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We present a new method for calculating the heavy-ion interaction potential from a density-constrained
time-dependent Hartree-Fock calculation.
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The study of internuclear potentials for heavy-ion collisions
is of fundamental importance for the formation of superheavy
elements and nuclei far from stability. While asymptotically
such potentials are determined from Coulomb and centrifugal
interactions, the short distance behavior strongly depends on
the nuclear surface properties and the readjustments of the
combined nuclear system, resulting in potential pockets, which
determine the characteristics of the compound nuclear system.

Among the various approaches for calculating ion-ion
potentials are: (1) Phenomenological models such as the Bass
model [1,2], the proximity potential [3–6], and potentials ob-
tained via the double-folding method [7–10]. Some of these po-
tentials have been fitted to experimental fusion barrier heights
and have been remarkably successful in describing scattering
data. (2) Semimicroscopic and full microscopic calculations
such as the macroscopic-microscopic method [11–13], the
asymmetric two-center shell-model [14], constrained Hartree-
Fock (CHF) with a constraint on the quadrupole moment or
some other definition of the internuclear distance [15,16], and
other mean-field-based calculations [17–19].

One common physical assumption used in many of the
semimicroscopic calculations is the use of the frozen density
or the sudden approximation. As the name suggests, in this
approximation the nuclear densities are unchanged during
the computation of the ion-ion potential as a function of
the internuclear distance. On the other hand, the microscopic
calculations follow a minimum energy path and allow for the
rearrangement of the nuclear densities as the relevant collective
parameter changes. As it was pointed out in Ref. [12], CHF
calculations seldom produce the correct saddle-point since
the system can follow any one of the minimum potential
valleys in the multidimensional potential energy surface. In
this article we call this the static adiabatic approximation since
a real adiabatic calculation would involve a fully dynamical
calculation, thus also including the effects of dynamical
rearrangements.

One conclusion that may be reached from the discussion
above is that ultimately we would like to have an approach
for calculating internuclear potentials that is time-dependent
and is unrestricted in the choice of collective variables. In this
paper we provide such an approach in which time-dependent
Hartree-Fock (TDHF) is used for the nuclear dynamics and
the potential energy is calculated by constraining the time-
dependent density.

The density constraint is a novel numerical method that was
developed in the mid 1980s [20,21] and was used to provide a

microscopic description of the formation of shape resonances
in light systems [21]. In this approach the TDHF time evolution
takes place with no restrictions. At certain times during the
evolution the instantaneous density is used to perform a static
Hartree-Fock minimization while holding the total density
constrained to be the instantaneous TDHF density. In essence,
this provides us with the TDHF dynamical path in relation to
the multidimensional static energy surface of the combined
nuclear system. Since we are constraining the total density
all moments are simultaneously constrained. In the traditional
CHF notation this corresponds to the replacement

λQ̂ −→ λρ̂. (1)

The numerical procedure for implementing this constraint and
the method for steering the solution to ρTDHF(r, t) is discussed
in Refs. [20,21]. The convergence property is as good if not
better than in the traditional CHF calculations with a constraint
on a single collective degree of freedom. Although the self-
consistent minimization produces the lowest state consistent
with the prescribed density, that density itself may contain
some degree of excitation, not because of motion but rather,
for example, because of the flexibility of the system to change
the proton and neutron radii while keeping the total radius
constant.

In this article, we shall call the energy of the system
obtained by the density constraint method EDC(R), where the
dependence is on the instantaneous internuclear separation,
R(t). Because this quantity contains no translational kinetic
energy (taken out by the static minimization), it is actually a
potential as we show below. We define the excitation energy
of the system as

E*(R) = ETDHF − TR − EDC(R), (2)

where ETDHF is the total TDHF energy

ETDHF =
∫

d3r H(r, t), (3)

which is conserved throughout the calculation, and TR is the
instantaneous translational energy between the two nuclei

TR = 1
2µṘ2, (4)

with µ being the reduced mass of the system and Ṙ the velocity
associated with the internuclear separation coordinate R(t). At
the same time the total TDHF energy can be written in terms
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of the excitation energy as

ETDHF = TR + V (R) + E*(R), (5)

such that when combined with Eq. (2) it shows that V (R) =
EDC(R). However, the density constrained potential still
contains the binding energies of individual nuclei, which
should be subtracted out;

V (R) → V (R) = EDC(R) − EA1 − EA2 . (6)

Equation (6) is the internuclear potential and contains no free
parameters. Given an effective nuclear interaction, such as
the Skyrme force, V (R) can be constructed by performing a
TDHF evolution and minimizing the energy at certain times to
obtain EDC(R), while EA1 and EA2 are the results of a static
Hartree-Fock calculation with the same effective interaction.
One can see that the expression also has the correct asymptotic
behavior since numerically for large R we exactly get

EDC(Rmax) = EA1 + EA2 + Z1Z2e
2

Rmax
, (7)

such that

V (Rmax) = Z1Z2e
2

Rmax
, (8)

so that normalization of V (R) is not necessary.
We have carried out a number of TDHF calculations

with accompanying density constraint calculations to compute
V (R) given by Eq. (6). A detailed description of our new three-
dimensional unrestricted TDHF code was recently published in
Ref. [22]. For the effective interaction we have used the Skyrme
SLy5 force [23] including all of the time-odd terms. In Fig. 1
we show the result of our calculation for the head-on (zero
impact parameter) collision of 16O+16O at Ec.m. = 34 MeV.
Also shown in Fig. 1 are two widely used phenomenological
potentials, the standard proximity potential for two spherical
nuclei [3–5] and the double-folding potential with M3Y
effective NN interaction [7–10]. We evaluate the double-
folding integral for the strong nuclear and Coulomb interaction
in momentum space [10]. For the charge and matter densities
we utilized generalized Fermi distributions whose parameters
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FIG. 1. Internuclear potential obtained from Eq. (6) and various
model calculations for the head-on collision of the 16O+16O system
at Ec.m. = 34 MeV.

were determined from electron scattering experiments [24].
The double-folding potential agrees almost perfectly with
the DC-TDHF approach for distances R � 6 fm. At smaller
distances, the double-folding potential tends to overestimate
the nuclear interaction as a result of the (unphysical) frozen
density approximation. The classical TDHF curve corresponds
to the older definition

V (R) = Ec.m. − TR, (9)

used in Ref. [25].
We also repeated the above calculations for different

center-of-mass energies. In this case, we find that the results
at the barrier do not appreciably change but the depth of the
potential increases for lower energies. For Ec.m. = 12 MeV
the potential is about 1.5 MeV deeper than the one at 34 MeV.
One comment is required regarding the calculation of the
internuclear separation R. As usual, this quantity becomes
somewhat unclear for a strongly overlapping system. In our
case we use the standard TDHF approach of finding left and
right dividing planes and computing the centers of the density
in these two halves and thus the separation.

In TDHF, fusion occurs when the relative kinetic energy
in the entrance channel is entirely converted into internal
excitations of a single well-defined compound nucleus. The
dissipation of the relative kinetic energy into internal excita-
tions is due to the collisions of the nucleons with the “walls”
of the self-consistent mean-field potential. TDHF studies
demonstrate that the randomization of the single-particle
motion occurs through repeated exchange of nucleons from
one nucleus into the other. Consequently, the equilibration of
excitations is very slow and it is sensitive to the details of
the evolution of the shape of the composite system. This is
in contrast to most classical pictures of nuclear fusion, which
generally assume near instantaneous, isotropic equilibration.
This equilibration can be observed in the DC-TDHF approach
by tracking the evolution of the excitation energy in time for a
system on the way to fusion, or alternately one can examine the
change in the internuclear potential for the compound system.
In Fig. 2 we show this for the 16O+16O system corresponding
to the case shown in Fig. 1. After passing the first minimum
the system falls back to a second minimum and climbs

4 5 6 7 8 9 10

R (fm)

-10

-5

0

5

10

V
(R

) 
(M

eV
)

1
st
  minimum

2
nd

 minimum

3
rd

 minimum

4
th

 minimum

16
O + 

16
O

E
c.m.

 = 34 MeV

b = 0

FIG. 2. Internuclear potential obtained from Eq. (6) shown for
the entire time evolution of the 16O+16O system at Ec.m. = 34 MeV.
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FIG. 3. (Color online) Internuclear potentials obtained from
Eq. (6) shown for the evolution of the 16O+22Ne system at Ec.m. =
50 MeV (solid curves). The two curves correspond to different
orientations of the Ne nucleus. The corresponding proximity potential
curves are also shown (dashed curves).

up the potential barrier, but it cannot overcome the barrier
because of some of the energy being converted into internal
excitations; consequently it falls back to a third minimum,
fourth minimum, and so on, until complete equilibration. This
potential ladder effect is characteristic for all fusing systems.

Finally, we have performed calculations for the 16O+22Ne
system at Ec.m. = 50 MeV. In this case the 22Ne nucleus
shows a strong axial deformation, which can have different
orientations with respect to the collision axis. We have recently
reported a procedure for doing such calculations within the

TDHF framework in Ref. [26]. Here, we show the result of our
potential calculations for two orientations of the 22Ne nucleus,
one in which the symmetry axis of the Ne is aligned with
the collision axis and the other in which the symmetry axis is
perpendicular to the collision axis. In TDHF, for the first case
(aligned with the collision axis), we see no fusion at this energy,
whereas for the perpendicular alignment the system fuses. In
Fig. 3 we show the results of our potential calculations. We
observe that the barrier height and its position in R space
and the potential minimum and its position are considerably
different for the two orientations. For comparison we have also
added the corresponding curves for the proximity potential.

In summary, we have presented a method for calculating
internuclear potentials directly from the TDHF time evolution
of the colliding system. The method uses the density constraint
to trace the TDHF trajectory in relation to the static multidi-
mensional energy surface of the combined system. Because the
TDHF evolution is unhindered, all of the collective dynamics
associated with the evolution are included in the calculations.
We believe this provides a unique way to calculate ion-ion
potentials from mean-field calculations. Of course, we can
only perform such calculations for energies above the barrier
because TDHF is a semiclassical theory in this regard. Finally,
the results are expected to be only as good as the TDHF
description of the particular system under study.
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