here
we give only an overview and refer to circumstances specific
for taking the 26Mg(t,3He) data. A secondary triton beam with
an average energy of 115 MeV/nucleon and a relative energy
spread of 1% was produced from a primary 140 MeV/nucleon
α beam impinging on a 9.25-g/cm2-thick Be production target.
The primary beam was accelerated in the K1200 cyclotron
and the tritons were selected in the A1200 fragment separator.
The triton intensity (1.3 × 106 tritons/s) was monitored with
an in-beam scintillator (IBS) placed 30 m upstream from
the isotopically enriched (99.42%) 12.5 ± 0.3-mg/cm2-thick
26Mg target. The 3He ejectiles were detected in the S800
spectrometer [42], set at an angle of 0◦ and operated in
dispersion-matched mode. Because the triton beam cannot be
bent into the focal plane of the spectrometer, the transmission
of the triton beam from the IBS to the target was determined
by comparing the rates at the S800 focal plane and the IBS
using a secondary 3He beam without a target. Even though the
beam-spot size in the dispersive direction is relatively large
(∼5 cm), a transmission of 95% was achieved owing to the
large acceptance of the S800 spectrometer.
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The S800 focal-plane detector system [48] consists of
two two-dimensional cathode-readout drift detectors (CRDCs)
for the determination of position and angles in the focal
plane. In addition, two thin plastic scintillators are positioned
behind the CRDCs. The first one serves as trigger for the
data acquisition system and provides the start signal for the
time-of-flight (TOF) measurement. The stop signal is provided
by the cyclotron radio frequency. The light output of the
two scintillators and the TOF signal were used to identify
3He particles. For ray-tracing purposes, the ion-optical code
COSY INFINITY [49] was used to calculate the ion-optical
transfer matrix of the S800 spectrometer [50] from the
measured magnetic field maps. Matrix elements up to fifth
order were used in the reconstruction of δ = (E − E0)/E0 (E0

is the kinetic energy of the particle following the central-ray
trajectory through the spectrometer and E the energy of the
measured particle). The track angles in the dispersive and
nondispersive directions were also obtained in the ray-tracing
procedure and used to calculate the 3He scattering angle. The
26Na excitation energy was determined in a missing-mass
calculation using the reconstructed energy and scattering
angle. The overall energy resolution was 300 keV, full width at
half maximum (FWHM). This is about 100 keV worse than the
resolution achieved in the experiment described in Ref. [43],
becaus of the relatively thick target used in this experiment and
slightly poorer dispersion matching conditions. Cross sections
were measured at center-of-mass angles from 0◦ to 4.5◦. The
angular resolution was 0.4◦ (FWHM).

B. The 26Mg(3He, t) experiment at RCNP

The 26Mg(3He, t) data were obtained at RCNP using the
spectrometer Grand Raiden [34]. A 3-pnA 140-MeV/nucleon
3He beam bombarded a 3.6-mg/cm2 isotopically-enriched
(99.4%) 26Mg target. The spectrometer was run in the “off-
focus” mode [51] so that the angle in both horizontal and
vertical directions could be determined. The beam current
was integrated using a Faraday cup. The experimental setup
and analysis techniques were the same as described in
Refs. [12,52]. The energy resolution was ∼100 keV (FWHM).
As discussed in the introduction, Gamow-Teller strengths have
been extracted from high-resolution (∼30 keV) experiments
at RCNP using the dispersion-matching technique on a variety
of targets, including 26Mg [39] [up to Ex(26Al)= 9 MeV]. In
the high-resolution measurements, absolute cross sections and
precise angular distributions were not extracted. Owing to the
increased beam-spot size, the acceptance of the spectrometer
(which is much smaller than that of the S800 spectrometer)
is not defined by the entrance slits in a simple way and
accurate beam current integration is problematic. Therefore,
for experiments performed in dispersion-matched mode, the
yield in a narrow angular bin (typically from 0◦ to ∼0.5◦,
see, e.g., Ref. [39]) is used in Eq. (2) and the identification
of Gamow-Teller transitions performed by comparing ratios
of yields at forward and backward angles. For the purpose of
studying the details of the reaction mechanism, the absolute
cross sections and accurate angular distributions are essential.
The (3He, t) data presented here were, therefore, taken in
achromatic mode where beam integration is straightforward

and the acceptance is well defined because of the small
beam-spot size on the target of about 1–2 mm. Center-of-mass
scattering angles were measured from 0◦ to 2.5◦, with a
resolution of 0.2◦ (FWHM).

As a check on the reliability of the beam integration for the
(3He, t) experiment presented here, some data were also taken
with 13C and 208Pb targets under exactly the same conditions
as for the 26Mg target. The differential cross sections for the
transitions to the ground state of 13N [13] and the IAS in
208Bi [12] for these two targets have been extracted in the past.
The results from the previous and new data differed by less
than 10%, giving a measure for the systematic uncertainties in
the beam integration and target thickness.

C. The measured spectra and their general features

In Figs. 1 and 2, the energy spectra measured via
26Mg(t,3He) and 26Mg(3He, t), respectively, are shown. Tran-
sitions with �L = 0 peak at 0◦ and drop off rapidly. They
dominate the spectra at forward angles; see Figs. 1(a) and 2(a)
in which states excited via monopole transitions are marked by
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FIG. 1. Differential cross sections measured for the 26Mg(t,3He)
reaction at Et = 115 MeV/nucleon. (a) The spectrum for θcm(3He) <

1.1◦. (b) The spectrum for 3.4◦ < θcm(3He) < 4.5◦. Unlike transitions
with higher angular momentum transfer, Gamow-Teller (�L = 0)
transitions peak at forward angles. The energy region where Gamow-
Teller transitions dominate the spectrum is indicated in (a), and the
transitions to the 1+ states are indicated by down arrows. In contrast,
dipole transitions (�L = 1) have a minimum at forward angles and
peak near 3.5◦. Such transitions are indicated by up arrows in (b).
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FIG. 2. Differential cross sections measured for the 26Mg(3He, t)
reaction at E3He = 140 MeV/nucleon. (Top panel) Spectrum for
θcm(t) < 0.3◦. (Bottom panel) Spectrum for 2.0◦ < θcm(t) < 2.3◦. As
in Fig. 1, transitions with �L = 0 peak at forward angles. The broad
bump in the spectrum, seen at larger angles (indicated in the bottom
panel) is because of giant dipole resonances (IVSDR and IVGDR).

a down arrow. In contrast, dipole transitions peak at around 3◦
and are thus enhanced at backward angles; see Figs. 1(b) and
2(b), where states excited via dipole transitions are marked
by an up arrow. Transitions with higher angular-momentum
transfer are possible as well, but they have a rather flat angular
distribution over the angular range measured here.

In the �Tz = +1 direction, only the �L = 0 isovector
(spin-flip) giant monopole resonances have angular distri-
butions similar to the Gamow-Teller transitions. These 2h̄ω

resonances have high excitation energies (>∼20 MeV [53]).
For excitation energies below ∼20 MeV, identification of
Gamow-Teller transitions using the angular distributions is
very selective. Therefore, the states in Fig. 1(a) indicated
with a down arrow are identified as Gamow-Teller transitions
to 1+ states in 26Na. The detailed procedure of extracting
components in the spectrum using a MDA is discussed in
Sec. IV.

The dipole transitions visible in Fig. 1(b), constitute the
various components (Jπ = 0−, 1−, 2−) of the isovector spin-
flip giant resonance (SDR; �L = 1,�S = 1) and its non-spin-
transfer partner, the Jπ = 1− isovector giant dipole resonance
(IVGDR; �L = 1,�S = 0). Relative to the IVSDR, the
IVGDR is weak, because non-spin-transfer transitions are
suppressed at these beam energies [21,22].

For the �Tz = −1 direction, the angular distributions can
similarly be used for unambiguous identification of Gamow-
Teller transitions. The isovector giant monopole resonances
are located at energies above 30 MeV [53]. There is one
additional transition with �L = 0 in this direction, namely the
excitation of the IAS (�L = 0,�S = 0). Its location is well
known, however, and its strength can be removed easily in
the extraction of Gamow-Teller strengths. In the 26Mg(3He, t)
data (Fig. 2) many Gamow-Teller transitions can easily be
identified. Because only center-of-mass angles of up to 2.5◦ are
measured, even at the most backward angles [Fig. 2(b)], they
dominate the spectrum. The contributions from the IVSDR and
IVGDR appear mostly as a broad resonance with a maximum
at an energy of about 20 MeV. The good resolution of 100 keV
allows for a peak-by-peak analysis, instead of a MDA. The
peak shape was determined using the strongest Gamow-Teller
transition at Ex = 1.06 MeV and was then used in the yield
estimation for all transitions. If a peak was not isolated, the
background under it was parametrized with a polynomial in
the energy region close to the peak and a systematic error to
the yield was assigned based on the ambiguity in estimating
the background. If two or more peaks were not completely
separated, the fits were performed simultaneously for the peaks
in that region. The data set was divided into eight angular
regions and the yields for all peaks were obtained in each
region separately.

Note that at our beam energies and at forward angles,
transitions that involve large angular-momentum transfers are
strongly suppressed. A good example is the transition to the
5+ ground state of 26Al, for which no statistically significant
yield was measured, whereas at lower 3He beam energies (e.g.,
24 MeV/nucleon [54]) this state can be observed clearly.

IV. EXTRACTION OF GAMOW-TELLER STRENGTHS
AND COMPARISON WITH SHELL-MODEL

CALCULATIONS

Figure 3 shows the measured energy spectra integrated
over the full angular ranges covered in the two experiments.
The 26Mg(t,3He) spectrum has been shifted by the Coulomb-
energy difference so that the first Gamow-Teller state at
Ex = 0.08 keV is aligned with the first T = 2 Gamow-Teller
state at Ex = 13.6 MeV in the 26Mg(3He, t) spectrum.

A. Gamow-Teller strength in 26Al

For the 26Mg(3He, t) data, Gamow-Teller states were
identified using their L = 0 nature by comparing measured
angular distributions for each peak in the spectrum to DWBA
calculations performed with the code FOLD [55] (see Sec. V).
Figure 4 shows a comparison of the measured (3He, t) dif-
ferential cross sections and DWBA calculations of transitions
to several states of various multipolarity. For each transition,
the only freedom in comparing the data with the DWBA
calculations was an angle-independent scale factor, which was
determined in a fit. The comparison is shown for the 0+ IAS at
Ex = 0.23 MeV, the strongest 1+ state at Ex = 1.06 MeV, a 2+
state at Ex = 3.16 MeV, a 2− state at Ex = 4.43 MeV and the
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FIG. 3. Energy spectra of the 26Mg(3He, t) and 26Mg(t,3He) reactions. Peaks identified as the result of Gamow-Teller transitions are
indicated. β denotes that the Gamow-Teller strength of the transition can be deduced from 26Si β decay under the assumption of isospin
symmetry. The 26Mg(t,3He) spectrum has been shifted by the Coulomb-energy difference so that the 1+ state at Ex = 0.08 keV is aligned with
its analog at Ex = 13.6 MeV in the 26Mg(3He, t) spectrum.

first T = 2 1+ state at Ex = 13.57 MeV. In all cases a good
correspondence between the data and calculation is found,
giving confidence that angular distributions can be predicted
accurately using the model. For the states in the spectrum
that are identified as 1+ states, the zero-degree cross section
was extracted from the fitted theoretical curve, with the error
being deduced from the fitting error. Equation (2) was then
used to obtain the cross section at zero-momentum transfer.
In total, 29 Gamow-Teller transitions were identified. In
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FIG. 4. Measured differential cross sections and comparison with
DWBA calculations. (Left) Results for five states in the 26Mg(3He, t)
spectrum with different J π and T are shown. (Right) Results of MDA
in regions A–E of Fig. 3 in the 26Mg(t,3He) spectrum are shown.

Fig. 3, they are marked with arrows. Under the assumption of
isospin symmetry, the Gamow-Teller strengths for the first 4 of
these Gamow-Teller transitions can be deduced from β-decay
measurements of 26Si [46]. The corresponding B(GT)s are
1.098, 0.536, 0.091, and 0.113 for Ex(26Al)= 1.06, 1.85,
2.07, and 2.74 MeV, respectively. For reasons discussed in
the next section, only the first two (with the larger values
of Gamow-Teller strength) of these transitions were used
to determine the unit cross section σ̂ in Eq. (1). This unit
cross section was then used to calculate the Gamow-Teller
strengths for all 29 peaks. The results are summarized in
Table I, combined with previous results from the high-
resolution 26Mg(3He, t) experiment [39], the results from
a 26Mg(p, n) experiment [11] at Ep = 135 MeV with an
energy resolution of 300 keV and the strengths extracted from
β decay, following Ref. [39]. Note that in the analysis of
the high-resolution (3He, t) data and the (p, n) data, all 4
Gamow-Teller transitions for which the strength is known
from β decay were used in the calibration of the unit cross
section of Eq. (1).

The errors in Table I of the present (3He, t) data include
a statistical as well as a systematical component resulting
from uncertainties in the background estimates in cases where
peaks were not separated. Systematical errors that cannot be
estimated from the data are discussed in Sec. V. A state
at Ex = 5.58 MeV, was seen in both the present (3He, t)
and the high-resolution data. It was listed in the compilation
of Ref. [56] as a 1+ state, but in the updated compilation
of Ref. [57] no parity assignment was shown. In Ref. [39]
the transition to this state was assigned to have �L �= 0,
but nevertheless given a tentative Gamow-Teller strength of
0.020±0.001. We found that the angular distribution did not
peak strongly at 0◦, as expected for Gamow-Teller transitions.
However, it cannot be ruled out that two unresolved states
with different multipolarities make up this peak. Because the
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TABLE I. Extracted Gamow-Teller strengths for transitions from 26Mg to 26Al from the present 26Mg(3He, t)
experiment at 140 MeV/nucleon, a high-resolution 26Mg(3He, t) experiment at 140 MeV/nucleon [39], a 26Mg(p, n)
experiment at 135 MeV/nucleon [11], and β-decay measurements of 26Si [46] assuming isospin symmetry. The error
bars for the present (3He, t) data set given in the table include statistical errors, as well as systematical errors in cases
where background had to be subtracted. Estimates of other systematic errors are given in Sec. V.

β decaya (3He, t) Present data (3He, t) High resolutionb (p, n)c

Ex (MeV) B(GT) Ex (MeV) B(GT) Ex (MeV) B(GT) Ex (MeV) B(GT)

1.0577 1.098±0.022 1.06 1.09±0.03e 1.058 1.081±0.029e 1.06 1.10e

1.8506 0.536±0.014 1.85 0.54±0.02e 1.850 0.527±0.015e 1.85 0.50e

2.0716 0.091±0.004 2.07 0.114±0.008 2.071 0.112±0.004e 2.11 0.11e

2.7400 0.113±0.005 2.74 0.119±0.008 2.739 0.117±0.004e 2.72 0.13e

3.73 0.109±0.008 3.726 0.106±0.004 3.73 0.10
5.01 0.28±0.01 5.010 0.271±0.008 5.01 0.28
5.94 0.041±0.005 5.949 0.037±0.002 (5.95) 0.04
6.27 0.134±0.008 6.269 0.126±0.004 (6.28) 0.12
6.87 0.028±0.004 6.875 0.028±0.001 (6.87) 0.03
7.20 0.089±0.006 7.199 0.085±0.003 (7.21) 0.09
7.46 0.036±0.004 7.457 0.038±0.002
7.81 0.037±0.004 7.813 0.040±0.002 (7.85) 0.04
8.98 0.123±0.008 8.930 0.041±0.002d (8.94) 0.15

9.007 0.079±0.003d

Sum for Ex < 9.2 MeV 2.73±0.04 2.69±0.04 2.69

9.43 0.136±0.008
9.62 0.079±0.007 (9.77) 0.09
9.86 0.058±0.006

10.24 0.158±0.009 (10.2) 0.16
10.45 0.29±0.01
10.81 0.47±0.02 (10.8) 0.44
11.22 0.164±0.009 (11.2) 0.17
11.50 0.021±0.005
11.62 0.17±0.01 (11.6) 0.20
12.01 0.015±0.003
12.41 0.022±0.004 (13.1) 0.05
13.57 0.068±0.003 (13.6) 0.12
14.53 0.015±0.004 (14.6) 0.11
14.88 0.018±0.005 (14.9) 0.07
15.91 0.029±0.006
18.32 0.021±0.005

Sum 4.46±0.05 4.41

aFrom Ref. [46], assuming isospin symmetry.
bFrom Ref. [39].
cFrom Ref. [11]; we follow the notation by the authors to put parentheses around excitation energy values that may
represent an average over more than one state.
dThese two states are unresolved in the present (3He, t) data set. The sum of the strengths (0.120+0.004) is consistent
with the value of 0.123±0.008 extracted in the present data.
eUsed in the calibration of the unit cross section in Eq. (1).

strength of this transition is small compared to the sum of the
Gamow-Teller strengths of all transitions as well as its error,
it was excluded from Table I.

Overall, a good correspondence is found between the ex-
tracted Gamow-Teller strengths below Ex = 9.2 MeV from the
three charge-exchange experiments compared in Table I. The
integrated sums are consistent within error margins, showing
that the strength extraction is largely probe independent.

Above Ex = 9.2 MeV, and in particular above Ex = 12 MeV,
larger differences are seen between the (3He, t) results (present
data set only) and the (p, n) results. In this energy range, the
improved resolution becomes increasingly important, because
it reduces the systematic error in determining the background.
In Ref. [11], systematic errors in the background subtraction
for the (p, n) data in the energy region above Ex = 13.3 MeV
were estimated to be as much as 50%, depending on the method
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TABLE II. Extracted Gamow-Teller strengths for transitions from 26Mg to 26Na from the present 26Mg(t,3He) experiment at
115 MeV/nucleon and comparison with results obtained from candidate T = 2 states in the present 26Mg(3He, t) experiment at
140 MeV/nucleon and two (d,2He) experiments [9,10].

(t,3He) Present data (3He, t) Present dataa (d,2He)b (d,2He)c

Ex (MeV) B(GT) Ex (MeV) B(GT) Ex (MeV) B(GT) Ex (MeV) B(GT)

0.08d 0.41(5)±0.03 13.57 0.41±0.02 0.08d 0.38 0.08d 0.44±0.04
14.53 0.09±0.02

1.4±0.2 0.09±0.02 14.88 0.11±0.03 1.5 0.06
2.6±0.2 0.13±0.02 15.91 0.17±0.03 2.6 0.11
5.1±0.4 0.22±0.04 18.32 0.13±0.06 5.2 0.09

Sum 0.85±0.06 0.91±0.09(0.82±0.08e) 0.64

aPotential T = 2 states, assuming isospin symmetry and multiplying with a factor of 6 because of a difference in Clebsch-Gordan
coefficients.
bFrom Ref. [10].
cFrom Ref. [9].
dExcitation energy fixed to known location of 1+ state [58].
eValue excluding the state at 14.53 MeV.

used. The tabulated Gamow-Teller strengths of Ref. [11] were
the ones extracted with the lowest background estimates and,
therefore, highest cross section and strength.

B. Gamow-Teller strength in 26Na

The 26Mg(t,3He) reaction data do not allow a peak-by-
peak analysis because transitions to states with different
Jπ are not clearly resolved. An MDA is required. Because
the DWBA calculations for experimentally well-separated
states accurately predict angular distributions for transitions
of various spin and angular-momentum transfers for the (3He,
t) reaction, we used the DWBA calculations to predict the
various components used in the MDA fitting procedure. The
26Na spectrum up to Ex = 6 MeV was divided into five
regions [regions A–E, as shown in the inset in Fig. 3(a)].
Regions A, B, C, and E were chosen where the Gamow-Teller
transitions were seen to be strong based on the comparison of
spectra at different angles in Fig. 1. Additionally, the region
around the lowest-lying dipole state (region D) was analyzed.
Above Ex = 6 MeV, no statistically significant Gamow-Teller
strength was found.

In the right panel of Fig. 4, angular distributions extracted
from the (t,3He) data are shown for each of the regions A
to E. Several 2+, 3+, 4+, 5+ states that cannot be resolved
are known to reside in the region below Ex = 3.5 MeV [58].
Their angular distributions near 0◦ are flat and similar. At
the beam energy of 115 MeV/nucleon, transitions involving
highest angular-momentum transfers (4+, 5+) are suppressed.
In regions A–C, the MDA results shown in Fig. 4 included
transitions to 1+ and 3+ states. Separate MDAs were per-
formed in which the transitions to 2+ states were used instead
of to 3+ states. No significant difference in the extraction
of Gamow-Teller strength was noted. As shown in Fig. 4, the
angular distribution in region D can be reproduced by assuming
only the presence of dipole transitions. Therefore, in Region E
a mixture of dipole and Gamow-Teller strength was assumed
that led to a good fit to the data.

The cross sections at 0◦ for the Gamow-Teller components
found in the MDA were inserted into Eq. (2) to calculate
the cross section at zero-momentum transfer. Under the
assumption of isospin symmetry, the cross section for the
transition to the first 1+ state in 26Na is a factor of 6 larger
than the cross section for the excitation of its analog T = 2
state excited via (3He, t) located at 13.57 MeV. Because of
the 25 MeV/nucleon difference in beam energy between the
two experiments, a kinematical correction factor (k) is required
when comparing results. This factor was determined in DWBA
to be 1.2 [to be multiplied with the cross section found via
the (t,3He) reaction]. The ratio kσ(t,3He)/σ(3He,t)(q = 0) was
6.1 ± 0.5, which is consistent with the expected factor of 6
because of the difference in B(GT) arising from the isospin
Clebsch-Gordan coefficients. Therefore, except for the factor
k, the proportionality factor between Gamow-Teller strength
and cross section at zero-momentum transfer used for the
(t,3He) reaction was the same as that for the (3He, t) reaction.

In Table II, the extracted Gamow-Teller strengths are given
and compared with results from two (d,2He) experiments
[9,10]. For each of the �Tz = +1 reactions, the energy of
the first state is fixed to the known energy of the first 1+

state in 26Na at Ex = 0.08 MeV [57]. The ground state of
26Na has spin-parity Jπ = 3+. A 1+ state is also reported at
Ex = 0.23 MeV [57] from β decay of 26Ne [B(GT) = 0.04
relative to B(GT) = 0.49 for the β decay to the state at Ex =
0.08 MeV). In 26Mg(t,3He) data taken at 12 MeV/nucleon
[58], a state was found at this energy and assigned 2+ based
on the angular distribution. Although we cannot separate this
state in the current data, a strong transition to this state would
have resulted in a significant broadening of the first peak in
the 26Na energy spectrum. Also, no transition to the T = 2
analog in 26Al via (3He, t) was obeserved, although it would
certainly be resolvable. Therefore, we conclude that if the state
at Ex = 0.23 MeV is excited at all, the B(GT) for this transition
must be small. We assign error bars to the energies of the 1+
states at Ex = 1.4, 2.6, and 5.1 MeV extracted from the (t,3He)
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experiment, based on the energy uncertainties of the relevant
peaks in the spectrum at forward angles [Fig. 1(a)].

The first of the two (d,2He) experiments [10] was performed
at 135 MeV/nucleon with an energy resolution of 650 keV. The
Gamow-Teller distribution extracted is similar to our result
using the (t,3He) reaction, but when summed, 25±2% less
strength is recovered. No explicit error margins are given
in Ref. [10], so the error in this discrepancy is calculated
from the (t,3He) result only. The authors assign a general
uncertainty in the extracted Gamow-Teller strengths based on
the analysis of a number of nuclei of about 20%. In the second
(d,2He) measurement [9], performed at 63 MeV/nucleon with
an energy resolution of 650 keV, the Gamow-Teller strength
for the first 1+ state is consistent with our result from (t,3He).
It should be noted that in neither (d,2He) experiment a MDA
analysis was performed. 26Mg(n, p) data also exist [59], but the
resolution was relatively poor and strengths were not extracted.
The qualitative features of those data are similar to the (t,3He)
and (d,2He) results, however.

In Table II, candidate T = 2 Gamow-Teller states from
the 26Mg(3He, t) are also included. Except for one state at
Ex = 14.53 MeV in 26Al, presumably a high-lying T = 1, 1+
state, a good one-to-one correspondence is found, both in terms
of energies of the states and their strengths.

C. The Gamow-Teller sum rule and the comparison of
experiment with shell-model theory

For the Gamow-Teller strength in nuclei, a model-
independent sum rule can be derived [60]:

Sβ− (GT) − Sβ+ (GT) = 3(N − Z). (3)

Experimentally, only about 50%–60% of the sum-rule strength
is observed at excitation energies below ∼20 MeV [19,20]
(see also Sec. V). Different mechanisms have been proposed
to explain this quenching phenomenon. One explanation is
that because of mixing with 2p-2h configurations via the
strong tensor interaction, Gamow-Teller strength is pushed up
in excitation energy [61,62]. Experimentally, such high-lying
strength has been found in the study of 90Zr(p, n) at 295 MeV
[63] and 90Zr(n, p) [64] and [65,66]. By combining these
data, the measured sum-rule strength is 88±6% of 3(N − Z),
not including the uncertainty of the Gamow-Teller unit cross
section of 16% [65]. This result indicates that a significant
fraction of the missing Gamow-Teller strength is pushed up in
excitation energy because of configuration mixing. The second
mechanism suggested to explain quenching is that, because
of coupling between the �(1232)-isobar nucleon-hole state
and the 1p-1h Gamow-Teller state, strength would shift to
excitation energies of about 300 MeV [67]. Of course, the two
mechanisms are not mutually exclusive. In fact, an analysis
of isoscalar magnetic moments and Gamow-Teller matrix
elements in the sd-shell suggest that the quenching factor is
Q = (1 − δcm − δ�)2 = 0.61 where δcm = 0.15 comes from
configuration mixing and δ� = 0.07 comes from �(1232)-
isobar nucleon-hole admixtures [68].

In the present shell-model calculations neither of the
above quenching mechanisms is taken into account. In

the experiments discussed here, Gamow-Teller strength in
the continuum could not be extracted, because it requires an
MDA using a large number of multipoles, fitted over a wider
scattering-angle range. We should, therefore, expect to see only
a fraction of the full sum-rule strength. Indeed, by combining
the 26Mg(3He, t) and 26Mg(t,3He) results, we find

Sβ− (GT) − Sβ+ (GT) = (4.46 ± 0.05 − 0.85 ± 0.06)

= 3.61 ± 0.08, (4)

which corresponds to 60%±1% (the error is because of
statistical and systematical uncertainties in the background
estimates only) of the 3(N − Z) = 6 sum rule. This agrees well
with the established quenching factor in the sd-shell [69,70]
of 0.59 ± 0.03 and with quenching factors observed in this
mass region in studies using the (p, n) reaction [20]. The
orbital dependence of the Gamow-Teller effective operator in
Ref. [70] is small and the Gamow-Teller strength spectrum is
essentially the same as that obtained with an overall quenching
factor of 0.59.

Next, a more detailed comparison between the shell-model
calculations and the data is made. The results are summarized
in Fig. 5. In Fig. 5(a), the extracted Gamow-Teller strengths
from the 26Mg(3He, t) and 26Mg(t,3He) experiments are
compared with the calculation performed with the updated
sd-shell interaction, USD-05B [45]. In this interaction, the
additional experimental information that has been collected
on binding and excitation energies in the sd-shell because the
development of the original USD [71] interaction in 1983
is included in the fit of the parameters in the interaction.
The theoretical Gamow-Teller strengths shown in Fig. 5
were calculated using the code OXBASH [72] in the full sd-
shell-model space. These Gamow-Teller strengths were then
multiplied with 0.6 to account for the quenching phenomenon
described above.

In Fig. 5(a) and at Ex > 13 MeV, the shell-model calcula-
tions are compared with both 26Mg(3He, t) and 26Mg(t,3He)
data sets. The regions where transitions with certain isospin
(T = 0,1, or 2) are expected to be dominant from theory are
indicated.

The general correspondence of strength distributions is
facilitated by comparing the cumulative summed strengths.
In Fig. 5(b), the extracted cumulative sums of Gamow-Teller
strengths of transitions in 26Mg(3He, t) (below Ex = 13 MeV)
and 26Mg(t,3He) (above Ex = 13 MeV) are compared with the
experimental results from 26Mg(p, n) [11] and 26Mg(d,2He)
[10], respectively. Despite minor differences, discussed above,
there is an overall good agreement between results from the
different probes.

In Fig. 5(c), the 26Mg(3He, t) (below Ex = 13 MeV)
and 26Mg(t,3He) (above Ex = 13 MeV) are compared with
shell-model calculations. In addition to the theoretical results
using the new USD-05B interaction [45], the ones using the
old USD interaction [71] are included as well. The USD
and USD-05B interactions both give Gamow-Teller strength
distributions in good overall agreement with experiment. The
USD-05B interaction is better for the T = 1 states in the region
from 8 to 10 MeV. With the USD interaction, the strength
distribution is shifted to slightly lower energies and somewhat
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FIG. 5. (a) Measured Gamow-Teller strengths from 26Mg(3He, t) and comparison with the shell-model predictions using the USD-05B
interaction, multiplied by the extracted quenching factor of 0.6. For Ex > 13 MeV, Gamow-Teller strengths extracted from 26Mg(t,3He)
are included. The excitation energies in 26Na have been shifted as explained in Fig. 3 and the strengths have been divided by 6 to account
for the difference in isospin Clebsch-Gordan coefficients. Regions where T = 0, 1, or 2 are dominant are indicated. (b) Cumulative sums
of Gamow-Teller strengths; below Ex = 13 MeV, results from 26Mg(3He, t), 26Mg(p, n) are compared. Above Ex = 13 MeV, results from
26Mg(t,3He) and 26Mg(d,2He) [10] experiments are compared. Note the changes in vertical scale for Ex > 13 MeV. (c) Comparison between
results from the 26Mg(3He, t) (Ex < 13 MeV) and 26Mg(t,3He) (Ex > 13 MeV) experiments and the shell-model calculations using the USD
and USD-05B interactions.

less strength is predicted than with the USD-05B interaction.
Using the updated interaction results in a better agreement with
the data. In the T = 2 region (above Ex = 13 MeV), both
calculations predict slightly higher strengths than the data.
The shapes of the experimental and theoretical distributions
are similar.

V. THE DWBA AND SYSTEMATIC UNCERTAINTIES IN
THE EXTRACTION OF GAMOW-TELLER STRENGTH

In this section, the DWBA calculations used in Sec. IV are
described in detail. It was shown in Fig. 4 that the calculations
reproduce the measured angular distributions well. Here we
compare the absolute cross sections of the data and the theory.
We also give a theoretical estimate for the main source of
systematic errors in the extracted Gamow-Teller strengths
because of interference between �L = 0 and �L = 2 (both
�S = 1) transitions that lead to 1+ states.

A. Details of the DWBA calculations

For many (3He, t) experiments carried out in the past,
DWBA calculations have been performed using the code
DW81 [73] and an effective 3He-nucleon interaction [54,

74,75] consisting of four components, associated with the
στ (spin and isospin transfer), τ (isospin transfer), LSτ
(spin-orbit), and tensor-τ interactions. The στ and τ terms are
represented by a single Yukawa potential, with a fixed range
(R = 1.414 fm) set equal to the range of the one-pion exchange
potential (OPEP). It was argued that, when averaged over
the volume of the 3He particle, components of shorter range,
arising from ρ-meson or 2π exchange at the nucleon-nucleon
level, result in ranges close to the OPEP value. The tensor term
is represented by a potential of the form r2 × Yukawa (with
range R = 0.878 fm), multiplied by the tensor operator S12.
The spin-orbit term is usually set to zero, based on analyses
of angular distributions for excitation of the isobaric analog
states. The amplitudes of the στ, τ , and tensor-τ terms are
then chosen to reproduce experimental data. The uncertainty
of the tensor-τ term is large because there are very few
transitions in which this component can be isolated. Note
that exchange contributions to the calculated cross sections
with this interaction are absorbed in the effective 3He-nucleon
interaction and not separable from the direct contributions.

Although the calculations with the effective 3He-nucleon
interaction generally lead to a good match with the data at
forward-scattering angles, its use is somewhat unsatisfactory
because little information can be extracted about the reaction
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TABLE III. Comparison between measured and calculated differential cross sections at 0◦ for the excitation of the IAS and the first four
1+ states in 26Al via the (3He, t) reaction. The calculated cross sections for Gamow-Teller transitions are corrected for reasons discussed in the
text (see footnote for equation used), before comparing them with the data.

State in 26Al Strength dσ/d�(0◦) (mb/sr) Ratio

Ex (MeV) J π BUSD-05B Bβ decay B(3He,t) DWBA DWBA correcteda Exp. DWBAcorrected
experiment

0.228 0+ (IAS) 2b - 2b 7.20 7.20 4.0±0.1 1.80±0.05
1.06 1+ (GT) 1.69 1.098±0.022 1.09±0.03 38.9 22.6 13.9±0.3 1.62±0.04
1.85 1+ (GT) 0.96 0.536±0.014 0.54±0.02 21.5 10.7 6.7±0.2 1.60±0.05
2.07 1+ (GT) 0.022 0.091±0.004 0.114±0.008 0.56 2.08 1.45±0.03 1.43±0.03
2.74 1+ (GT) 0.26 0.113±0.005 0.119±0.008 5.06 1.97 1.5±0.03 1.31±0.03

aNo correction is applied for the IAS. For GT transitions, dσ/d�(0◦)corrected = dσ/d�(0◦)DWBAB(GT)β/B(GT)USD-05BB(GT)(t,3He)/3.
bUsing the Fermi sum rule S−(F ) − S+(F ) = (N − Z) with S+ = 0.

mechanism and thus about effects that possibly lead to
uncertainties in extraction of Gamow-Teller strengths. An
important question is whether it is possible to construct this
effective interaction from effective nucleon-nucleon potentials
used successfully in analyses of (p, n) and (n, p) data. This
requires the folding of such interactions over the transition
densities and taking into account the finite sizes of the 3He and
triton particles as well as exchange contributions.

We, therefore, used the code FOLD [55], in which the Love-
Franey nucleon-nucleon interaction [21,22], briefly described
in Sec. II and commonly used in the analysis of (p, n) and
(n, p) data, is double-folded over the transition densities.
Central, spin-orbit and tensor components of the interaction
are included and exchange is treated in the short-range
approximation described in Ref. [21]. The exact treatment
of exchange for composite particles is a challenge, and in
the case of charge-exchange reactions, has been attempted
only at beam energies of 200 and 300 MeV/nucleon [76,77].
Small changes to the code FOLD were made so that Clebsch-
Gordan coefficients were properly determined and exchange
terms were calculated according to the procedure described
in Ref. [21]. Tensor exchange effects are ignored, which is
a reasonable approximation, as shown in Ref. [76]. In this
reference it was also shown that the no-recoil approximation
for exchange, which is in effect similar to the short-range
approximation used in the present article [78], results in
an underestimation of exchange effects. Because direct and
exchange contributions interfere destructively, cross sections
should be overestimated. It was shown, however, that the
angular distributions hardly changed if exchange was treated
in the approximate manner instead of using an exact finite
range calculation [76].

One-body transition densities (OBTDs) were calculated
with the code OXBASH [72] employing the new USD-05B
interaction [45] in the sd-shell-model space. Radial wave
functions of the target and residue were calculated using
a Woods-Saxon potential. Binding energies of the particles
were determined in OXBASH [72] using the Skyrme SK20
interaction [79]. They are −7.74 (−10.00), −3.69 (−5.27),
−10.65 MeV (−12.12 MeV) for the protons (neutrons) in
the s1/2, d3/2, and d5/2 orbits of 26Mg, respectively; −6.00,
−1.67, and −8.47 MeV for the protons in the s1/2, d3/2, and
d5/2 orbits of 26Al and −7.54, −10.65, and −3.911 MeV for

the neutrons in the s1/2, d3/2, and d5/2 orbits of 26Na. For 3He
and 3H, densities were obtained from variational Monte Carlo
results [80].

Optical potential parameters (OPP) were obtained by
refitting 3He elastic-scattering data on 28Si [81] at
150 MeV/nucleon because of the large discrepancies found
between OPP for other nuclei in Refs. [81] and [82]. Following
the definitions of the optical potentials in these references,
the new parameters are VR = −25.1 MeV, rR = 1.43 fm,
aR = 0.833 fm, WI = −40.0 MeV, rI = 0.963 fm, aI =
1.03 fm, and rC = 1.25 fm. With the old parameters, angular
distributions calculated in DWBA for the (3He, t) and (t,3He)
reactions did not match the data well. With the refitted
parameters (see Fig. 4) the agreement is good. Following
Ref. [83], the depths of the triton potentials were calculated
by multiplying the depths of the 3He potentials by 0.85 while
leaving radii and diffusenesses constant.

B. Comparison of absolute cross sections in
experiment and theory

In Table III, a comparison is made between measured and
calculated cross sections at 0◦ for the four Gamow-Teller
transitions to 1+ states in 26Al for which the Gamow-Teller
strength is known from β decay, as well as the excitation of
the IAS. The excitation of the IAS exhausts the full Fermi
sum-rule strength (N − Z) = 2. The comparison between the
experimental result and the theoretical calculation for this
transition, therefore, has to be made without corrections. For
the Gamow-Teller transitions, one has to take into account
that the strengths calculated in the shell-model are not equal
to the measured strengths in β-decay data because of the
quenching of the Gamow-Teller strengths and minor additional
differences between measured and calculated strengths on
a state-by-state basis. In addition a small multiplicative
correction (see the footnote in Table III) has to be made because
of the fact that the Gamow-Teller strength for the transition
from 3He to the triton is 2.685 ± 0.004 [84] instead of 3 as
assumed in the calculations.

Ignoring the transitions to the states at Ex = 2.07 MeV and
Ex = 2.74 MeV for reasons discussed below, the differential
cross sections calculated via DWBA overestimate the data
by factors of 1.80 ± 0.05 for the transition to the IAS and
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1.62 ± 0.04 and 1.60 ± 0.05 for the transitions to the first two
1+ states at Ex = 1.06 MeV and Ex = 1.85 MeV, respectively.
Uncertainties in the beam integration and target thicknesses
(<10%) and optical potential parameters (∼20%) cannot
account for this discrepancy. As mentioned above, one of the
likely sources is the approximate treatment of the exchange
processes [76]. However, even when such processes were
treated exactly, a significant overestimation (∼45%) was found
[76]. The authors of Ref. [76] partially attributed this to the
optical potential parameters used, and in Ref. [77] the strength
of the imaginary potential (in that case the potentials were
calculated in a single-folding procedure) was reduced by 30%.
Because we used optical model parameters obtained from
fitting elastic-scattering data, and because a drastic change
of the strength of the imaginary potential would result in a
bad description of the measured angular distributions, such a
change cannot be justified in the analysis of the current data.
It cannot be excluded that other effects, such as a density
dependence of the interaction, play a role as well. In fact, for
the (p, n) reaction, corrections of up to 40%, and a better fit
to the data as a result, have been reported [85] if density-
dependence effects were taken into account. Changes because
of the density-dependence of the interaction are expected
to be stronger for Fermi transitions than for Gamow-Teller
transitions, because the potentials involved have shorter ranges
[86]. Because exchange effects are different for Fermi and
Gamow-Teller transitions as well, it is not possible to draw
strong conclusions based on the nature of small differences
in the discrepancies between data and DWBA calculations for
the excitation of the IAS and the Gamow-Teller transitions. It
indicates, however, that caution is advised when calibrating the
unit cross section for Gamow-Teller transitions using the ratio
to the unit cross section for Fermi transitions, as is sometimes
done.

We thus find that if the Love-Franey interaction [21,22] is
used in Eq. (1) with the approximate treatment of exchange,
an additional factor C is to be included:

dσ

d�
(q = 0) = CKN |Jστ |2B(GT), (5)

with C = 0.62 for Gamow-Teller transitions and C = 0.56 for
Fermi transitions.

It is not well known whether discrepancies between data and
the DWBA calculations are present for other composite probes
as well. In Ref. [32] a scaling factor C = 0.32 is determined
for the (d,2He) reaction from a comparison to transitions with
known B(GT). This factor includes a correction for the cut on
the relative energy between the two outgoing protons (internal
energy εpp < 1 MeV), which is hard to estimate theoretically.
It is, therefore, not clear whether the cut on the relative energy
between the protons fully explains the value of C in the
(d,2He) reaction or whether additional contributions, such as
corrections to the treatment of exchange, are important as well.
If the (d,2He) reaction is considered to be nearly quasifree,
with the projectile proton acting as a spectator, the mecha-
nisms involved could be quite different than for the (t,3He)
reaction.

C. Uncertainties in the proportionality between Gamow-Teller
strength and cross section at zero-momentum transfer

As shown in Table III, the discrepancies between the
DWBA calculations and the data are different for the two
Gamow-Teller transitions to the lowest-lying 1+ states at
Ex = 1.06 MeV and Ex = 1.85 MeV and the transitions to the
next two 1+ states at Ex = 2.07 MeV and Ex = 2.74 MeV.
This constitutes a breaking of the proportionality described
in Eq. (1). Next, we discuss why the calibration of the
proportionality was performed using the first two transitions
only. It will be shown that the magnitude of the proportionality
breaking is explained by interference between �L = 2,�S =
1 amplitudes (mediated via the tensor-τ component of the
interaction) and �L = 0,�S = 1 amplitudes (mediated via
the στ component of the interaction). It is important to
note that, in practice, it is impossible to make corrections
to Gamow-Teller strengths deduced from charge-exchange
reactions for this type of proportionality breaking, because
it requires a priori and exact knowledge of the wave
functions.

It is well known [23] that proportionality breaking occurs
and stronger so for transitions with small Gamow-Teller
strengths. To quantify the proportionality breaking for the
(3He, t) and (t,3He) reactions at the beam energies used for the
experiments described here, a theoretical study was performed
as shown in the following. Similar studies have been performed
for the (p, n) reaction (see, e.g., Ref. [87]).

OBTDs for the first 100 transitions to T = 0, T = 1 and
T = 2 1+ states (300 states in total) in 26Al via 26Mg(3He,
t) at 140 MeV/nucleon were generated in the shell-model
code OXBASH [72], using the USD-05B [45] interaction.
The Gamow-Teller strength and subsequently the differential
cross sections in DWBA are calculated for each of the
transitions, as described above. From this point onward, we
treated these calculated cross sections as if they were data
and extracted the Gamow-Teller strengths for each state in
exactly the same manner as was done in the analysis of
the experimental data described in Sec. IV. However, in
the calculated DWBA cross sections it is possible to switch
on and off the interference because of �L = 2,�S = 1
contributions. In principle, this should be done on the level
of the OBTDs. It was found, however, that by simply setting
the tensor-τ component of the interaction equal to zero, the
same effect was achieved: the proportionality between cross
section at zero-momentum transfer and Gamow-Teller strength
was near perfect and remained within deviations of ∼2%.
This indicates that the tensor-τ component of the interaction
that mediates the �L = 2,�S = 1 transitions is indeed the
dominant cause for the proportionality breaking. Finally, we
determined the difference in extracted Gamow-Teller strength
for each state from the calculations where the interference
was allowed to occur (as in the real data) and the input
Gamow-Teller strength (as calculated in the shell model).
The following relative systematic error was defined for each
transition:

rel.syst.error = B(GT)DWBA − B(GT)SM

B(GT)SM
, (6)
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FIG. 6. Results of a theoretical study into
the effects of �L = 2,�S = 1 contributions
mediated via the tensor-τ interaction that in-
terfere with �L = 0, �S = 1 contributions to
Gamow-Teller transitions. The calculations were
performed for the 26Mg(3He, t) reaction at
140 MeV/nucleon and included all Gamow-
Teller transitions to T = 0, T = 1, and T = 2
1+ states generated in the shell-model calcula-
tions described in the text up to an excitation
energy of 20 MeV in 26Al. Only transitions with
B(GT) > 0.001 are shown. In the top panel the
expected relative error made in the extraction of
the Gamow-Teller strength is shown as a func-
tion of the shell-model strength. The histograms
in the bottom panel contain the relative errors for
transitions with 0.001 < B(GT) < 0.01 (left),
0.01 < B(GT) < 0.1 (center), and B(GT) > 0.1
(right). Standard deviations of the distributions
are indicated.

where B(GT)DWBA is the Gamow-Teller strength extracted via
the calculations in DWBA with the full interaction (i.e., the
simulated data with the tensor-τ interaction) and B(GT)SM is
the Gamow-Teller strength of the corresponding transition as
calculated in the shell model.

In Fig. 6, the results from the theoretical study are displayed.
In the top panel, the relative systematic errors calculated
via Eq. (6) are plotted against Gamow-Teller strengths gen-
erated in the shell-model (note the logarithmic horizontal
scale). These shell-model strengths were multiplied by the
experimentally establish quenching factor of 0.6, to enable a
direct comparison with strengths deduced from experiments.
Transitions with Gamow-Teller strengths smaller than 0.001
are excluded from the plot and the approximate experimental
detection limit is indicated. It is clear that for large strengths,
the systematic errors are small. They increase with decreased
strength. No clear dependence on isospin of the final state was
found. In the bottom three panels, the relative systematic errors
are plotted for three regions with increasing strengths. In each
panel, the standard deviation of the relative systematic error

is given, decreasing from 0.24 for B(GT) < 0.01 to 0.14 for
0.01 < B(GT) < 0.1 and to 0.07 for B(GT) > 0.1. Note that
the interference can be destructive or constructive and that, on
average, the systematic error is close to zero. In fact, when
integrated over all Gamow-Teller transitions, the extracted
strength in the theoretical study above only deviated by about
1% from the integrated Gamow-Teller strength calculated in
the shell model. It was found that the standard deviation of the
relative systematic error can be approximated with

σrel.syst.error ≈ 0.03 − 0.035 ln[B(GT)]. (7)

From this study, it is clear that calibration of the pro-
portionality is best performed using transitions with large
Gamow-Teller strengths, hence the choice made earlier to
only use the first two strong Gamow-Teller transitions for this
purpose. For the states at Ex = 2.07 MeV [B(GT) = 0.091]
and at Ex = 2.74 MeV [B(GT) = 0.113], standard deviations
of 11.4% and 10.6% are expected, respectively, using Eq. (7).
The measured deviations, assuming that the proportionality
calibration using the transitions to the states at Ex = 1.06 MeV
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and Ex = 1.85 MeV is perfect, are 10.6% (0.93 standard
deviation) and 18.5% (1.74 standard deviations), respectively.
Although the sample size is small, this result provides a good
indication that the proportionality breaking can be explained as
being mainly because of the interference from �L = 2,�S =
1 components in the Gamow-Teller transitions. Note that
the proportionality breaking because of this phenomenon is
expected to be different for reactions that strongly probe the
nuclear surface [such as (3He, t) and (t,3He)] than reactions
that penetrate the nucleus deeply, such as (p, n) and (n, p). For
the 26Mg(3He, t) and 26Mg(t,3He) reactions discussed in this
article, setting the lower boundary of the radial integral over
the form factor to 1.9 fm (the radius of 26Mg is approximately
3.8 fm) only reduces the calculated cross sections in DWBA
by about 5%.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have shown that the (t,3He) reaction at
115 MeV/nucleon is an accurate probe for Gamow-Teller
strength in the �Tz = +1 direction. In addition to (n, p) and
(d,2He), it provides a new tool to test weak rates used in
stellar-evolution modeling. Together with (3He, t), (t,3He)
provides an alternative to (p, n) and (n, p) reactions with
significantly improved resolution. The ability to predict the
Gamow-Teller strength distribution with the new USD-05B
interaction was tested and a good correspondence with the
experiment was found. Compared to the old USD interaction,
improvements were most significant for transitions to states
with isospin T = 1.

Except for a general scaling factor, differential cross sec-
tions for a variety of Jπ transitions are reproduced in double-
folding DWBA using the code FOLD, and systematic errors
on the level of 10%–20% in the extraction of Gamow-Teller

strengths on a transition-by-transition basis can be understood
in terms of interference between the �L = 0,�S = 1 and
�L = 2,�S = 1 amplitudes. When integrated over many
states, the systematic error becomes small (∼1%), because
the deviations for various states can be positive or negative
and cancel. Understanding the discrepancy between measured
and theoretical absolute cross sections by a factor of about 1.6–
1.8 for Gamow-Teller and Fermi transitions requires further
investigation; a likely cause is the approximate treatment of
exchange in the DWBA calculations. A study of such issues
on nuclei over a wide mass range is in progress and will be
presented in a forthcoming article.

Increased triton beam intensities have recently been ob-
tained at the NSCL, using a primary 16O beam instead of
a primary α beam [88]. This will provide 5–10 times better
statistics. Meanwhile, beam-tuning capabilities have improved
as well, which makes it easier to achieve optimum dispersion-
matching conditions. Somewhat thinner targets than the one
used for the 26Mg(t,3He) can be used as well so that resolutions
of about 200 keV can reliably be achieved. The improved
capabilities will enable measurements of weak-interaction
strengths using targets of importance for understanding the
late stages of stellar evolution.
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