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The phenomenon of superscaling for quasielastic lepton induced reactions at energies of a few GeV is
investigated within the framework of the relativistic impulse approximation. A global analysis of quasielastic
inclusive electron and charged-current neutrino scattering reactions on nuclei is presented. Scaling and
superscaling properties are shown to emerge from both types of processes. The crucial role played by final state
interactions is evaluated by using different approaches. The asymmetric shape presented by the experimental
scaling function, with a long tail in the region of positive values of the scaling variable, is reproduced when
the interaction in the final state between the knockout nucleon and the residual nucleus is described within the
relativistic mean field approach. The impact of gauge ambiguities and off-shell effects in the scaling function is
also analyzed.
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I. INTRODUCTION

Scaling is a very general phenomenon [1] occurring in var-
ious areas of physics that deal with probes weakly interacting
with many-body systems in which a single constituent in the
target system absorbs the energy and momentum transfer. The
validity of the concepts of scaling [2] and superscaling [3]
applied to inclusive quasielastic (QE) electron scattering at
intermediate to high energies has been investigated in depth
[3–5]. From an exhaustive analysis of the (e, e′) world data,
one concludes that the scaling behavior is highly fulfilled [4].
One may distinguish between scaling of the first kind, which
corresponds to reduced cross sections being independent of
the momentum transfer q, and scaling of the second kind,
namely, no dependence on the nuclear species. The data
analysis shows that scaling of the first kind is reasonably well
respected at excitation energies below the QE peak, usually
called the scaling region, whereas scaling of the second kind
is excellent in the same region. The simultaneous occurrence
of both kinds of scaling is named superscaling. At energies
above the QE peak, where nucleon resonances are important,
both types of scaling, first and, to a lesser extent, second, are
broken. Scaling violations are shown to reside mostly in the
transverse response, but not in the longitudinal which appears
to superscale [5]. These results are in accordance with the
important contributions expected in the transverse channel
due to effects beyond the impulse approximation: inelastic
scattering [6,7], correlations, and meson exchange currents
(MEC) in both the 1p-1h and 2p-2h sectors [8–12].

The scaling analysis of QE (e, e′) data was extended into
the � region [13], leading to the extraction of two different
scaling functions which embody the nuclear dynamics in the
two regions. The scaling approach has been exploited to predict
inclusive charged-current (CC) neutrino-nucleus cross sec-
tions. This strategy is based on the assumption that a universal
scaling function exists, which is valid for both electron and
neutrino scattering reactions, provided that the corresponding

kinematics are similar. This hypothesis of a universal scaling
function, which is true by construction in the relativistic
Fermi gas (RFG) model [14], was further investigated when
final state interactions (FSI) were included. The analysis
performed in [15] within the context of a nonrelativistic
mean field calculation, but incorporating important aspects
of relativity at the level of the current operators, called the
semirelativistic (SR) approach, proved that scaling properties
were highly fulfilled for the electromagnetic responses at
intermediate to high energies. Moreover, the scaling function
extracted from these coincides with that from the (ν, µ)
reaction. However, it presents a symmetric shape which is
not supported by the analysis of (e, e′) data. This is not
unexpected because additional dynamical effects, which are
beyond the nonrelativistic mean field picture considered in
[15], are needed in order to reproduce the asymmetry extracted
from the experiment.

An investigation of the QE scaling properties of CC
neutrino-nucleus scattering within the context of the rela-
tivistic impulse approximation (RIA) has been presented in
[16]. Although resorting only to one-body excitations, the
RIA has been shown to provide the required asymmetry of
the scaling function when strong relativistic potentials are
included in the model. This makes an important difference
with previous nonrelativistic, or SR, calculations based on the
impulse approximation [15,17,18]. The superscaling function
evaluated from QE (ν, µ) calculations was compared with the
(e, e′) phenomenological one, showing the capability of RIA
models to yield the required properties of data.

In this paper we extend the investigation on scaling by
performing a global analysis of (e, e′) and (ν, µ) reactions
within the RIA framework. We follow the general procedure
of scaling and superscaling studies [5,13,15,16]. First, we
calculate inclusive cross sections within a specific model and
then obtain scaling functions by dividing them by the relevant
single-nucleon cross sections weighted by the corresponding
proton and neutron numbers [5,19]. The scaling function so
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obtained is plotted against the scaling variable ψ(q, ω), and its
scaling properties analyzed, i.e., we explore its dependence on
the transfer momentum (first-kind scaling) and on the specific
target nucleus (second-kind scaling).

A detailed study of the off-shell effects and gauge ambi-
guities in the scaling function is also presented. The analysis
performed and its comparison with data give us important
clues as to the validity of the different theoretical descriptions
considered. Furthermore, the consistency between (e, e′) and
(ν, µ) calculations, which reflects the universality property
of the superscaling function, is also clearly illustrated.
Finally, we show that the RIA approach, in spite of its
simplicity, gives rise to the required shape presented by the
experimental scaling function. Scaling and superscaling ideas
have been carried a step further to include neutral-current
(NC) neutrino-nucleus scattering processes in [20]. Here, NC
differential cross sections were obtained by making use of the
phenomenological (e, e′) scaling function, i.e., the universality
property was assumed. It will be very interesting to investigate
scaling for NC reactions within the RIA framework. This will
allow us to prove if various RIA-FSI models superscale, and
moreover, if the universal asymmetric scaling function also
emerges from the RIA calculations on NC processes.

The paper is organized as follows. In Sec. II, we present a
brief summary of the basic formalism involved in describing
inclusive QE electron-nucleus and CC neutrino-nucleus scat-
tering processes. We restrict ourselves to the plane-wave Born
approximation (PWBA) and assume the RIA. The analysis of
scaling and superscaling with the general expressions implied
is discussed in Sec. III. Here we also show the experimental
scaling function together with a phenomenological fit and a
comparison with the simple RFG result. In Sec. IV, we discuss
the results starting with a global analysis of QE (e, e′) reactions
where off-shell effects in the differential cross sections are
investigated at depth. We continue with the study of scaling
properties, showing that our theoretical results do scale even
when strong relativistic potentials are present. A separate anal-
ysis of the different channel contributions is also presented.
Comparison with data shows that our model calculations do
agree with experiment for specific descriptions of FSI. To
conclude, we compare the scaling functions evaluated from
(e, e′) calculations with those obtained from (ν, µ) reactions
[16]. Results show that they almost coincide, hence the model
is consistent with the fulfillment of the universality property.
Finally, in Sec. V we present our conclusions.

II. INCLUSIVE QUASIELASTIC LEPTON SCATTERING
FORMALISM: THE RELATIVISTIC IMPULSE

APPROXIMATION

This work deals with lepton induced reactions at energies
of a few GeV and QE kinematics. In particular, we focus on
inclusive electron scattering and CC neutrino (antineutrino)
scattering on nuclei and assume the Born approximation (BA).
The leptonic variables (in the laboratory system) involved in
the processes are Kµ = (ε, k), the 4-momentum of the incident
lepton (e or νµ) beam, and K ′µ = (ε′, k′), the 4-momentum of
the scattered lepton (e′ or µ). The process is mediated by the

exchange of a virtual photon (electron scattering) or a charged
vector boson (CC neutrino scattering) with 4-momentum
Qµ = (K − K ′)µ = (ω, q).

The general formalism for (e, e′) and (ν, µ) reactions has
been presented in previous works [4,8,13,15,21]. Here we sim-
ply summarize those basic aspects needed for later discussion.
Assuming PWBA, i.e., one virtual particle exchanged and
leptons described as free particles, the QE differential cross
section can be expressed in terms of separate nuclear response
functions. In the case of (e, e′) reactions, we may write[

dσ

dε′d�′

]
(e,e′)

= σM [vLRL(q, ω) + vT RT (q, ω)], (1)

where �′ is the scattered electron solid angle and the term
σM represents the Mott cross section. Analogously, for CC
neutrino scattering reactions the differential cross section can
be written in the form [13,15][

dσ

dε′d�′

]
χ

= σ0[v̂CCR̂CC + 2v̂CLR̂CL + v̂LLR̂LL

+ v̂T R̂T + 2χv̂T ′R̂T ′
], (2)

with (ε′,�′) the muon kinematic variables. The symbol χ

specifies neutrino-induced reactions (χ = +) or antineutrino-
induced reactions (χ = −), and the term σ0 depends on
the Fermi constant and the Cabibbo angle (see [13] for its
explicit expression). The kinematic factors vK and v̂K come
solely from the electromagnetic and weak leptonic tensors,
respectively, and their explicit expressions can be found in
[4,8,13].

The electromagnetic RK and weak R̂K response functions
contain the whole dependence on the nuclear vertex coupling
and are expressed by taking the appropriate components of
the nuclear tensor [4,8,13]. This involves the matrix elements
of the virtual photon or charged boson interaction with
the nuclear electromagnetic or weak current. The inclusive
hadronic electromagnetic tensor reads

Wµν(q, ω) =
∑

i

∫∑
f

δ(Ef − Ei − ω)〈f |Ĵ µ
em(Q)|i〉∗

× 〈f |Ĵ ν
em(Q)|i〉, (3)

where |i〉 describes the initial target state and |f 〉 represents a
specific many-body final nuclear state. The term Ĵ

µ
em(Q) refers

to the nuclear electromagnetic many-body current operator.
A similar expression to (3) should be written for the weak
tensor Ŵµν in terms of the nuclear weak many-body current
operator Ĵ µ

w (Q). The electromagnetic tensor given in (3) is
an exceedingly complicated object which includes all possible
final states that can be connected with the initial ground state
through the action of the many-body current operator.

In this paper, we restrict ourselves to the QE kinematic
regime and we adopt the relativistic impulse approximation.
Within the RIA, the many-body nuclear current operator is
simply given as a sum of single-nucleon current operators
that only couple the target ground state to scattering states
lying in the one-body knockout space. The RIA approach has
been extensively applied in investigations of exclusive electron
scattering reactions [22–25]. Further details on the model for
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neutrino-nucleus scattering reactions have been presented in
[21,26–28]. Within the RIA framework, the main ingredient
needed to evaluate the electromagnetic and weak tensor is the
single-nucleon current matrix element,

〈Ĵ µ(Q)〉 =
∫

dreiq·rψF (pF , r)
̂µψ
jm

B (r). (4)

Here ψ
jm

B (r) and ψF (pF , r) are the wave functions for
the initial (bound) nucleon and for the emitted nucleon,
respectively, and 
̂µ is the corresponding single-nucleon
current operator for electron (
̂µ

em) or weak CC neutrino (
̂µ
w)

scattering.
We describe the bound nucleon states as self-consistent

Dirac-Hartree solutions, derived within a relativistic mean
field (RMF) approach using a Lagrangian containing σ, ω, and
ρ mesons [29,30]. The outgoing nucleon state is described
as a relativistic scattering wave function. Different options
have been considered: first, the relativistic plane-wave impulse
approximation (RPWIA), namely, the description of the
knockout nucleons by means of plane-wave spinors; second,
the effects due to FSI between the ejected nucleon and the
residual nucleus. In our model, FSI effects are described by
using Dirac equation solutions in the presence of relativistic
potentials. This constitutes the relativistic distorted-wave
impulse approximation (RDWIA) [22].

The use of energy-dependent complex relativistic optical
potentials fitted to elastic proton scattering data has proven to
be successful in describing exclusive (e, e′p) scattering reac-
tions under QE kinematics [22–25,31]. In this case of exclusive
reactions, the optical potentials are built to reproduce the
contribution from the elastic channel. For inclusive processes
such as (e, e′) and (ν, µ), the contribution from the inelastic
channels should be retained. Ignoring them would lead to
an underestimation of the inclusive cross section [27,32,33].
Multiple nucleon knockout effects have been treated in detail
within the context of the Green function method [34–37]. A
simple way of obtaining the inclusive strength within the RIA
is to use purely real potentials. We consider two choices for
the real part. The first uses the phenomenological relativistic
optical potential from the energy-dependent, A-independent
parametrizations (EDAIC, EDAIO, EDAICa) derived by Clark
et al. [38], but with their imaginary parts set to zero. The
second approach consists of describing the outgoing nucleon
by means of distorted waves obtained with the same relativistic
mean field used to describe the initial bound nucleon states. We
refer to these two FSI descriptions as real relativistic optical
potential (rROP) and RMF, respectively. Dispersion relation
and Green function techniques [34–37] lead to results which
are close to those obtained in the impulse approximation with
either the rROP [36,37] or the mean field [34].

Concerning the current operator, we use the relativistic free
nucleon expressions [13,39,40]. For electromagnetic (e, e′)
processes, the three usual options, denoted as CC1, CC2, and
CC3, are considered:

[

̂

µ

CC1

]p(n)

em = (
F

p(n)
1 + F

p(n)
2

)
γ µ − F

p(n)
2

2mN

(P + PF )µ, (5)

[

̂

µ

CC2

]p(n)

em = F
p(n)
1 γ µ + iF

p(n)
2

2mN

σµνQν, (6)

[

̂

µ

CC3

]p(n)

em = F
p(n)
1

2mN

P
µ + i

(
F

p(n)
1 + F

p(n)
2

)
2mN

σµνQν, (7)

where F
p(n)
1 and F

p(n)
2 are the Pauli and Dirac proton (neutron)

form factors, respectively, that depend only on Q2, and the

on-shell 4-momentum P
µ = (E, p) with E =

√
p2 + m2

N ,
and p the bound nucleon momentum has been introduced.
Note that the three operators are equivalent for free on-shell
nucleons (they are connected by the Gordon transformation).
However, the RIA deals in general with off-shell bound and
ejected nucleons. Hence the three operators lead to different
results. Moreover, the current is not strictly conserved and
uncertainties dealing with the election of gauge also occur
[41–43].

The relativistic charged weak current of the nucleon is given
as 
̂µ

w = 
̂
µ

V − 
̂
µ

A, where the vector and axial-vector current
operators read


̂
µ

V = FV
1 γ µ + i

F V
2

2mN

σµνQν, (8)


̂
µ

A =
[
GAγ µ + GP

2mN

Qµ

]
γ 5, (9)

with FV
1,2 the isovector nucleon form factors given in terms

of the electromagnetic ones as FV
1,2 = F

p

1,2 − Fn
1,2. The axial-

vector and pseudoscalar form factors are parametrized as

GA = gA

1 − Q2/M2
A

, (10)

GP = 4m2
N

m2
π − Q2

GA, (11)

with gA = 1.26 and MA = 1032 MeV (see [44,45]).

III. SCALING AND SUPERSCALING AT THE
QUASIELASTIC PEAK

Detailed studies of scaling and superscaling for electron-
nucleus cross sections have been presented in [3–5]. The
analysis of the (e, e′) world data has shown the quality of
the scaling behavior: scaling of the first kind (no dependence
on momentum transfer) is quite good at excitation energies
below the QE peak, whereas scaling of the second kind (no
dependence on nuclear species) works extremely well in the
same region. In this paper, our aim is to investigate the
QE scaling properties of electron-nucleus and CC neutrino-
nucleus scattering within the context of the RIA. Assuming
various RIA models, we prove that they do superscale, and
we compare the associated scaling functions with the (e, e′)
phenomenological one.

In what follows, we present the basic expressions needed to
get the scaling functions. Several choices have been proposed
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in the literature for the appropriate scaling variable. Here,
following the analysis of the RFG model, we adopt the
dimensionless variable denoted as ψ ′(q, ω),

ψ ′ ≡ 1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′(1 + τ ′)

, (12)

where λ′ ≡ (ω − Eshift)/2mN, κ ≡ q/2mN, τ ′ ≡ κ2 − λ′2,
and ξF ≡

√
1 + (kF /mN )2 − 1. The term kF is the Fermi

momentum, and the energy shift Eshift, taken from [5], has
been introduced to force the maximum of the cross section
to occur for ψ ′ = 0. As usual, the notation ψ refers to the
scaling variable when Eshift = 0.

For inclusive QE electron scattering processes, the super-
scaling function is evaluated by dividing the differential cross
section (1) by the appropriate single-nucleon eN elastic cross
section weighted by the corresponding proton and neutron
numbers [4,5,19] involved in the process. We may write

f (ψ ′, q) ≡ kF

[
dσ

dε′d�′

]
(e,e′)

σM [vLGL(q, ω) + vT GT (q, ω)]
. (13)

The scaling behavior can also be analyzed by taking into
account the separate electromagnetic longitudinal L and trans-
verse T contributions. Thus the following scaling functions are
introduced:

fL(ψ ′, q) ≡ kF

RL(q, ω)

GL(q, ω)
, (14)

fT (ψ ′, q) ≡ kF

RT (q, ω)

GT (q, ω)
. (15)

The single-nucleon functions GL and GT are given by

GL = (κ2/τ )
[
G̃2

E + W̃2�
]

2κ
[
1 + ξF (1 + ψ2)/2

] , (16)

GT = 2τG̃2
M + W̃2�

2κ
[
1 + ξF (1 + ψ2)/2

] , (17)

where the function � reads

� = ξF (1 − ψ2)

[√
τ (1 + τ )

κ
+ 1

3
ξF (1 − ψ2)

τ

κ2

]
. (18)

As usual, one has

G̃2
E ≡ ZG2

Ep + NG2
En, G̃2

M ≡ ZG2
Mp + NG2

Mn,
(19)

W̃2 = 1

1 + τ

[
G̃2

E + τG̃2
M

]
,

involving the proton and neutron form factors weighted by the
proton and neutron numbers Z and N, respectively.

At sufficiently high energies, the function f depends only on
the scaling variable ψ ′ but not on the transferred momentum q.
Moreover, f (ψ ′) becomes also independent of the momentum
scale in the problem, that is, independent of kF . The scaling
behavior has been clearly demonstrated from the analysis of
the QE (e, e′) world data [3,4]. The investigation of the separate
contribution of the longitudinal and transverse response
functions has shown that scaling violations occur mainly

exp
fit
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FIG. 1. RFG superscaling function compared to data and a
parametrization of the results.

in the T channel because of significant effects introduced
by MEC, correlations, and inelastic scattering. From the
global analysis presented in [3,4], a universal experimental
superscaling function fexp(ψ ′) has been defined. In Fig. 1,
we present fexp(ψ ′) averaged over the nuclei employed in the
analysis, together with the corresponding fit. As noted, the
experimental scaling function presents an asymmetric shape
with a tail that extends toward positive values of the scaling
variable ψ ′. This is in contrast with the RFG superscaling
function given by fRFG(ψ ′) = (3/4)(1 − ψ ′2)θ (1 − ψ ′2), that
is symmetric, limited strictly to the region |ψ ′| � 1, and with
a maximum value of 3/4.

The general analysis of superscaling for CC neutrino-
nucleus scattering has been presented in previous works
[13,15,16]. Here, the superscaling function is obtained by
dividing the differential cross section evaluated within the RIA
(2) by the corresponding weak single-nucleon cross section as
given explicitly in Eqs. (15), (45), (52), and (86)–(94) of [13].
Details and specific expressions are also given in Appendix C
of [15]. This theoretical scaling function calculated from
CC neutrino-nucleus cross sections can be compared directly
with the one corresponding to (e, e′) scattering calculations as
well as with fexp(ψ ′) shown above. This allows a check on
the universality assumption of f (ψ ′) and on the capabilities
of different RIA models to yield the required properties of
the experimental scaling function. By analogy to (e, e′), and
in addition to the scaling function obtained from the CC
neutrino-nucleus cross section, one may also construct the
separate contributions given by the longitudinal L, transverse
T, and axial-vector transverse T ′ responses, fL,T ,T ′(ψ ′). Here,
the L weak response includes the contribution from the three
terms in (2), namely, v̂CCR̂CC + 2v̂CLR̂CL + v̂LLR̂LL. In the
next section, we present a detailed study of scaling and
superscaling properties for (e, e′) and (ν, µ) reactions within
the RIA scheme.

IV. RESULTS

In this work, we consider the PWBA; i.e., Coulomb
distortion of the leptons is neglected. Checks made for light-to-
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medium nuclei within the effective momentum approximation
[21,27] show that these effects are within a few percent for the
high-energy lepton kinematics considered in this work. In this
sense, our general conclusions about scaling are not modified
by them. Obviously, the analysis of heavier nuclear systems
requires a careful description of Coulomb distortion effects in
the leptons (electrons and muons) involved in both processes
(e, e′) and (ν, µ).

A. Inclusive QE (e, e′) reactions

1. Differential cross sections

In what follows, we present predictions for QE (e, e′)
reactions on 12C within the framework of the RIA. Results
correspond to fixed values of the incident electron beam energy
ε = 1 GeV and scattering angle θe = 45◦. The Lorentz gauge
has been selected. In the next section, we present results for
the scaling function concerning gauge effects. Figure 2 shows
the differential cross section evaluated for the two current
operators, CC1 and CC2, and FSI included through the rROP
and RMF potentials. As observed, the CC1 choice leads to a
significantly larger cross section, particularly within the RMF
approach. Concerning FSI, the use of the RMF potential gives
rise to a clear asymmetry in the cross section with a pronounced
tail extending toward higher values of the transfer energy ω.
For reference we also include in Fig. 2 the curve corresponding
to RPWIA, i.e., no FSI. In such a case, the effects introduced by
the current operator choice are minor. The difference observed
between both FSI descriptions at high ω values is linked to
the behavior of the two relativistic potentials: whereas the
RMF contains strong energy-independent scalar and vector
potentials, the energy dependence of the rROP makes its scalar
and vector terms to be importantly reduced for high nucleon
kinetic energies (high transfer energy). Hence, rROP results
get close to the RPWIA ones for large ω values.

The asymmetry in the differential cross section is proved
to be an effect entirely linked to the FSI description. Only
in the presence of relativistic optical potentials with strong
scalar and vector terms (RMF approach) is a significant shift

RPWIA
rROP-CC2
rROP-CC1
RMF-CC2
RMF-CC1

ω(MeV )

d
σ
/d

Ω
ed
ε

[n
b
/(

M
eV

sr
)]

7006005004003002001000

2.5

2

1.5

1

0.5

0

FIG. 2. Differential cross section for QE (e, e′) on 12C. FSI are
described within the RMF and the rROP models. Results correspond
to CC1 and CC2 current operators. For reference, the RPWIA result
is presented. Incident electron energy ε = 1 GeV, scattering angle
θe = 45◦.
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L (CC1)
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(M
eV

sr
)]

600500400300200100

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

T (CC2)
L (CC2)
T (CC1)
L (CC1)

ω(MeV )

600500400300200100

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

FIG. 3. Longitudinal L and transverse T contributions to the cross
section. Left panel corresponds to RMF description of FSI; right panel
to rROP. Results are presented for CC1 and CC2 prescriptions.

of strength to higher values of ω shown to occur. Details on the
specific mechanism that produces the asymmetric tail in the
cross section within the RMF-FSI approach are given in [46].

The importance of the current operator choice for the
two FSI models is further investigated in Fig. 3, which
presents a separate analysis of the longitudinal and transverse
contributions to the cross section. As observed, the pure
longitudinal response is almost identical with both current
operators. In the case in which FSI are neglected, this result
has been also found previously [41], and it was proven to
be as due to the validity of the Gordon transformation for
the longitudinal contributions. For the case of the transverse
channel, the CC1 contribution is much larger than that of
CC2 (likewise for CC3). Notice that the magnitude of this
discrepancy depends on the specific FSI description, being
larger for RMF, whereas in the plane-wave limit (RPWIA) both
currents lead to very similar results. The ambiguity introduced
by the current choice for inclusive (e, e′) reactions has already
been signaled in some previous works [47,48].

The large effects introduced by the current operator within
the RMF (likewise for rROP) approach can also be analyzed
by directly comparing theoretical and experimental cross
sections. This may allow us to determine which particular
choice is more appropriate. In Fig. 4, we compare data [49–54]
with the results corresponding to the RIA-RMF approach with
CC1 and CC2 at very different kinematics. As a general rule,
we conclude that CC1 tends to overpredict data whereas the
reverse applies to CC2. This outcome clearly favors the CC2
option in that the effects beyond the QE peak (� and MEC
effects) may also play a significant role in the analysis of the
data even at the maximum of the peak. However, data are not
conclusive yet because the � and MEC contributions have not
been evaluated.

2. Analysis of scaling behavior

The important effects already shown in the differential
cross sections are also visible in the scaling function. In the
following, we rely on the investigation of the superscaling
properties and present results for the scaling function f (ψ ′)
(13), as well as the separate longitudinal and transverse
contributions, i.e., fL(ψ ′) and fT (ψ ′). A comparison between
the three scaling functions is presented in Fig. 5, where for
simplicity only the RMF-FSI model has been considered.
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FIG. 4. Differential cross section for (e, e′) reactions on 12C.
Theoretical predictions correspond to the RMF-FSI approach with
CC1 (solid line) and CC2 (dashed line). Different kinematics (see
labels) have been considered.

Similar conclusions are drawn for the rROP approach. In
addition to the usual CC1 and CC2 prescriptions, we also
include the results for the CC3 choice. As observed, the
difference between f (ψ ′) and the contributions fL(ψ ′) and
fT (ψ ′) is very large for CC1, being much smaller for CC2
and almost negligible for CC3. This means that zero-kind
scaling is fully broken for CC1 and RMF, whereas only a
mild (negligible) violation is observed for CC2 (CC3). This
behavior of the superscaling function is in accordance with
the very diverse contributions given in the T channel by the
different current operators. In particular, the CC1 current
and RMF description of FSI lead to an important increase
in the T channel strength compared with the single-nucleon
contribution. On the contrary, the longitudinal function fL is
found to be basically the same for the three choices of the
operator (likewise for rROP).

Scaling of the first kind is explored in Fig. 6, where we
present f (ψ ′) for three different values of the incident electron
energy, ε = 1, 1.5, and 2 GeV. Results are shown for the
two different descriptions of the FSI: RMF and rROP. In
each case, we make predictions for the two usual current
prescriptions, CC1 and CC2. As observed, the scaling function
for the rROP model shows a very mild dependence on the
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FIG. 5. Analysis of zero-kind scaling. Global scaling function
f (ψ ′) compared with separate L and T contributions. All results
correspond to RMF description of FSI and current operators: CC1,
CC2, and CC3.

transfer momentum in both positive and negative ψ ′ regions,
i.e., first-kind scaling is well satisfied. In the case of the
RMF model, a slight shift occurs in the “scaling region”
ψ ′ < 0, whereas for ψ ′ positive, the model breaks scaling
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FIG. 6. Analysis of first-kind scaling. Scaling functions for three
values of the incident electron energy. Kinematics and target as in
previous figures. Results correspond to RMF and rROP models and
the two choices of current operators: CC1 and CC2.
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FIG. 7. Same as Fig. 6, but for the separate L and T contributions.
Only the RMF approach is considered. In the case of the T response,
the larger functions correspond to the CC1 operator and the smaller
ones to CC2. In the L channel, almost no distinction is seen between
the operators.

at roughly 30%. This violation is not in conflict with (e, e′)
data that indeed leave room for some violation of the first-kind
scaling in this region, due partly to � production and partly to
other contributions, such as MEC and correlations. A separate
analysis of the L and T channels in the scaling function (see
Fig. 7) shows that the breakdown of scaling within the RMF
description of FSI is similar for both channels independently
of which current choice is considered. In the case of rROP (and
RPWIA) calculations, scaling of the first kind is excellent for
all current operators and in both channels.

Scaling of the second-kind, i.e., independence of the
specific nuclear system, is analyzed in Fig. 8. Here we present
the results corresponding to CC1 and CC2 operators and the
two descriptions of FSI: RMF and rROP. In each case, we
compare the superscaling function evaluated for three different
nuclei: 12C, 16O, and 40Ca. The values of the Fermi momentum
considered [5] correspond to kF = 216 MeV/c (16O), kF =
228 MeV/c (12C), and kF = 241 MeV/c (40Ca). As shown,
the effects introduced by changing the nucleus are very small
for the CC2 current choice and the two FSI descriptions. This is
in complete accordance with data which show that second-kind
scaling is excellent. On the contrary, the CC1 operator leads to
a significant breakdown of scaling behavior which affects both
FSI descriptions. This violation of the second-kind scaling
comes totally from the transverse response. This is clearly
illustrated in Fig. 9, where we present results for the separate
functions fL(ψ ′) and fT (ψ ′) corresponding to the RMF model.
Similar results are obtained for the rROP approach. From these
theoretical results and the exhaustive analysis of the (e, e′)
world data, which proves the excellent quality of second-kind
scaling behavior, one may question the validity of the CC1
operator used in describing QE (e, e′) processes.
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FIG. 8. Analysis of second-kind scaling. Scaling functions for
12C, 16O, and 40Ca. Kinematics as in previous figures. Results for the
RMF and rROP models are presented for CC1 and CC2 prescriptions.

3. Comparison with experiment

A comparison between the theoretical superscaling func-
tions and the averaged QE phenomenological function ob-
tained from the analysis of (e, e′) data is presented in Fig. 10.
We have selected the CC2 operator and show results for
the three different descriptions of the continuum final state,
namely, the RPWIA, rROP, and RMF. Lorentz gauge has
been assumed. The symmetric character of the RPWIA and
rROP curves differs clearly from the experimental analysis.
On the contrary, the RMF approach displays an asymmetric
shape with a long tail extended to positive values of the
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FIG. 9. Separate L and T contributions to second-kind scaling
analysis. Results correspond only to the RMF model.
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FIG. 10. Scaling function for 12C(e, e′) evaluated with the
RPWIA, rROP, and RMF approaches compared to experimental
function together with a phenomenological parametrization.

scaling variable ψ ′ which follows closely the behavior of the
phenomenological function. As already mentioned in previous
work [16], this asymmetry of the RMF description constitutes
a basic difference from other models presented in the literature
[55–57] where the long tail in f (ψ ′) is largely absent.

The asymmetry in data has usually been ascribed to
ingredients beyond the mean field, such as short-range corre-
lations, induced nonlocalities, and two-body currents. Within
a nonrelativistic aproach, such ingredients are needed in order
to get the asymmetry [17,18,58]. However, here we show that
a large amount of the asymmetry is indeed obtained within
the framework of the RIA and a RMF description of the
final continuum nucleon states. This is in accordance with
some previous works [59–62] where a comparison between
Dirac-Brueckner-Hartree-Fock (DBHF) and Dirac-Hartree
calculations indicates that effects from correlations and Fock
terms in the DBHF calculation can be accounted for by the
simple Dirac-Hartree approach fitted to saturation properties of
nuclear matter. This is at variance with the nonrelativistic mean
field case. In this respect, note that the Dirac equation in the
presence of scalar and vector local potentials can be reduced
to a nonrelativistic Schrödinger-like equation with energy-
dependent and nonlocal terms [23]. Results in Fig. 10 show
that the asymmetry in the scaling function can be produced
via local, energy-independent relativistic potentials within the
impulse approximation, and moreover, such asymmetry is very
close to the experiment. This outcome does not contradict
the additional role that may be played by correlations and
exchange currents not accounted for within the relativistic
mean field calculation. However, the small magnitude of
the local central and spin-orbit potentials involved in the
nonrelativistic approach cannot yield a significant asymmetry.
Only a strong nonlocality of the potentials (effective values
of the mass and energy) may give rise to an asymmetric
differential cross section [46].

To complete the analysis, in Fig. 11 (left panels) we select
the RMF description of FSI and compare data and the fit
curve with the theoretical results for the three choices of
the current operator: CC1, CC2, and CC3. In each case,
we also present a separate analysis of the L and T channels
involved in the process. As already shown in previous results,
the longitudinal contribution fL(ψ ′) does not depend on the
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FIG. 11. Scaling functions evaluated for different currents and
gauges compared to experiment. Left panels show f (ψ ′) as well as
the contributions fL(ψ ′) and fT (ψ ′) for the three current choices
and the gauge fixed to Lorentz. Right panels show the results for the
longitudinal scaling function fL(ψ ′) for the three currents and the
three gauges: Lorentz, Coulomb, and Weyl.

current operator choice and agrees nicely with experiment. On
the contrary, the strength of the transverse response with the
CC1 current leads to a function fT (ψ ′) that is roughly twice
the data. Discrepancies between fL(ψ ′) and fT (ψ ′) are mild
(negligible) for CC2 (CC3) leading to a global scaling function
f (ψ ′) which is in accord in both cases with the experiment. All
the curves presented for the longitudinal contribution fL(ψ ′)
satisfy the Coulomb sum rule, i.e., they integrate to unity.

Up to now we have only discussed calculations correspond-
ing to the Lorentz gauge. Results for the Coulomb gauge are
similar for all FSI descriptions, whereas the Weyl gauge leads
in most of the cases to very important discrepancies. This
is clearly illustrated in the right panels of Fig. 11 where we
show the longitudinal scaling function fL(ψ ′) evaluated for the
three gauges and the three current operator choices. The RMF
approach for the final state has been assumed. The discussion
of results follows in general similar trends for the rROP model.
Note that the gauge only affects the longitudinal response. As
observed in Fig. 11, Lorentz and Coulomb gauges lead to
very close results for all currents, particularly for CC2, where
there is no distinction between the two curves. In the case
of the Weyl gauge, an important difference emerges between
the CC2 operator and the other two, CC1 and CC3. In the
former, the scaling function fL(ψ ′) is almost the same for
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the three gauges. This is in accordance with the fact that
the continuity equation is highly fulfilled within the RMF
model and the CC2 current operator. By contrast, the CC1 and
CC3 operators within the Weyl gauge give rise to longitudinal
scaling functions which depart significantly from data being
much larger (smaller) for CC1 (CC3). In both cases the
Coulomb sum rule is clearly violated. These results reinforce
our confidence in the adequacy of descriptions of inclusive
(e, e′) reactions when based on the RMF-FSI approach and
the CC2 current operator. Only in this case, the results do not
depend on the specific gauge selected;1 moreover, they are also
shown not to be modified by the dynamic enhancement of the
lower components [46].

B. Inclusive QE charged-current (ν,µ) reactions

The analysis of scaling and superscaling for CC neutrino-
nucleus reactions has been presented in [13,16]. It is important
to point out that any reliable calculation of neutrino-nucleus
cross sections must first be tested against electron scattering
data. Hence, two different approaches can be pursued. First,
using the scaling behavior of (e, e′) cross sections and the
universality property of the superscaling function, we can
make predictions for inclusive (ν, µ) reactions by taking
the empirical electron scattering scaling function fexp(ψ ′).
This strategy, applied not only to the QE regime but also to
the � kinematic region, was analyzed at depth in [13]. The
second approach, considered in [16], consists of evaluating
explicitly f (ψ ′) for (ν, µ) reactions within a specific model,
namely, RDWIA. The scaling function obtained in this way
can be compared directly with the model predictions given for
(e, e′) processes. This allows us to check not only the scaling
behavior of the calculations, but also the consistency of the
universality assumption of f (ψ ′) and the capability of the
model to reproduce the experimental data.

In [16], we presented a detailed investigation of CC
neutrino-nucleus scattering reactions within the RIA frame-
work. We proved that superscaling is verified to high accuracy
by the model calculations even in the presence of strong rela-
tivistic potentials. Importantly, the results obtained when FSI
were described by means of the RMF potential presented the
right asymmetry compared with data. This is fully consistent
with the discussion outlined in the previous section concerning
the study of inclusive (e, e′) reactions. This consistency is
clearly illustrated in Fig. 12, which compares the scaling
functions evaluated from (e, e′) and (ν, µ) reactions. We only
consider the RMF-FSI case as this is the only model which
is in accordance with data. However, the consistency between
electron and neutrino scattering calculations applies also to
rROP and RPWIA approaches. In the left panel of Fig. 12,
the CC2 prescription has been assumed for (e, e′) and the
separate contributions of both channels, L and T, are also
shown. For completeness, the case of the CC3 operator is

1Although not shown, the Weyl gauge leads to different results when
the rROP model is assumed independently of the current operator
selected.
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FIG. 12. Consistency of scaling functions evaluated for (e, e′) and
(ν, µ) reactions for CC2 and CC3 current choices. Incident electron
(neutrino) energy is fixed to 1 GeV and the scattering angle to 45◦.
Separate L and T contributions are also presented.

considered in the right panel, and the fit curve to experiment
is also drawn for reference. From these results, it is clear that
the universality assumption of the scaling function is highly
fulfilled within the present RIA model. This supports the use
of the experimental (e, e′) scaling function in order to predict
reliable neutrino-nucleus scattering cross sections [13].

Although not presented for simplicity, a separate analysis
of the various channels, L, T , and T ′, contributing to (ν, µ)
reactions shows that fT (ψ ′) = fT ′(ψ ′) = f (ψ ′), i.e., scaling
of zero kind is verified. The longitudinal contribution leads
to a scaling function fL(ψ ′) which departs significantly
from f (ψ ′). However, one should be cautious because the
L contribution to inclusive (ν, µ) cross sections is almost
negligible compared with the transverse, T , T ′, ones.

To conclude with the analysis of results, we present again
in Fig. 13 the scaling function predictions for both (e, e′) and
(ν, µ) reactions with the RMF description in the final state,
and compare them with data and the fit curve. Here we use a
logarithmic scale in f (ψ ′) in order to enlarge the discrepancies
between theory and experiment in the scaling region, i.e.,
negative ψ ′ values. In this region, our model predictions
for electron and neutrino processes are in full agreement
and tend to underpredict the data. This is not unexpected
because the model is entirely based on one-body phase
space. Ingredients beyond the impulse approximation, i.e.,
multinucleon knockout, either induced by exchange currents,
correlations, or rescattering effects, are surely needed to get
more strength in the scaling function which will be then
closer to the experiment. This is in fact the case of the
coherent density fluctuation model (CDFM) for correlations
presented in [55–57]. This model is an extension of the RFG
applied to finite nuclei, and its prediction is also shown for
comparison in Fig. 13. The CDFM result, compared with
the RMF calculations, presents more strength in the negative
ψ ′ region, being closer to data. However, CDFM is manifestly
symmetrical around the QE peak.2 As discussed in previous
sections, the asymmetry of the scaling function comes mainly
from the inclusion of FSI in the reaction mechanism. This

2The author is aware of a new development of the CDFM model in
which asymmetry is incorporated in an effective way [63].
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FIG. 13. Same as Fig. 12, but in logarithmic scale. We also
include data and compare with the predictions given by the CDFM
model.

ingredient, when based on the RMF description, gives rise to
the right asymmetry shown by the experiment.

A detailed analysis of scaling and cross sections within a
nonrelativistic mean field approach has been presented in [15].
In Fig. 14, we compare CC neutrino-nucleus cross sections
obtained with the RIA model and the semirelativistic (SR)
one developed in [15]. The SR approach includes important
relativistic ingredients in the current operator. This has been
already illustrated in previous works [9,15,64,65], and it is
also clearly shown by results in Fig. 14 corresponding to the
plane-wave limit; the fully relativistic and the SR calculations
lead to very similar curves in spite of using different descrip-
tions of the initial bound nucleon wave functions: solutions
of the Dirac-Hartree model and the Schrödinger equation
with a Woods-Saxon potential, respectively. On the contrary,
relativistic and SR results are very different when FSI are
included by using potentials (RMF and Woods-Saxon) in the
final state. Whereas the RMF shows a significant asymmetry,
the SR-FSI approach shifts the SR-PWIA result to higher
muon energies, but maintains the global symmetry of the
cross section [8,15]. Asymmetry within the nonrelativistic
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FIG. 14. Predictions for 12C(ν, µ) differential cross sections.
The RIA model is compared with the SR approach. Two different
descriptions of FSI have been considered. First the plane-wave limit,
which leads to very similar results. Second FSI described by means of
the RMF model (dashed) and making use of a Woods-Saxon potential
in the SR framework (dotted).

framework requires ingredients in the final state beyond the
impulse approximation and mean field picture: correlations,
nonlocalities, exchange terms, and multinucleon emission. By
contrast, most of the asymmetry involved in the experiment is
already obtained within a simple, fully relativistic mean field
model based on the impulse approximation and describing
FSI by means of strong local scalar and vector potentials.
This makes a crucial difference between both relativistic and
nonrelativistic descriptions.

V. CONCLUSIONS

In this paper, we have presented a global study of scaling
and superscaling properties concerning inclusive QE electron
and CC neutrino-nucleus scattering reactions. The general
framework in which the calculations have been performed
is the RIA. This is a simplified description of the reaction
mechanisms because it presupposes that the processes to be
calculated depend entirely on one-body phase space. However,
in spite of its simplicity, the RIA has been used to describe
successfully QE (e, e′N ) reactions. For the inclusive (e, e′)
and (ν, µ) processes we are interested in, a crucial ingredient
is the description of FSI. We have considered different options
consistent with retaining in the calculations the contribution
from the inelastic channels. This is provided in our model by
using purely real potentials. Three different cases have been
explored: (i) the plane-wave limit, (ii) using the real part of the
energy-dependent relativistic optical potentials parametrized
by Clark et al. [38], and (iii) employing the same relativistic
mean field potential considered in the description of the initial
bound nucleon states.

The differential (e, e′) cross sections are shown to be
very sensitive to some ingredients of the model, particularly,
the specific current operator selected (CC1 vs CC2) and
the relativistic FSI description. The former, off-shell effects,
enter essentially into the transverse channel, whereas the
longitudinal one shows a very mild dependence on the current
operator choice. Concerning FSI, a basic difference emerges
when comparing the rROP and RMF approaches to the cross
section. The latter presents a significant asymmetry extended
to higher values of the transfer energy. The origin of this effect
is directly linked to the use of very strong relativistic optical
potentials [46].

The main goal of this paper is centered on the analysis of the
scaling behavior of the cross sections and separate responses.
Our results show that scaling of zero order is verified for the
CC2 and CC3 current operators; however, the CC1 leads to
an important breakdown of scaling because of the extremely
large contribution given by the transverse response. This
outcome is strictly true when FSI effects are taken into account.
In the plane-wave limit (RPWIA), results present a mild
dependence on the current operator. Concerning first-kind
scaling, i.e., independence of the transfer momentum, all our
results satisfy this property, which is in accord with the general
behavior of data. Being more precise, only in the case of
FSI described with the RMF potential does the superscaling
function show some dependence on the transfer momentum.
However, this scaling breakdown is compatible with (e, e′)
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data. A separate analysis of the two channels involved in the
calculations leads to similar conclusions.

A special comment should be made concerning second-kind
scaling, i.e., independence of the nuclear species. Recent
analyses of (e, e′) data conclude that this property is excellent,
showing only a small scaling violation in the region above the
QE peak (positive ψ ′ values). This means that any theoretical
model that does not satisfy this behavior should be dismissed,
or at least, clearly disfavored. In our model, the analysis
performed shows that the use of the CC1 operator leads to a
visible breakdown of second-kind scaling. This applies to both
FSI descriptions, rROP and RMF, and it comes totally from
the transverse response. These results strongly favor the use
of the CC2 (likewise CC3) operator, which agrees with some
general comments made in the past concerning the analysis
of exclusive QE (e, e′p) data at high missing momentum
values [24]. Note that second-kind scaling is highly fulfilled
for the longitudinal contribution fL(ψ ′).

A comparison with the phenomenological scaling function
extracted from (e, e′) data shows that only the FSI description
based on the RMF approach leads to the right amount of
asymmetry. Within the one-body context, this significant shift
of strength to positive ψ ′ values only occurs in the presence of
strong scalar and vector relativistic optical potentials. This
is the case of the energy-independent RMF approach. On
the contrary, the energy-dependent scalar and vector terms
in the rROP are importantly reduced for increasing outgoing
nucleon energies (positive ψ ′ region). Comparison with data
indicates that the RMF-FSI model incorporates important
dynamic effects missed by other models. In a nonrelativistic
approach, the asymmetry can be only generated by including
ingredients beyond the impulse approximation. Here we show
that a simple local, energy-independent relativistic mean field
potential takes care of the basic behavior presented by (e, e′)
data.

The gauge analysis performed in this work leads to an
important conclusion concerning the RMF-FSI approach.
Notice that gauge ambiguity only affects the longitudinal
contribution fL(ψ ′). Our study shows that Coulomb and
Lorentz gauges give rise to very similar results, being in

general significantly different from the Weyl ones. However,
in the particular case of FSI described with the RMF potential
and the CC2 current operator selected, the longitudinal scaling
function does not show sensitivity to the gauge election. Only
in this situation, the results of fL are very similar for the
three gauges and, more importantly, all of them essentially
satisfy the Coulomb sum rule, i.e., they integrate to unity. By
contrast, for CC1 and CC3 prescriptions, the Weyl fL results
deviate significantly from the other gauges, breaking also the
Coulomb sum rule. This general result gives us confidence
in the adequacy of descriptions of QE (e, e′) reactions when
based on the RMF-FSI approach and the CC2 current operator.
This choice, in addition to be mostly insensitive to gauge
ambiguities and dynamic relativistic effects, leads to the
correct asymmetry shown by data.

To conclude, we have compared the scaling function
evaluated from (e, e′) calculations with that obtained from
(ν, µ) reactions. The results for both processes are very close,
and this is fully consistent with the general statement on the
universality property of the scaling function. Within the RIA
framework, the superscaling function is basically the same
for the two t-channel processes considered. This supports the
general approach considered in [13], i.e., the use of the scaling
function extracted from (e, e′) data to predict neutrino-nucleus
cross sections. It will be very interesting in the future to
determine if the universality property emerges also from
RIA calculations applied to NC neutrino-nucleus scattering
reactions [20].
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