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Nuclear central force in the chiral limit
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Chiral perturbation theory supplemented by the Omnes function is employed to study the strength of the
isoscalar central nuclear interaction, GS , in the chiral limit vs the physical case. A very large modification
is seen, i.e., ηs = GS chiral/GS physical = 1.37 ± 0.10. This large effect is seen to arise dominantly at low energy
from the extra contributions made by massless pions at energies near the physical threshold where the physical
spectral function must vanish kinematically. The slope away from the chiral limit, dS , is also calculated and is
correspondingly large. I also explain why this large variation is to be expected.
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I. INTRODUCTION

For the most part, we have obtained so far only a
phenomenological description of the nuclear force. Whether
using meson exchange potentials or effective field theory,
the parameters of the internucleon interaction are hard to
relate directly to QCD. However, I will show that we know
enough to understand the quark mass dependence of the
nuclear central interaction with reasonable control. I will use
this understanding to describe the strength of the nuclear
interaction in the chiral limit. We will see that there exists
a strong variation in the strength, which nevertheless comes
from readily understandable physics.

The basic framework will use a dispersive representation
for the scalar-isoscalar interaction. The overall strength will
be governed by a contact interaction

Hcontact = GSN̄NN̄N + · · · . (1)

The strength of this interaction will be related to a dispersion
relation [1,2]

GS = 2

π

∫ ∞

2mπ

dµ

µ
ρS(µ2). (2)

Here the spectral function in the integrand ρS(µ) is to
be calculated from physical intermediate states of two-pion
exchange, using chiral amplitudes at low energy plus the
Omnes function for pion rescattering. We can control the mass
dependence of these ingredients to a great extent using chiral
perturbation theory.

Let us at this stage show the basic result, to be developed
more fully below. The spectral function for the physical case
was developed in Ref. [3], where it was shown to reproduce
the shape and magnitude expected from past experience with
scalar exchange. This result, with a small modification to be
described below, is shown in Fig. 1. Also shown is the result
that will be developed for the spectral function in the chiral
limit. The integral under theses curves gives the strength of
the scalar interaction.1 The chiral limit is seen to have a

1The negative “peak” in this figure is phenomenologically equiva-
lent to the exchange of a “σ” resonance.

greater strength largely because the threshold extends down
to zero energy and the spectral function develops quickly. As
will be discussed more fully below, there is some modeling
involved in producing these spectral functions, and there are
some gaps in our understanding of mass effects. However, the
bulk of the change in the chiral limit comes from relatively low
energies, where we have better control over the calculation.
These low energy effects are easy to defend as predictions of
chiral perturbation theory.

These contact interactions enter modern descriptions of
nuclear binding. They have been developed in a systematic
fashion in the treatment of light nuclei. Below I will also
discuss the modification in the binding energy in heavy nuclei
using the contact interactions. We will find a large increase in
the binding energy per nucleon.

In chiral perturbation theory, the coupling constants will
have an expansion in the pion mass. The leading terms will be

GS = GS0
(
1 + dSm

2
π

) + FSm
3
π + · · · . (3)

Equivalently, one sees also the parameter DS ≡ dSGS defined.
I will use my results to generate a value for the chiral slope dS .

The results indicate rather large shifts as one goes to the
chiral limit. In particular, I will find

ηS,ch = GS |chiral

GS |physical
= 1.37 ± 0.10,

(4)

dS = 0.31 ± 0.08

m2
π

.

When unexpectedly large effects are found, it is important to
carefully understand their origin and assess whether the effects
are reasonable. I spend considerable effort on this task in this
paper, and we can in fact understand why a large effect is
found.

In Sec. II, I describe some properties of effective field
theory that make it reasonable that such a large mass variation
exists. In Sec. III, the basic framework is displayed. Sect-
ion IV discusses the leading chiral amplitudes for the spectral
function. Section V describes the Omnes function and the
framework that I use for approximating the phase shifts.
Section VI puts these ingredients together and shows the
comparison of the physical case to the chiral limit. I also
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FIG. 1. Spectral integrand, ρS(µ)/µ, whose integral determines
the strength of the scalar-isoscalar interaction. Solid line is for the
chiral limit; dashed line is calculated with the physical pion mass.

discuss the uncertainties of the calculation here. Section VII
uses this scalar coupling to describe nuclear binding in the
chiral limit. The slope away from the chiral limit dS is extracted
in Sec. VIII. Finally, in Sec. IX, I briefly summarize the results
and discuss the relation of this work to previous treatments of
the nuclear force in the chiral limit [4–6].

II. EFFECTIVE FIELD THEORY AND
LOW-ENERGY EFFECTS

There is a dichotomy between the way that we describe
the philosophy of effective field theory and and the way that
we implement it in practice. The difference is important to
the understanding of the present problem. Let me introduce
these notions through a simpler problem which is by now well
understood, and which also has an anomalously large mass
dependence, namely, pion and kaon electromagnetic mass
splitting. I then show how this philosophy is relevant to the
problem of the scalar interaction in nuclei.

An effective field theory is the description of the low-energy
limit of a theory, with the correct degrees of freedom and
interactions for the low-energy world. As originally explained
by Wilson [7], we describe the low-energy interaction below
some scale � by the propagation of the light degrees of
freedom. The high-energy effects above the scale � are
incorporated into a set of local Lagrangians. They must be
local at energies E � � due to the uncertainty principle. We
then have a clear way of separating low-energy effects, which
we can readily calculate, from high-energy effects, which we
often cannot calculate but can readily parametrize.

However, this is not how we generally proceed in practice.
The use of a cutoff � to separate low energy from high
energy is awkward. Energy cutoffs require care in order
to not violate Lorentz invariance, gauge invariance, and/or
chiral symmetry. In practice, we generally calculate using
dimensional regularization. However, this scheme does not
have a separation between low energy and high energy—all
scales are integrated over in loop diagrams. This is not a
problem in principle. Extra or missing contributions can be
adjusted by a shift in the values of the contact interactions.
However, and this will be our topic here, unexpectedly large

mass effects can occur if large low-energy contributions are
put into the contact interaction.

Let us explore this first in the context of the pion
electromagnetic mass difference. This is described by the
chiral Lagrangian

LEM = gEMTr(QUQU †), (5)

in usual notation. One consequence of this is the equality of
the electromagnetic mass splitting of pions and kaons(

m2
π+ − m2

π0

)
EM = (

m2
K+ − m2

K0

)
EM. (6)

which is known as Dashen’s theorem [8]. Normally, correc-
tions to this would be expected to be of order 25% from
the naive dimensional analysis estimate of SU(3) breaking
due to quark mass differences. However, direct calculation of
the mass differences in chiral-based models yields a 100%
violation of Dashen’s theorem [9]. The reason why the models
are right and the naive dimensional analysis estimate is wrong
has to do with the distinction described above.

In the effective field theory, the degrees of freedom are
pions, kaons, and photons. In a Wilsonian effective field theory,
the quantum effects of the light particles in the diagram of
Fig. 2 should be calculated up to the scale �, and only the
effects beyond that scale parametrized by the chiral Lagrangian
with coefficient gEM(�). Thus, in a Wilsonian scheme, there
would be two different contributions: a dynamical contribution
of the actual π,K, γ loop diagrams up to the scale � and a
parameter gEM(�) describing the physics beyond the scale �.
There will also be higher order terms in the Lagrangian with
extra factors of the pion and kaon masses. While we expect
only a modest variation in the chiral Lagrangian with quark
mass—this is the real content of Dashen’s theorem—there is
no such guarantee for dynamical effects of the light particles.

In dimensional regularization, the structure is different. The
photon loop in dimensional regularization has the form (for the
pion self-energy)

∼ e2

16π2

m2
π

d − 4
. (7)

The factor of m2
π is forced by dimensional analysis; there is

no other dimensional factor in the calculation. Because of this
factor, the loop does not renormalize gEM, but goes into the
renormalization of a higher dimension term in the Lagrangian
that has extra factors of m2

π and m2
K ; let us call this parameter

gEM,m2 . So in dimensional regularization, there is no residual
dynamical loop contribution, and the analysis only involves
the parameters of the chiral Lagrangian treated at tree level.

It is easy to demonstrate that the greatest contributions to
the chiral coefficient gEM come from low-energy, not high-
energy, physics. There is a dispersive sum rule [10] for gEM, or

γ

K

FIG. 2. Photon loop that contributes to the pion and kaon
electromagnetic mass differences.
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FIG. 3. Vacuum polarization function Q2�V −A(Q2) whose inte-
gral determines the chiral parameter gEM. Notice that the greatest
contribution comes from low energy.

equivalently the pion electromagnetic mass difference in the
chiral limit, for which data exist. In the chiral limit, we have

gEM = − 3α

8π

∫ ∞

0
dQ2Q2�V −A(Q2), (8)

where �V −A is the difference in the vector and axial-vector
vacuum polarization functions.2 In turn there is a spectral sum
rule for �V −A, and the input to this sum rule can be obtained
from τ decay data. The integrand, derived from ALEPH data,
is shown in Fig. 3. We see directly that most of the input comes
from low energy.

Now consider what happens if we adopt the Wilsonian
scheme and the dynamical low-energy contribution is rela-
tively large. This dynamical effect can easily (and does) have
over a 100% variation when comparing the pion with the
kaon, because m2

K ∼ 13m2
π and we are in an energy region

comparable to the masses. In this case, even if the mass
dependence of short distance physics parametrized by the
chiral Lagrangian is of normal size, the kaon mass shift can be
very much different from that of the pion.

The Wilsonian approach is undoubtedly correct in saying
that there is large SU(3) breaking at low energy. It is readily
calculable using just the low-energy theory. However, when
doing chiral perturbation theory in the usual fashion, regular-
ized dimensionally, we would miss this effect. Dimensional
regularization can accommodate this situation, but it is not the
outcome that we would naively expect. It can be done only
at the expense of having an anomalously large parameter in
the chiral Lagrangian. The mass shift is described by gEM and
gEM,m2 , which are a priori unknown. The latter must be taken
to be much larger than naive expectation in order to reproduce
the large difference.

What has happened is that in this scheme, important
low-energy physics has been encoded in the parameter of the
chiral Lagrangian gEM,m2 . We normally expect that the chiral
parameters are manifestations of only high-scale physics, but
in a scheme like dimensional regularization, which does not
have a separation between high and low scales, there can also
be low-energy physics encoded in the parameters.

2There is an extensive literature on �V −A; the figure is drawn from
my own work on the subject [11].

The lesson from this is that if low-energy dynamical effects
make a significant contribution to a process, there can be a large
mass effect. This can lead to a larger-than-expected variation
in chiral parameters when treated in the usual fashion. I will
now argue that an analogous effect will occur in the parameter
GS describing the strength of the scalar interaction. That is, we
will see that low-energy effects are embedded in this parameter
and that these effects can have a very large variation.

Consider now the two-pion exchange contributions to the
internucleon potential. The diagrams and formulas will be
given later. In a Wilsonian approach, we would calculate
explicitly the pionic effects up to some separation scale �,
and then use a contact interaction GS(�) to describe the
high-energy effects beyond this scale. We might realistically
expect that the mass effects in GS(�) are modest. However,
there can be no such expectations for the explicit two-pion
calculation if there are significant contributions from energies
around the pion mass. These contributions can vary by 100%
as the pion mass is set to zero. For example, in Fig. 1 we see
that the physical spectral function can only start at µ = 2mπ

while the chiral limit case extends down to zero energy. The
two cases do not get close to each other until above 400 MeV,
and the integrated values of the contribution below this energy
are significantly different.

However, this Wilsonian approach is usually not carried
out in practice. The interaction in the scalar channel is
parametrized by a contact interaction (or σ potential) and the
low-energy parts of the two-pion exchange are not separately
evaluated. One calculates nuclear binding totally with the
contact interaction or the potential. The consequence of this
is that we should expect that the large mass variation of
the dynamical two-pion exchange has to be included in the
contact interaction, which then appears as if there were an
anomalously large mass dependence of this coefficient. We
see in Fig. 1 that the high-energy portion has a modest mass
dependence, whereas the low-energy component has a 100%
variation between the physical case and the chiral limit. If we
were following the Wilsonian approach, the parameter GS(�)
would have a small mass variation if � were chosen above
500 MeV. However, in a usual calculation, the mass variation
of GS , encoded in the parameter dS , must be taken to be very
large in order to account for the low-energy effect. It is this
which allows us to understand the large mass effect described
in the following sections.

It should be said that there is now an attempt being made at
what I call the Wilsonian approach. Epelbaum, Glöckle, and
Meißner [12,13] have been calculating the pionic effects to the
nuclear potential in chiral perturbation theory using a cutoff
in the spectral integral. When supplemented with a cutoff
dependent contact interaction, this is the procedure described
above. It would be good to see this approach extended to the
binding of heavy nuclei. It would be even preferable, without
loss of generality, to use the Omnes formalism developed in
the present paper for the low-energy amplitude, even if a
cutoff is used. The Omnes function is a required feature of
the full answer and tames the growing polynomial behavior
of the chiral amplitudes such that there is not an excessive
contribution from the energy region around the cutoff. This
procedure is equally general because any mistake that is
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introduced from the region around the cutoff can nevertheless
be corrected for by an adjustment of the contact term.

III. FORMALISM

Our procedure begins with the dispersion relation derived
by Cottingham, Vinh Mau, and others [1,2]. For textbook re-
views, see [14,15]. The scattering amplitude for two nucleons
obeys an unsubtracted t-channel dispersion relation.

M(s, t) = 1

π

∫ ∞

4mπ2

dµ2 ImM(s, µ2)

µ2 − t − iε
. (9)

The imaginary part of this amplitude is connected to the
crossed channel NN̄ → NN̄ with the important intermediate
state being that of two pions. The overall amplitude is decom-
posed into partial waves described by their spin and isospin
quantum numbers. The greatest interest in this paper will be
on the scalar-isoscalar (J = 0, I = 0) channel. By taking the
nonrelativistic limit and ignoring the energy dependence in
the S channel, one can define a momentum space potential
that depends only on the momentum transfer q2. Using the
scalar-isoscalar central potential as an example, let us define
the corresponding spectral function

ρS(µ) = ImVS(q = iµ). (10)

In terms of this imaginary part, the potential is defined by the
dispersion relation

VS(q2) = 2

π

∫ ∞

2mπ

dµµ
ρS(µ)

µ2 + q2
. (11)

When converted to coordinate space, this defines an internu-
cleon potential depending on the separation r, with a spectral
representation

VS(r) = 1

2π2r

∫ ∞

2mπ

dµµe−µrρS(µ). (12)

For orientation, note that this description would produce the
conventional σ exchange potential with the substitution

ρS(µ) = −πg2
σ δ

(
µ2 − m2

σ

)
. (13)

This would recover the classic Yukawa potential in momentum
and coordinate space:

Vσ = −g2
σ

q2 + m2
σ − iε

, (14)

and

VS(r) = − g2
σ

4πr
e−mσ r . (15)

However, the δ function is not a good representation of the
physics in the scalar channel. Instead, we will use chiral
perturbation theory extended to higher energy with the Omnes
representation to describe the ingredients to the scalar channel.

For all channels except that of one-pion exchange, the
potential is short range, and in effective field theory, can
be represented by a δ function—a contact interaction. For

example, the scalar-and vector-isoscalar contact interactions
would be represented as

Hcontact = GSN̄NN̄N + GV N̄γµNN̄γ µN + · · · . (16)

Since the Fourier transform of a constant is a δ function,
the contact interactions in coordinate space correspond to a
constant in momentum space. These contact interactions are
therefore given by the momentum space potential at q2 = 0,
i.e., for the scalar or vector channel,

GS,V = VS,V (q2 = 0) = 2

π

∫ ∞

(2mπ ,3mπ )

dµ

µ
ρS,V (µ2). (17)

Higher powers of momenta can be accommodated by
derivative contact interactions. For the exchange of a narrow
resonance, the contact interaction has the form Gi = ±g2/m2

i ,
and I will use this relation for the vector meson effect.3

However, for the scalar interaction it is important to have a
more complete evaluation, as described below.

IV. CHIRAL AMPLITUDES

The application of chiral perturbation theory to the nuclear
force has an extensive literature; for reviews and references,
see [13,17–20]. The pathway using the dispersion relation and
the spectral function has been pioneered by Kaiser, Meißner,
and collaborators [12,21–23]. We will find this a very effective
description of nature of energy expansion for the nuclear
interaction.

The low-energy behaviors of the two-pion-exchange di-
agrams have been calculated in perturbation theory. The
πNN vertex is proportional to the axial charge gA, and the
two-pion vertices are parametrized by low-energy constants
c1, c2, c3, and c4 in the chiral Lagrangian. The diagrams are
shown in Fig. 4. The diagrams of Figs. 4(a) and 4(b) lead to

3For resonance saturation estimates of these and other nuclear
contact interactions, see [16].
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FIG. 4. Two-pion-exchange diagrams which arise in chiral per-
turbation theory.
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the spectral function [21]4

ρ
a,b
S (µ) = 3g2

A

64F 4
π

[
4c1m

2
π + c3

(
µ2 − 2m2

π

)]

×
(
µ2 − 2m2

π

)
µ

θ (µ − 2mπ )
4mN

π

√
4m2

N − µ2

× arctan

√(
µ2 − 4m2

π

)
(4mN − µ2)

µ2 − 2m2
π

. (18)

The result of [21] was calculated in the heavy baryon limit,
and I have modified their result to include the effects of a
finite nucleon mass [24], see also [25]. The difference is minor
numerically. Diagram 4(b) is one power higher in the energy
expansion and involves two factors of the low-energy constants
c1,2,3. The imaginary part of this diagram is [22]

ρc
S(µ) = − 3

32πF 4
π

√
1 − 4m2

π

µ2
θ (µ − 2mπ )

×
([

4c1m
2
π + c2

6

(
µ2 − 4m2

π

) + c3
(
µ2 − 2m2

π

)]2

+ c2
2

45

(
µ2 − 4m2

π

)2
)

. (19)

In a proper effective field theory treatment, the box and
cross box diagrams, Figs. 4(d) and 4(e), should not be included
in the contact interaction. This is because one includes the
pion as an explicit light degree of freedom and includes
the πNN vertex in the low-energy Lagrangian treating
pion exchange dynamically. In this framework, we have the
Lagrangian consisting of the pionic interactions and a set of
contact interactions. Using this framework, one includes loop
diagrams, and the box diagrams emerge as dynamical effects in
addition to the effects of the contact interaction. Therefore, in
principle, the correct treatment is to treat the box and cross box
separately from the contact interaction.5 The box diagrams are
finite and their short distance components are small. They do
not contribute to the renormalization of the contact interaction.
Because of this separation of dynamical pionic effects and the
contact interaction in effective field theory treatments, I do
not include the box diagrams in the calculation of the contact
interaction.

On a purely practical level, these terms are small compared
to the effects that we do study, at least for the scalar central
potential. This is demonstrated in [21] and can also be seen
in Fig. 3.15 of Ref. [15]. As an explicit example, if we take
the q2 = 0 limit of the potential from these diagrams quoted

4Watch out for a sign difference; their momentum space potential
has the opposite sign of the conventions used in the present paper.

5In fact, following the discussion of Sec. II, it would even be
preferable to separate out the low-energy portions of the remaining
diagrams and treat them dynamically, reserving the contact interaction
for the short-distance part of the diagrams. This is the Wilsonian point
of view. However, it is not standard practice, and so we include all of
the diagrams in Figs. 4(a)–4(c) in the contact interaction.

in [21], one finds that they generate a shift in the nonanalytic
mass correction of size

GS = − 15g4
Am3

π

1024πF 4
πM

= 0.42 GeV−2, (20)

where the total result is GS ∼ −400 GeV−2.
In practice, a variety of approximate methods treat the

effects of the nuclear potential, especially for heavier nuclei.
These methods may vary in how much of the box diagram
effects are calculated dynamically. It is not always clear then
how these approximation schemes map onto effective field
theory. However, in Sec. VIII, I discuss results on binding using
a scheme that does attempt to match the effective field theory
treatment [26]. This uses a relativistic treatment, including full
relativistic propagators for the pion and the nucleons, which
does separate the pion from the contact interaction. While
recognizing that the application of this framework to nuclear
binding is an approximation method, it seems most appropriate
to use the above constitution of the contact interaction when
discussing this scheme.

V. UNITARITY AND THE OMNES FUNCTION

A key ingredient in the present method is the use of the
Omnes function, which incorporates the physical effects of
pion rescattering [27]. This ingredient is not optional—it is
required by unitarity. Moreover, the general form of the result
is well known within the elastic region. The amplitude must
have the form of a polynomial in the energy times the Omnes
function

�(µ) = exp

[
µ2

π

∫
ds

s

δ(s)

s − µ2

]
. (21)

Here δ is the ππ scattering phase shift, in our case for the
I = 0, J = 0 channel. Chiral perturbation theory is consistent
with this order by order in the energy expansion. Following
Ref. [28], we know how to match this general description
to the results of chiral perturbation theory by appropriately
identifying the polynomial.

The two-pion vertices that appear in Figs. 4(a)–4(c) are
modified by this Omnes function in a way that is strictly
analogous to the two-pion vertex described in [28]. In
particular, as described in [3] the inclusion of the Omnes
function means that the spectral function is given by

ρS(µ) = ρ
a,b
S Re�(µ) + ρc

S |�(µ)|2. (22)

In chiral perturbation theory, there will be higher order
modifications to each term. However, experience has shown
that using the lowest order amplitudes supplemented by the
Omnes function gives reasonably good results up to 700–
800 MeV. I have applied this formalism to the nuclear central
potential using the physical phase shifts matched to the lowest
order results in order to generate the spectral function [3].
The result is very encouraging because it generates the main
features known phenomenologically for this interaction. It
was shown that this gives good results for the shape and
magnitude of the spectral function in the scalar channel. In
both the physical case and in the chiral limit (described below)
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I have also tested the formalism under the inclusion of expected
higher order interactions, and the general features of the results
seem to be robust. I will use this representation of the spectral
function in the applications below.

We have recorded the chiral amplitudes in the previous
section. The task now is to understand how these amplitudes
vary between the physical case and the chiral limit. There
will be several ingredients that need to be explored. Some
mass dependence is explicit in the chiral amplitudes. Other
dependence is contained in the parameters FπgA. Finally, there
is mass dependence in the Omnes function, or equivalently in
the ππ phase shifts. This latter feature requires the most work,
and I will address it first.

At low momentum, we have explicit expressions for the
ππ scattering amplitudes through the work of Gasser and
Leutwyler [29]. At higher energies, our best knowledge comes
from a treatment that combines chiral symmetry, dispersion
relations, crossing, and experimental data by Colangelo,
Gasser, and Leutwyler (CGL) [30]. In [3] I used the CGL phase
shifts to construct the Omnes function. However, because of
the reliance on experimental data, we do not directly have the
ability to vary the quark mass in this analysis. To calculate the
Omnes function for the chiral limit, we need to introduce a
method to model the high-energy behavior of the ππ phase
shifts in such a way that we can vary the pion mass.

There exists a good and successful method for extending
the description of the chiral amplitudes, often referred to
as the Padé approximation or the inverse amplitude method
(IAM) [31,32]. This provides an analytic approximation to the
scattering amplitudes in a form that fully satisfies unitary and
which can be matched order by order to the results of chiral
perturbation theory. Matched to the results at order E4, the
result for the I = 0, J = 0 amplitude is

T00 = t2 + t4 + · · · → t2
2

t2 − t4
. (23)

The second term t4 contains the effects of loop diagrams
and hence also has imaginary parts. The beauty of the IAM
representation is that this simple rearrangement allows the
amplitude to satisfy unitarity exactly. While the method
necessarily differs from the full answer beyond the order to
which it has been matched,6 studies have shown that this
representation provides a good description of the scattering
amplitudes up to reasonably large energies. For example, the
scalar-isoscalar IAM amplitude is compared to the physical
result of CGL in Fig. 5. The description is quite good up
to 700 MeV, after which it falls short. The resulting Omnes
function is also compared to that derived from the CGL phase
shifts in Fig. 6.7 Again, the results are similar, except at high
energies, where the Omnes function is small.

6For example, some two-loop logarithms are missing when the IAM
is matched at one loop order [33].

7In producing the Omnes function, I had to extend the phase shifts
above the µ = 850 MeV endpoint of the CGL analysis so that the
principle value part of the Omnes function integral would be well
behaved near the upper end. Likewise in the IAM formalism, there
is a corresponding extension. As long as this extension is smooth, it
has little effect on this calculation.

δ

0.2 0.4 0.6 0.8

20

40

60

80

µ (GeV)

FIG. 5. ππ phase shift from CGL (solid line) and from the inverse
amplitude method (dashed line). Agreement is excellent up to about
700 MeV.

I will use the IAM phase shifts as an analytic approximation
of the true amplitudes, keeping in mind the shortcomings at
higher energies. The low-energy behavior of these phase shifts
will then be fully rigorous, and the high-energy portion will
be approximate.

Let us immediately look at the phase shift and the Omnes
function in the chiral limit. The phase is shown in Fig. 7 in
comparison with the IAM approximation to the physical case.
The salient feature is the threshold behavior. The phase shift
in the chiral limit clearly extends down to s = 0, and since
this is the S wave, the strength turns on relatively quickly. The
physical case needs to vanish at the physical threshold. These
requirements naturally yield a larger phase shift for the chiral
case throughout much of the physical region. At high energies,
we see a much smaller difference between the chiral limit and
the physical case. This is what should be expected, as the pion
mass should make less of a difference at the higher energies.
The Omnes function follows directly from the phase shifts and
also has recognizable features. This is shown in Fig. 8.

These results are encouraging for the reliability of the
method. The place where we have the least theoretical control
is the upper energy end of the energy region. The IAM does
not produce much variation at these energies, so most of the
variation that we find comes from physics at lower energies.
Moreover, the phase shifts only enter our calculation through
the Omnes function, and the Omnes function is small at high
energy. The true Omnes function from the CGL phase shifts
is yet smaller, so the IAM slightly overemphasizes the higher
energies. However, since there is not much mass variation at
these energies, this is not a serious flaw. Overall, despite the
approximate nature of the IAM method, there is no reason
to doubt the general features of the resulting phase shift and
hence the Omnes function.

VI. DISPERSIVE CHIRAL ANALYSIS

In this section, the evaluation of the contact interaction
will be presented. The key features of the scalar channel (i.e.
the σ ) emerge, as reported in [3]. Moreover, the chiral limit
will induce a shift in the scalar coupling that again emerges
mostly from low energy two-pion exchange. In performing this
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FIG. 6. Absolute square (a) and real part (b) of the Omnes functions derived from the CGL phase shifts (solid line) and those found using
the inverse amplitude method (dashed line).

comparison, I have not varied the strange quark mass, keeping
it fixed at its physical value.

In addition to the explicit dependence on the pion mass
in the chiral amplitudes and the Omnes function, there is
also implicit dependence on the pion mass contained in the
parameters gA and Fπ . The dependence has the form [29,34]

Fπ = F0

[
1 − 1

16π2F 2
0

m2
π

(
ln

m2
π

m2
ph

+ l̄4

)]

(24)

gA = g0

[
1 − 2g2

0 + 1

16π2F 2
0

m2
π ln

m2
π

m2
ph

− g2
0m

2
π

16π2F 2
0

+ 4m2
π d̄16

g0

]

with l̄4 = 4.4 ± 0.2 and d̄16 = −1.0 ± 0.7. While the mass de-
pendence of the pion decay constant is fairly well constrained,
the corresponding result in gA is less well understood. This
will be a significant component of our final error estimate.

The chiral parameters c1,2,3 are determined from a chiral
analysis of pion-nucleon scattering [6,35,36]. When used
without matching to the Omnes function at second order
in m2

π , as is the case both in the πN analyses and in this

δ
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40
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80

µ (GeV)

FIG. 7. Scalar-isoscalar ππ phase shifts using IAM in the
physical case (dashed line) and in the chiral limit (solid line).

paper, there is an ambiguity as to whether the fitted parameter
should be identified with c3 itself or c3�(2mπ ), which is
the threshold value of the coupling. Since �(2mπ ) ∼ 1.25,
this makes a difference in the result. The spectral function is
dominantly determined by the parameter c3, which, however,
is not very well determined, with c3 = −4.7+1.2

−1.0 GeV−2 being
the quoted value. If we used instead the constraint c3�(2mπ ) =
−4.7+1.2

−1.0 GeV−2, we would choose c3 = −3.7+1.0
−0.8. The overall

magnitude of GS does depend sensitively on the choice of c3,
see [3]. However, the ratio of GS in the chiral limit to that of
the physical limit is almost completely insensitive to c3, as will
be commented on below. Therefore, I will only quote the ratio
as my final result. Although I have explored a wide range of c3

values, the figures were produced using c3 = −4.0 GeV−2, a
result intermediate between the two choices mentioned above
and consistent with both within errors. The other parameter
choices used were c1 = −0.64 GeV−2 [i.e., c1�(2mπ ) =
−0.8], and c2 = 3.3 GeV−2. I explored the sensitivity of the
results to these parameters, and both the magnitude and the
ratio are insensitive to reasonable variations.

At this stage, we can put the pieces together. The chiral
amplitudes of Eq. (22) contain both explicit and implicit mass
dependence, as displayed above. The Omnes function has
further dependence. The resulting integrand in the spectral
sum rule for GS was previously shown in Fig. 1, both for the
physical case and for the chiral limit.

As described in [3], the shape of the spectral function in
the physical case provides a reasonable representation of the
σ that traditionally appears in the nuclear potential. Moreover,
for reasonable values of the chiral parameters, in particular c3

which has the greatest impact, the physical value of GS can be
reproduced.

In traditional treatments of the nuclear interaction, the shape
of the attractive isoscalar is described by a broad low mass σ

particle near the mass of mσ = 600 MeV. The σ is not easily
understood in terms of the quark and gluon degrees of freedom
of QCD. It is unlikely that such a resonance is a traditional
resonance in the spectrum of QCD. The ππ phase shift is only
about 60◦ at this mass, and does not pass through 90◦ anywhere
in this neighborhood. A careful analysis [37] of the data and
theory of ππ scattering reveals a pole in the complex plane
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FIG. 8. Absolute square (a) and real part (b) of the Omnes functions in the physical case (dashed line) and in the chiral limit (solid line).

very far from the real axis, with mass ∼440 MeV and a larger
width � ∼ 540 MeV. However, it is important to realize that the
existence of this pole is not the determining feature for pionic
interactions at this energy. The ππ amplitudes are determined
by the chiral expansion which is still well behaved when
treated to one loop order at these energies. This amplitude
is specified in terms of the pion decay constant and a pair of
low-energy constants in the chiral lagrangian. These constants
in turn are known to be determined by the properties of the
ρ meson—there is no need or evidence of the σ . The existence
of the distant σ pole plays little role in the structure of the
ππ amplitude in the 400–600 MeV energy range. In QCD,
one can also see that the σ generated in the ππ amplitude is
not a fundamental resonance by an application of the large Nc

rules [32]. Real resonances have a smooth result in the limit
Nc → ∞. However, scattering amplitudes vanish in this limit,
and the σ found in the pion scattering amplitude disappears in
the large Nc limit.

In the present treatment of the internucleon force, the effect
that is traditionally described by a σ is reproduced even though
the amplitude is not really described by the exchange of a
scalar meson. The effect of the Omnes function is to reshape
the spectral function so that it mimics a σ . The amplitude rises
with increasing energy due to the energy dependence of the
chiral amplitudes, but eventually turns over due to the addition
of the Omnes function. The amplitudes could not continue
to rise, otherwise unitarity would be violated. The Omnes
function necessarily stops the growth of the chiral amplitudes
and in practice ends up reproducing an energy dependence
that mimics the form of a broad resonance. It should be noted
that since the Omnes formalism uses the experimental ππ

phase shifts in the elastic region, there must also exist in this
formalism the same pole far from the real axis that one finds
in the ππ analysis. However, again, this distant pole is not
what determines the structure of the amplitude along the real
axis. The chiral amplitudes along with the (nonresonant) phase
shifts are the only important ingredients in this description.
Even though the amplitude is not conventionally resonant at
500–600 MeV, the broad peaking of the spectral function
reproduces an effect very similar to a σ resonance. Note
that the use of the Omnes function is rigorous, and it can
be matched to chiral perturbation theory to any given order.

The approximation of the present paper is the use of only the
lowest order amplitudes as the polynomial that multiplies the
Omnes function. These are fully rigorous at low energies, but
are an approximate model when applied at higher energies.

It is, of course, not new to suggest that the σ effect is really
a manifestation of two-pion exchange. In early work which
extracted the internucleon potential from scattering data [1,2],
it was clear that the lowest energy state contributing the spectral
function in this channel had to be that of two pions, and hence
the dynamics of ππ exchange was crucial to the strength of the
central interaction. Previous studies have discussed two-pion
exchange in this channel (see [1,2,38–43] and references cited
therein) as well as attempts to understand the σ in terms of
quark degrees of freedom [44,45]. What is new in the present
work is the ability to match the chiral perturbation theory
treatment, the simplicity of the result, and the ability to have
reasonable control over the mass dependence of the individual
components of the formalism.

Since we have analytic control over the ingredients of this
calculation, we may use this formalism to take the pion mass
to zero. The result in the chiral limit has a similar high-energy
behavior, and the magnitude there is only slightly increased.
What is most striking is the enhancement at low energy. Much
of this is purely kinematic. The threshold in the chiral limit
extends down to zero energy, and the chiral predictions for the
spectral function develop quickly.

To calculate the ratio of the scalar strength in the chiral limit
to the physical limit, one compares the integral under the two
curves in Fig. 1. The extra weight under the spectral integrand
causes the value of GS to increase significantly. Overall, I find
that

ηS,ch ≡ GS |chiral

GS |physical
= 1.37. (25)

This is our primary result. It will be applied to the nuclear
interaction in a subsequent section.

Let me attempt to assess the uncertainties in this result.
Clearly, this calculation is not straight chiral perturbation the-
ory, and hence it does not share the rigor of that method. I have
modeled the moderate-energy behavior in the dispersive sum
rule, and neglected all truly high-energy effects beyond 1 GeV.
We clearly have no control over the effects at very high energy.
However, there is no indication either phenomenologically or
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theoretically that they are very important in the determination
of GS , nor that they would have significant dependence on
the pion mass. We can look at the low- and moderate-energy
uncertainties in more detail.

Most of the the shift in the scalar coupling comes from the
low-energy region. The threshold behavior is an unambiguous
feature—the chiral limit amplitudes must extend down to zero
energy, and the chiral expansion becomes exact there. Even at
moderate energies, the IAM representation of the pion phase
shifts should be quite good. The greatest uncertainty in this
region is the lack of understanding of the chiral behavior
in the pion coupling to nucleons, as the leading spectral
representation at low energy has a factor of g2

A. This effect is
quantifiable. The uncertainty in the chiral parameters d16 and
l̄4 corresponds to an uncertainty of ±0.07 in our final result.
Perhaps this uncertainty may be reduced in the future by lattice
calculations. There could be additional m2

π/(1GeV)2 ∼ 0.02
corrections to the c1,2,3 vertices besides those modeled by the
Omnes factor, so there are clearly other uncertainties on the
order of several percent.

The overall strength of GS depends most heavily on the
chiral parameter c3. However, the ratio of the chiral limit to
the physical case has only a remarkably tiny variation with
this parameter. Throughout the whole range of c3 considered
above, we find the ratio changes by less than 1%. Thus,
the uncertainty due to the magnitude of this parameter is
insignificant compared to other uncertainties.

One might worry that the treatment of two-pion exchange
as a potential, or the use of a contact interaction instead of
a potential, would break down in the chiral limit because of
the massless pions. This could be the case if the very long
range tail of the potential was significantly modified. Within
this calculation, there is no evidence of a problem. The spectral
function also can be used to predict a spatial potential V (r).
The physical result and the chiral limit result are shown in
Fig. 9. The shape of the chiral result is quite similar to the
physical limit.

The moderate-energy effects beyond the realm of straight
chiral perturbation theory are less quantifiable, but we have
reason to believe that they are not large. In contrast to the
low-energy effects, there is no reason to expect that these
effects are enhanced over the usual expectation of being of
order m2

π/�2. Indeed, we find a reasonably small shift in the
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)

1 2 3 4 5 6

-20

-15

-10

-5

FIG. 9. Attractive scalar-isoscalar potential in the physical case
(dashed line) and in the chiral limit (solid line).

spectral function at high energy, so our explicit calculation
is consistent with this. However, I find it hard to defend that
high-energy shift as a solid prediction of the method. If I were
to neglect all shifts above 500 MeV, the main result for ηS

would be about 5% smaller.
We can perform a further test by adding some expected

higher energy effects. One uncertainy that we are able to
explore numerically involves the energy dependence of the
pion vertices. The two-pion vertex would presumably have
some form factor associated with the leading coupling, c3,
which would generate a dependence of the vertex on the
momentum transfer. I have studied this by creating an energy-
dependent vertex through the substitution

c3 → c3

(µ2 + m2)n
. (26)

As mentioned in [3], this modifies the shape of the spectral
function somewhat and changes the integral that determines
GS . However, the change is modest enough that the desired
value can stillbe obtained by changing the fit value of c3 within
the allowed range. In this case, there is a modest increase in
the chiral/physical ratio of GS . For example, with n = 1 and
m = 1200 MeV, there is a 29% decrease in the predicted value
of GS at fixed c3. However, for the ratio ηS,ch this amounts to a
7% increase leading to the result ηS,ch = 1.46. The decrease in
GS and increase in ηS is readily understood. The form factor
will decrease the contribution at higher values of µ, but leave
unchanged the threshold effects at small µ. The former feature
will decrease the physical value of GS , but the new ingredients
enhancing the chiral limit will be unchanged.

Additionally, in the section describing the chiral slope
below, I will mention a puzzle concerning the lack of under-
standing of the nonanalytic behavior. While it is numerically
small, this is also a feature that must somehow be generated
from the higher energy portion of the spectral function.

I would summarize this discussion of the uncertainties by
giving a final result of

ηS,ch ≡ GS |chiral

GS |physical
= 1.37 ± 0.10. (27)

VII. THE VECTOR CHANNEL

Also contributing to the central force is the disper-
sive channel involving three pions in an I = 0 state, i.e.,
the ω exchange channel. In this section, I will estim-
ate the modification of this strength in the chiral limit. The
change is very slight, and the net effect on nuclear binding is
so small that it is well below even the uncertainty of the result in
the scalar channel. The reason for this is clear: the 3π channel is
very small at threshold, and hence the threshold sensitivity that
the scalar channel exhibited is absent. The chiral modification
has the natural size of order m2

π/(1GeV)2.
In the dispersion relation

GV = 2

π

∫ ∞

3mπ

dµ

µ
ρV (µ2), (28)

the spectral function ρV (µ2) is small at low energy. In
chiral perturbation theory, it arises first as the cut in a
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two-loop diagram and hence is higher order in the energy
expansion. There is also a kinematic suppression since the
three pions are in a total spin-one state. Both theoretically and
phenomenologically there seems to be little strength in this
channel, see, e.g., Ref. [35], until one reaches the energy of
the ω(783), which is a narrow resonance coupled essentially
entirely to three pions. After the ω(783), there is not another
three-pion resonance until well over 1 GeV. It is then a
reasonable approximation to take the vector spectral function
dominated by the narrow resonance ω(783).

We need to understand how the properties of the ω(783), i.e.,
its mass and coupling, are modified in the chiral limit. We can
estimate its mass in the chiral limit from the SU(3) breaking in
the other vector mesons. Replacing one of the light quarks by
a strange quark yields the K∗(890), and replacing two of them
produces the φ(1040). The vector mesons empirically obey an
equal spacing rule. This leads to a simple linear interpolation
formula as a function of the light quark mass m̂:

mV = mω + (mφ − mω)
m̂ − m̂phys

ms − m̂phys
. (29)

The chiral limit is found with m̂ = 0, resulting in

mchiral = 783 − (1040 − 783)
m̂phys

ms − m̂phys
= 770. (30)

This is a 2% shift in the mass.
One can address the quark mass dependence of the vector

coupling to nucleons again through the SU(3) breaking
pattern plus data. The SU(3) breaking of the NNV couplings
themselves is not known well enough experimentally to be
of direct use. However, an indirect method can be employed.
A phenomenologically successful model for these coupling,
called vector meson dominance (VMD), relates the nucleon’s
NNV coupling gv to the coupling of the vector meson to a
photon fv , defined via

〈V |Jµ|0〉 = cvfvm
2
vεµ, (31)

where Jµ is the electromagnetic current and cv are known
Clebsch-Gordon coefficients. The VMD relation is simply
gv = f −1

v and can be motivated/derived from a dispersion
relation argument for the electromagnetic current of the
nucleon. Phenomenologically, VMD works very well. Since
there is experimental evidence on the SU(3) breaking of fv ,
we can use that plus VMD as an estimate of the quark mass
dependence of gv . I have performed a fit to the data involving
the neutral vector mesons ρ, ω, and φ, again assuming a linear
interpolation. The result is a dependence of the form

gv = gv0
[
1 + bgv

(
m2

π − m2
ph

)]
, (32)

with bgv = 0.57 ± 0.22 GeV−2. The error bar comes from
using different data in the evaluation of the SU(3)breaking.
The central estimate is then

gv|chiral

gv|physical
= 0.99. (33)

We can combine the vector mass and coupling to determine
the shift in the parameter vector coupling GV = g2

V /m2
V . This

yields

ηV,ch ≡ GV |chiral

GV |physical
= 0.995 ± 0.020. (34)

The variation of both the mass and the coupling constant were
mild compared to the dependence that we have estimated for
the scalar channel. Moreover, both the mass in the denominator
and the coupling constant in the numerator decreased, leading
to a very small net effect in the ratio. The error bar quoted is a
generous estimate. In any case, the uncertainty in this coupling
is significantly smaller than that in the scalar coupling.

VIII. ESTIMATE OF THE CHANGES IN NUCLEAR
BINDING ENERGY

Our results clearly have the strength of the attractive scalar
coupling being significantly increased in the chiral limit. As I
argued in Sec. II, in effective field theory the most consistent
procedure would be to treat the long-range components of
the two- pion exchange dynamically, most likely with a form
of a cutoff, and then add the contact interactions to account
for the rest of the interaction. This has not yet been done for
heavy nuclei. However, the use of the contact interactions in
point-coupling calculations of binding provide an estimate of
the shift in the binding that is appropriate for the present state
of the art.

Not all possible contact interactions play a significant role
in nuclear binding. The dominant ingredients in the binding
of heavy nuclei have been elucidated by Furnstahl, Serot,
and coworkers [26,46]. The results can be extracted from
Figs. 1 and 2 of [46]. It is clear that the dominant effects are
the scalar and vector contributions, to the leading power of the
density. Other interactions play reduced roles, although for a
complete understanding of the binding, about a half-dozen
contact interactions are required. I will consider only the
dominant isoscalar-scalar and isoscalar-vector interactions; in
practice, it is only the scalar coupling that has a significant
dependence on the pion mass.

Using Ref. [46], one can read off the effects of the
different contact terms.8 I parametrize the results in terms
of the strengths of the contact interactions, normalized to their
physical values, defining

ηS = GS

GS |physical
,

(35)

ηV = GV

GV |physical
.

The contributions to the binding energy numbers for 16O (in
MeV) are

B.E.

A
∼ −82ηS + 44ηV + 30. (36)

The first two terms are the effects of the scalar- and vector-
isoscalar interactions. The third term is the sum of four other

8I thank Dick Furnstahl and Brian Serot for assistance in under-
standing these numbers.
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smaller contributions to the binding energy and kinetic energy
contributions. There is, in addition, the Coulomb energy and a
small center-of-mass correction. For 208Pb, the result is

B.E.

A
∼ −104ηS + 57ηV + 36. (37)

The results of these calculations can be generalized to other
nuclei by a parametrization that resembles the semiempirical
mass formula. For local interactions, because the nuclear
density is nearly constant in the central region, one expects
that the binding energy will have a dependence volume, which
in turn is proportional to the number of particles r3 ∼ A, and
that interactions that occur near the nuclear surface would have
a modified result proportional to the number of nucleons near
the surface, r2 ∼ A2/3. This suggests that binding effects can
be parametrized in terms of behavior in A and in A2/3. Using
the results for nuclear matter and for specific nuclei, we find a
good fit of the form

B.E.

A
= −

(
120 − 97

A1/3

)
ηS +

(
67 − 57

A1/3

)
ηV

+ residual terms. (38)

Our results from the previous sections can be summarized
as

ηS,ch = GS |chiral

GS |physical
= 1.37 ± 0.10,

(39)

ηV,ch = GV |chiral

GV |physical
= 0.995.

These numbers produce

B.E.

A
|chiral = −38 ± 8 MeV (40)

for 16O, compared to the physical result of −8 MeV. For 208Pb,
the corresponding results are −49 ± 10 MeV in the chiral
limit compared to −11 MeV in the physical case. Finally, for
the general paramatrization, the results suggest a shift in the
binding energy


B.E.

A
|chiral = −

(
44 − 36

A1/3

)
. (41)

These shifts are larger than we would naively expect. There
are two ingredients in generating this magnitude. First is
the large shift in the scalar contact interaction GS . I have
explained at length above why this large shift occurs and
why it should be considered natural. The other ingredient
is that there is a strong cancellation between the scalar and
vector terms in the expression for the binding energy. The
usual 10 MeV/nucleon binding energy is the difference of
two significantly larger numbers. This is understandable from
the meson exchange potential description. Scalar exchange
provides a strong attractive potential. Vector meson exchange
provides the repulsive short-range interaction and tends to
oppose binding. The fact that the 10 MeV of binding energy
is far below all other hadronic scales of QCD comes from the
competition of these two opposing effects. When we go to the
chiral limit and make the attractive interaction significantly
stronger while leaving the repulsive one unchanged, the near

cancellation between these competing effects becomes less
pronounced and the percentage shift is large.

IX. THE CHIRAL SLOPE PARAMETER

Another way to present the results of this calculation is as
the slope in the scalar coupling as one deviates from the chiral
limit. The leading terms in an expansion around the chiral limit
are given by

GS = GS0
(
1 + dSm

2
π

) + FSm
3
π + · · · , (42)

where GS0 is the result in the chiral limit, and the nonanalytic
term is [21]

FS = − 3g2
A

16πF 4
π

(6c1 − 5c3). (43)

The effect of the FS term is relatively small, i.e., FSm
3
π/GS0 ∼

0.09.
It should be pointed out that the dispersion relation does

not exactly reproduce the correct m3
π dependence of the chiral

coupling. The cubic mass dependence arises in the dispersive
calculation from the threshold behavior of the chiral amplitude.
Use of the chiral representation for the spectral function given
in Eq. (18) leads to a cubic term that is

F
(disp)
S = − 3g2

A

16πF 4
π

(
6c1 − 11

3
c3

)
. (44)

I checked both the spectral function and the real part of the
loop calculation. This has nothing to do with the unitarization
procedure and cannot be changed by higher order corrections
to the threshold behavior. While the effect is numerically
small, it represents a puzzle to which I do not understand
the resolution.9 It is fortunate that this nonanalytic term is
numerically small and the effect of the disagreement has only
a 2% effect on the determination of the slope.

I extracted the chiral slope by evaluating of the dispersion
integral at several values of the pion mass and performing a fit
using terms in m2

π and m4
π as well as the known nonanalytic

term in m3
π . The result of the fit yields the slope

dS = −(17 ± 5) GeV−2 = −0.31 ± 0.08

m2
π

. (45)

The negative sign is indicative of the the fact that the scalar
coupling is smaller in the physical case than it is in the chiral
limit. This slope is relatively large for the reasons discussed
above. Again, because the ratios of scalar couplings are
predicted better than the absolute values, the parameter dS is
much better determined in this calculation than DS ≡ dSGS0.
As seen in the previous section, the slope of the combination
of the two isoscalar effects in the overall nuclear central force
is yet larger because of the partial cancellation of the scalar
and vector channels.

9I thank E. Epelbaum, U. Meißner, N. Kaiser, and Barry Holstein
for discussions about this issue.
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X. SUMMARY AND DISCUSSION

I have used the chiral results for the low-energy behavior
of the dispersion relation for the scalar contact interaction,
supplemented with a representation for the Omnes function,
in order to calculate the strength of the central nuclear force
in the chiral limit. In the results, the largest modifications
are seen to come from the low-energy amplitudes, which
extend down to zero energy in the chiral case. While there
are some uncertainties in the final result, most notably from
the uncertainty in the chiral extrapolation of gA, the key
ingredients in the calculation appear clear. We also understand
qualitatively why the effect is relatively large.

Since this has been an attempt to calculate the full scalar
coupling, I have had to model the high-energy contributions.
While I have argued that this modeling has not introduced
large effects in the final results, there is also a way to use this
method with the full rigor of chiral perturbation theory. To do
this, one would use the present calculation dynamically and
in addition introduce a residual contact interaction to account
for high-energy effects which have been misrepresented in the
present calculation. This extra parameter would presumably be
small and would not be expected to have much mass variation.
This variant of the Wilsonian scheme described in Sec. II
would then be a way to implement the effective field theory
treatment while capturing the main dynamical results of the
present calculation.

Several other works discuss nuclear interaction in the chiral
limit [4–6] within the context of chiral perturbation theory. The
present work is different because it is a dynamical attempt to

calculate the mass variation in the scalar channel. Previous
work has been both more general, because this variation was
parametrized a chiral coefficient, and more limited, because
this coefficient could only be guessed at. In practice, the
mass variation found in this paper is larger than the estimates
of [4,5] and has a well-determined sign. Another difference
is that the previous works focused on few-nucleon systems.
This requires the addition of single-pion exchange, which
obviously also has a significant change in the chiral limit.
My contribution here is only on the scalar sector, hence I have
limited my comments on binding to the heavy nuclear case
for which one-pion exchange is not important. However, it
is clear that the results of this paper would push the binding
of few-nucleon systems in the direction of greater binding.
It would be interesting to revisit the few-nucleon case with
either the parameter dS calculated in the present work or with
a full Wilsonian treatment dynamically including the effects
of low-energy two-pion exchange.
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