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Experimental determination of the complete spin structure for p̄ p → �̄� at pp̄ = 1.637 GeV/c
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The reaction p̄p → �̄� → p̄π+pπ− has been measured with high statistics at a beam momentum of
pp̄ = 1.637 GeV/c. The use of a transversely polarized frozen-spin target combined with the self-analyzing
property of �/�̄ decay allows access to unprecedented information on the spin structure of the interaction.
The most general spin-scattering matrix can be written in terms of 11 real parameters for each bin of scattering
angle; each of these parameters is determined with reasonable precision. From these results, all conceivable spin
correlations are determined with inherent self-consistency. Good agreement is found with the few previously
existing measurements of spin observables in p̄p → �̄� near this energy. Existing theoretical models do not
give good predictions for those spin observables that had not been previously measured.
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I. INTRODUCTION

Measurements have been made of the p̄p → �̄� reaction
on a transversely polarized frozen-spin target. An analysis
is presented of data taken at the low-energy antiproton
ring (LEAR) at CERN, Geneva, at pp̄ = 1.637 GeV/c

corresponding to a center-of-mass energy which is 78 MeV
above the �̄� threshold.

This experiment, carried out by the PS185 Collabora-
tion, expands upon a series of Ȳ Y production and related
experiments [1–4] which have previously been performed
by this collaboration using the same detector system. These
covered wide-ranging kinematics from very near threshold
to higher energies at which the larger cross section allowed
high-statistics studies to be made.

Spin observables have long been of interest in strangeness-
production reactions in part because of the characteristic strong
polarization produced. The hyperons in the final state (the
word “hyperon” will be used loosely to include antihyperons)
lend themselves to the study of spin dynamics because of the
self-analyzing power of mesonic hyperon decay. Thus, even
before the introduction of initial-state polarization in these
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studies, the PS185 Collaboration was able to greatly expand
the world’s supply of data on spin observables, especially for
p̄p → �̄�. In particular, final-state polarization components
of both hyperons and correlations of all spin components of
� and �̄ were accurately measured in addition to differential
cross sections.

The wealth of data produced by PS185 [1–4] excited a great
deal of theoretical activity [5–10] with several models enjoying
reasonable success in fitting the observations. Two distinct
theoretical approaches, meson-exchange (MEX) and quark-
gluon (QG) inspired models, have been used successfully to
fit the p̄p → �̄� data despite being based on fundamentally
different reaction dynamics.

Several authors [5–7] have constructed models based on
t-channel exchange of strange mesons. In order to match the
observed data, these MEX models require a strong tensor
interaction, so they incorporate a spin-flip from the initial
spin-triplet p̄p pair to the final spin-triplet �̄� pair. Initial-
and final-state interactions are modeled as well, but they
do not qualitatively change the spin-flip character of these
models.

The alternative QG inspired models [8,9] are based upon
an assumed s-channel interaction between q̄q pairs leading
to the transformation to an s̄s pair. In existing models, the
q̄q pair is assumed to have vacuum quantum numbers (0+ for
3P0 q̄q pairs) or gluon quantum numbers (1− for 3S1 q̄q pairs).
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Again there is a dominance of the spin-triplet state (inspired
by the empirical fact that the singlet fraction is, on average,
small). In fact, this construction ensures pure triplet transitions.
(Since the spin of the � reflects the spin of the s quark, in the
constituent quark model, triplet s̄s pairs guarantee a triplet
�̄� final state.) Here, the assumed fundamental s-channel
q̄q → s̄s process does not flip the spin at all, but some spin-
flip strength is introduced with the inclusion of initial- and
final-state interactions.

The difference in the spin-flip predictions of MEX and QG
models could serve as a means of distinguishing the validity
of the two classes of models, as suggested by [11]. Since
each model predicted strong triplet interactions, final-state
spin correlations were similar and measurement of final-state
spin alone was not sufficient to distinguish them. Sensitivity
could be found in measurement of the correlation between
initial-state spin and final-state spin. In particular, the normal-
to-normal depolarization and spin transfer were expected to
strongly select between the two classes of models. These
observables, often denoted Dnn and Knn, respectively, are
sensitive to the transfer of spin from the initial-state proton to
the final-state � (in the case of Dnn) or �̄ (in the case of Knn).
The n subscripts indicate that the component of spin considered
in each case is the component normal to the scattering plane.
Since a large number of spin correlations will be discussed
here, a more general notation will be introduced below. In
particular, Dnn and Knn will be denoted as Q[np, n�] and
Q[np, n�̄], respectively.

Experimental study of these particularly interesting ob-
servables required a polarized target. A frozen-spin target
was constructed with such small dimensions that �̄� pairs
could exit the target before decaying. The success of the
present measurements relied upon the PS185 apparatus,
this new target, and the superb properties of the LEAR
beam.

It was also noted [12] that such data contained enough
information to permit determination of not just a few observ-
ables but also the entire spin structure of the reaction. From
this, all possible spin observables could then be determined.
That analysis has been successfully carried out [13] and is
reported here. A previous publication [14] already reported
the measured spin transfer and depolarizations, extracted using
the techniques which are explained in the present publication.
Interestingly, the measured values disagree strongly with the
predictions from both classes of models, leaving opportunity
for further theoretical study. These results are also included in
the present paper.

II. SPIN CORRELATIONS

The density-matrix formalism lends itself to the analysis
of systems composed of ensembles of noninterfering states,
such as occur in polarized systems. This formalism will be
used therefore to precisely define the spin correlations and to
relate them to the observed final-state distribution on the one
hand and to the spin-scattering matrix, which parametrizes the
transition, on the other.

In this formalism, the expectation value of an observable
represented by operator O can be written as 〈O〉 = Tr (Oρ�̄�),
where ρ�̄� is a 4×4 density matrix representing the final-state
spin information. In Sec. II A, we write ρ�̄� in terms of

the initial-state polarization vectors, �P p̄
and �P p

, and the
p̄p → �̄� transition operator M(�c.m.). Since the experiment
actually detects the final-state protons, antiprotons, and pions
from the hyperon decays, the formalism is extended in
Sec. II B to relate the directions of these particles’ momenta
to the initial-state polarization vectors and the complete set of
the reaction’s spin-observables.

A. Spin dynamics of p̄ p → �̄�

The initial-state density matrix for spin- 1
2 particles with

polarization �P can be written as

ρ = 1
2 (I + �P · �σ ),

where I is the identity matrix and σi are the Pauli matrices.
In the following discussion, notation is greatly simplified by
defining P0 = 1 and σ0 = I. Then

ρ = 1

2

3∑
k=0

Pkσk.

For an initial state of a proton and antiproton, the initial-state
density matrix is

ρp̄p = ρp̄ρp = 1

4

3∑
j,k=0

P
p̄

j σ B̄
j P

p

k σB
k , (1)

where σ B̄
j and σB

k operate in the separate spin space of the
antiproton and proton, respectively, and a direct product is
implied.

Meanwhile, the density matrix after the interaction, ρ�̄�,
can be written as an arbitrary linear combination of direct
products of σ B̄

µ and σB
ν since these span the space of Hermitian

4 × 4 operators, that is,

ρ�̄� =
3∑

µ,ν=0

Wµνσ
B̄
µ σB

ν , (2)

where the notation σ B̄ and σB from Eq. (1) have been used
in anticipation of the fact that an identification will be made
between the p̄ and �̄ antibaryon spin spaces and between the
p and � baryon spin spaces.

Spin correlations are meaningful observables as long as
the coordinate system associated with each particle is well
defined. It is not necessary that the coordinate axes used for
one particle be aligned parallel to those used for another.
The following discussion of spin correlations applies to
any set of coordinates in which the spin components of
each particle are measured in some set of axes defined
in the rest frame of that particle. The specific choice of
coordinate axes for this analysis is described in Sec. II C
below.
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It then follows [since Tr (σµσν) = 2δµν] that

4Wµν = Tr
(
σ B̄

µ σB
ν ρ�̄�

)
.

Substituting this into Eq. (2) gives

ρ�̄� = 1

4

3∑
µ,ν=0

Tr
(
σ B̄

µ σB
ν ρ�̄�

)
σ B̄

µ σB
ν . (3)

On the right-hand side, ρ�̄� can be rewritten in terms of ρp̄p,
which is given in Eq. (1). If M is the transition operator from
the p̄p to �̄� state,

ρ�̄� = Mρp̄pM† = 1

4

3∑
j,k=0

P
p̄

j P
p

k Mσ B̄
j σB

k M†. (4)

Substituting this into Eq. (3) gives the identity

ρ�̄� = 1

4

3∑
µ,ν=0

3∑
j,k=0

P
p̄

j P
p

k

1

4
Tr

(
σ B̄

µ σB
ν Mσ B̄

j σB
k M†)σ B̄

µ σB
ν .

(5)

Only the first term contributes to the unpolarized differential
cross section,

I0 = Tr (ρ�̄�)

Tr (ρp̄p)
= 1

4
Tr (MM†).

Factoring this out of the sum in Eq. (5) and defining

Q[jp̄, kp, µ�̄, ν�] = 1

4I0
Tr

(
σ B̄

µ σB
ν Mσ B̄

j σB
k M†) (6)

allows Eq. (5) to be written as

ρ�̄� = 1

4
I0

3∑
µ,ν=0

3∑
j,k=0

P
p̄

j P
p

k Q[jp̄, kp, µ�̄, ν�]σ B̄
µ σB

ν . (7)

The spin dynamics of the p̄p → �̄� reaction at any
production angle �c.m. is entirely contained within the quan-
tities Q[jp̄, kp, µ�̄, ν�]. These Q’s are the observables of
the present experiment, which we shall refer to as the ‘spin
correlations.’ The unpolarized differential cross section is
parametrized by I0. Although the functional dependence will
not be written explicitly, it is to be understood that I0 and
the Q’s are functions of �c.m.. The Q’s would be directly
measurable if final-state spins could be measured directly
(and initial-state polarizations could be chosen arbitrarily). For
example, measurement of the mean value of the product of the
η component of �̄ spin and the ξ component of � spin (given
the initial p̄ polarized in the r direction and proton polarized in
the s direction) would be directly related to Q[rp̄, sp, η�̄, ξ�]
by

〈
σ B̄

η σB
ξ

〉
= Tr

(
ρ�̄�σ B̄

η σB
ξ

)
Tr (ρ�̄�)

= P
p̄
r P

p
s Q[rp̄, sp, η�̄, ξ�]

N ,

where the normalization factor is given by

N = 1 + P p̄
r Q[rp̄, 0, 0, 0] + P p

s Q[0, sp, 0, 0]

+P p̄
r P p

s Q[rp̄, sp, 0, 0].

The redundant particle-identification subscripts have been
introduced in the index list of Q to allow suppression of
vanishing elements. Subsequently, terms such as Q[0, sp, 0, 0]
will be written simply as Q[sp].

B. Angular distribution of decay products

In fact, �̄� final-state spin information is not directly
measured in this experiment. It can be inferred, however, from
the angular distribution of the decay products because of the
self-analyzing nature of the � and �̄ decays. For a � with

polarization vector �P �
, the angular distribution of the decay

proton in the � rest frame is given by

Ip(k̂
p

) = 1

4π
(1 + α �P � · k̂

p
),

where α = 0.642 ± 0.013 is the self-analyzing power [15]
of � → pπ−, and k̂

p
is a unit vector in the direction of the

proton’s momentum (in the � rest frame). Similarly, for �̄ →
p̄π+,

Ip̄(k̂
p̄

) = 1

4π
(1 + ᾱ �P �̄ · k̂

p̄
),

where ᾱ = −α by CP conservation.
The transition operator T�, representing � → pπ− decay,

must give this observed angular distribution from

Ip(k̂
p

) = Tr (T�ρ�T
†
�) = Tr

[
T�

1
2 (I + �P � · �σ )T †

�

]
.

It then follows that

Tr (T�σiT
†
�) = αk

p

i

2π
if i ∈ {1,2,3} (8)

(where k
p

i is the i-th directional cosine of the proton’s
momentum), while

Tr (T�σiT
†
�) = Tr (T�T

†
�) = 1

2π
if i = 0. (9)

For notational simplification, Eqs. (8) and (9) can be combined
into a single equation of the form of Eq. (8) by extending the
definition of k

p
µ by defining k

p

0 = 1
α

. Then Eq. (8) can be
used to find the angular distribution of the final-state proton
and antiproton resulting from the decay of the � and �̄,
that is,

Ifinal(�c.m.,�c.m., k̂
p̄
, k̂

p
) = Tr (T�̄T�ρ�̄�T

†
�̄
T

†
�)

= I0(�c.m.)

16π2

3∑
µ,ν=0

3∑
j,k=0

ᾱα

×Q[jp̄, kp, µ�̄, ν�]P p̄

j P
p

k kp̄
µkp

ν ,

(10)

where k
p̄
µ has similarly been extended by defining k

p̄

0 = 1
ᾱ

.
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FIG. 1. Coordinate axes used to decompose
each individual particle’s spin directions. The
n̂ direction is common. The target polarization
direction, which is perpendicular to l̂p , is also
shown for a typical event in which the normal to
the scattering plane is at angle � relative to the
polarization direction.

Equation (10) provides the connection between the
observed distribution Ifinal and the spin correlations
Q[jp̄, kp, µ�̄, ν�], which are functions of the production angle
�c.m. and of the beam energy. If no further constraints were
known, the spin correlations could be extracted (for each bin
of �c.m.) from the observed decay angular distributions. In
fact, as discussed in the next section, the structure of the
spin-scattering matrix is subject to constraints which enforce
parity and charge-conjugation symmetry. As a result, the
spin correlations are not independent functions. Rather than
attempting to determine spin correlations independently, it is
preferable to determine the parameters of the spin-scattering
matrix and to use them to determine the spin correlations of
interest. This results in improved precision of the resulting spin
correlations and guarantees that they are mutually consistent,
obeying all constraints implied by the structure of the allowed
spin-scattering matrix [16]. It has been shown in Ref. [12]
that measurements of p̄p → �̄� → p̄π+pπ− with an
unpolarized beam on a transversely polarized target provide
enough information to fully constrain the spin-scattering
matrix. This then allows determination of all spin correla-
tions, even those with nonvanishing jp̄, for example, whose
direct measurement would require the use of a polarized
beam.

C. Coordinate systems

The emphasis of this experiment was on the determination
of correlations betweens spins, particularly between initial-
state target spin and final-state spins. Comparison of initial-
and final-state spin is complicated by the fact that initial-state
particles are moving at relativistic velocity (β = 0.58) in the
center of mass. Comparing all spins in a common reference
frame would then require a relativistic boost of the spins.
Such a boost of 2-D spinors is not well defined. Consistent
transformation to a common reference frame would require
use of relativistic 4-spinors. This complication is avoided by
defining all such correlations in terms of the spin projections
of each particle in its own rest frame. As mentioned above, it is
not necessary for the coordinate axes used to describe the spin
of one particle to be parallel to those used to describe the spin
of another. Indeed, since there is no common boost direction
between particle rest frames, it is not generally possible to
define the coordinate axes to be all mutually parallel. It is
conventional to use helicity-based coordinates in which one
axis is aligned with the particle’s center-of-mass momentum
direction.

The final-state polarization direction is inferred from the
angular distributions of the decay products in the rest frames of
the � and �̄. It is therefore natural to express spin information
for each of these hyperons with respect to coordinate axes
that are defined in their respective rest frames. Similarly,
it is natural to express the target spin information with
respect to axes that are at rest in the laboratory frame. For
notational completeness, although the beam is unpolarized,
its spin is expressed in a coordinate system moving with the
incident p̄.

The specific coordinate systems used in this analysis are
represented in Fig. 1. All four coordinate systems share a
common n̂ direction, which is the normal to the scattering
plane defined as a unit vector in the direction of �pp × �p�

(or equivalently in the direction of �pp̄ × �p�̄). For the
coordinate system associated with each particle, a second axis
(l̂p, l̂p̄, l̂�, l̂�̄) is defined along the direction of the particle’s
momentum with respect to the center of mass of the p̄p system.
Finally the third axis (m̂p, m̂p̄, m̂�, m̂�̄) is defined for each
coordinate system as m̂i = n̂i × l̂i so each (l̂i , m̂i , n̂i) defines a
right-handed orthonormal set of basis vectors in the rest frame
of particle i.

It is important, of course, to take into account these
coordinate definitions when comparing the results presented
here to predictions or other measurements. The meaning of a
specific spin correlation depends upon the axes with respect
to which it is defined. For example, with this choice of
coordinates, the angle between m̂p and m̂� depends upon the
scattering angle. This must not be neglected when interpreting
a result such as the correlation between the m̂p component
of the initial proton spin and the m̂� component of the
final � spin. These coordinates were also used in extracting
the previously published results [14] from this measurement.
Since those results involved correlations between normal
components of spin, there was no potential for ambiguity in
interpretation of those results.

With these coordinate definitions, n̂ is an axial vector
while m̂ and l̂ are polar vectors for each of the coordinate
systems. Then, for any of the spins expressed in its respective
coordinate system, σn is scalar under parity inversion while σl

and σm are pseudoscalar. Parity conservation then requires that
Q[rp̄, sp, η�̄, ξ�] must vanish if an odd number of l’s and m’s
appear in {r, s, η, ξ}. Since the target is transversely polarized
in this experiment, P

p

l is zero. This reduces the sum over k in
Eq. (10) to run only over k ∈ {0,m, n}. Furthermore, the unpo-
larized beam means that only the j = 0 terms survive. Further
constraints on Eq. (10) result from C-parity conservation
which requires that Q[jp̄, kp, µ�̄, ν�] = Q[kp̄, jp, ν�̄, µ�].
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Additional simplification results from Bohr’s rule [17] which
requires, for example, that Q[np,m�̄,m�] = −Q[np, l�̄, l�].

Incorporating all these simplifications, Eq. (10) reduces from
a sum over 256 terms to

Ifinal(�c.m.,�c.m., k̂
p̄
, k̂

p
)

I0(�c.m.)/16π2
=




1

+Q[n�]
(
ᾱkp̄

n + αkp
n

)
+Q[n�̄, n�] ᾱαkp̄

n kp
n

+Q[m�̄,m�] ᾱαkp̄
mkp

m

+Q[l�̄, l�] ᾱαk
p̄

l k
p

l

+Q[m�̄, l�] ᾱα
(
kp̄
mk

p

l + k
p̄

l kp
m

)
+Q[np]

(
P T cos(�c.m.) + ᾱαP T kp̄

n kp
n cos(�c.m.)

)
+Q[np, n�̄] ᾱP T kp̄

n cos(�c.m.)

+Q[np, n�] αP T kp
n cos(�c.m.)

+Q[mp,m�̄] ᾱP T kp̄
msin(�c.m.)

+Q[mp, l�̄] ᾱP T k
p̄

l sin(�c.m.)

+Q[mp,m�] αP T kp
msin(�c.m.)

+Q[mp, l�] αP T k
p

l sin(�c.m.)

+Q[np,m�̄,m�] ᾱαP T
(
kp̄
mkp

mcos(�c.m.) − k
p̄

l k
p

l cos(�c.m.)
)

+Q[np,m�̄, l�] ᾱαP T kp̄
mk

p

l cos(�c.m.)

+Q[np, l�̄, m�] ᾱαP T k
p̄

l kp
mcos(�c.m.)

+Q[mp,m�̄, n�] ᾱαP T kp̄
mkp

n sin(�c.m.)

+Q[mp, l�̄, n�] ᾱαP T k
p̄

l kp
n sin(�c.m.)

+Q[mp, n�̄,m�] ᾱαP T kp̄
n kp

msin(�c.m.)

+Q[mp, n�̄, l�] ᾱαP T kp̄
n k

p

l sin(�c.m.)




. (11)

Equation (11) contains just 19 spin correlations along with I0.
Since each term manifests a unique angular dependence,
these spin correlations are, in principle, directly measurable
by fitting Eq. (11) to the angular distribution observed in
scattering from a transversely polarized target. Although this
is not the technique employed here for determination of spin
correlations, these 19 spin correlations will be referred to as
being “directly measurable.”

III. SPIN-SCATTERING MATRIX

The transition operator M, introduced in Eq. (4), transforms
from the space spanned by the direct products of proton and
antiproton spinors to one spanned by the direct products of �

and �̄ spinors. Since it includes the spin part of the transition,
it is called the spin-scattering matrix. It can be represented by
a 4 × 4 complex matrix. It is convenient to construct this
operator from a combination of direct products of baryon
operators and antibaryon operators. Here, baryon operators
are those that transform from the proton spin space to the
� spin space while leaving antibaryon spinors unaffected.
Conversely, antibaryon operators transform from p̄ spinors
into �̄ spinors. This identification of proton spinors with
� spinors is just a convenience; there is no loss of generality

since the 16 direct products considered will span the entire
space of 4 × 4 Hermitian matrices.

Constructing terms with definite symmetry properties
is simplified by choosing {IB, σB

l , σB
m , σB

n } as the baryon
operators and {I B̄ , σ B̄

l , σ B̄
m , σ B̄

n } as the antibaryon operators.
Although these operators have the same matrix representations
as the spin operators, they are actually transition matrices
having the space of proton spinors as their domain and
the � spinor space as their range. For η ε {0, l, m, n}, each
σB

η transforms eigenstates of the η̂ component of proton
spin to the same eigenstates of the η̂ component of �

spin, multiplied by the eigenvalue. Similarly, σ B̄
η maps an-

tiproton η̂ eigenstates to η̂ eigenstates of �̄. Under parity
inversion, the behavior of σB

n differs from that of σB
l and

σB
m because n̂ is an axial vector while l̂ and m̂ are polar

vectors. Given that they act upon components of spinors
and produce components of spinors, the σB

η ’s have the same
parity properties as the corresponding components of spin;
i.e., σB

n is scalar under parity inversion, while σB
l and σB

m are
pseudoscalar.

Given these properties, the baryon and antibaryon operators
may be used to construct a complete set of operators having
good parity and C-parity and spanning the direct-product
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TABLE I. A complete set of operators spanning the space of
operators that transform from p̄p spinors to �̄� spinors. These
operators are constructed to have definite parity P and charge-
conjugation parity C. P and C values are also listed. Final column
gives the coefficient by which each term is weighted in forming M.

Operator P C Coefficient

IBI B̄ + + a + b

σB
n σ B̄

n + + a − b

σB
l σ B̄

l + + c + d

σB
m σ B̄

m + + c − d

σB
n I B̄ + IBσ B̄

n + + e
σB

n I B̄ − IBσ B̄
n + − 0

σB
m I B̄ + IBσ B̄

m − + 0
σB

m I B̄ − IBσ B̄
m − − 0

σB
l I B̄ + IBσ B̄

l − + 0
σB

l I B̄ − IBσ B̄
l − − 0

σB
m σ B̄

l + σB
l σ B̄

m + + g
σB

m σ B̄
l − σB

l σ B̄
m + − 0

σB
n σ B̄

m + σB
m σ B̄

n − + 0
σB

n σ B̄
m − σB

m σ B̄
n − − 0

σB
n σ B̄

l + σB
l σ B̄

n − + 0
σB

n σ B̄
l − σB

l σ B̄
n − − 0

space. A set of such operators is listed in Table I along with
their parity, P, and charge-conjugation, C, eigenvalues.

Conservation of parity and C-parity in the p̄p → �̄�

reaction requires [18] that only the terms with positive parity
and C-parity contribute to the spin-scattering matrix. An
arbitrary linear combination of the allowed terms can be
constructed by weighting each term by the coefficients given
in Table I. A conventional parametrization for M [19] is

M = 1
2

{
(a + b)IBI B̄ + (a − b)σB

n σ B̄
n + (c + d)σB

m σ B̄
m

+ (c − d)σB
l σ B̄

l + e
(
σB

n I B̄ + IBσ B̄
n

)
+ g

(
σB

m σ B̄
l + σB

l σ B̄
m

)}
. (12)

Since the overall phase is unimportant, the six complex
parameters {a, b, c, d, e, g} can be represented by just 11 real
parameters for each �c.m.. Specifically, parameter a is chosen
to be real and nonnegative, while the other five parameters
have real and imaginary parts. These parameters may be
determined by an unbinned 11-parameter simultaneous fit to
the observed production and decay angles of reconstructed
p̄p → �̄� → p̄π+pπ− events, as described in Sec. V D
below. Once the parameters of the spin-scattering matrix
have been determined, a wealth of spin correlations can be
calculated by substituting the form of M given by Eq. (12) into
the definition of the spin correlation, Eq. (6). For example,
Table II gives the results, in terms of {a, b, c, d, e, g}, for the
24 spin correlations that could be directly measured with a
transversely polarized target and unpolarized beam. In fact,
Eq. (6) can also be used to calculate other spin correlations
which would be directly measurable only with longitudinal
target polarization and/or polarized beam.

Table II also lists symbols traditionally used to identify
some of these spin correlations, A for scattering asymmetry,
P for final-state polarization, D for depolarization, K for spin
transfer, and C for final-state spin correlations. Here C is also
used for 3-spin correlations between the target and final state.
Caution should be used in identifying these spin correlations
with those in other publications having the same traditional
name. The precise meaning of spin correlations involving m
and l depend critically upon the choice of coordinates.

IV. APPARATUS

With the exception of the polarized target and associated
trigger detectors, most of the equipment was the same as that
used in previous versions of the PS185 experiment [1–4].
A schematic view of the apparatus is shown in Fig. 2. A
compact set of tracking detectors was located just downstream
of the target area. Because of the forward boost of the �̄�

system, the trajectories of both particles passed through these
tracking chambers. This resulted in a large acceptance for
the full reconstruction of the charged tracks resulting from
p̄p → �̄� → p̄π+pπ−. Accurate measurement of the
topology of these charged tracks is sufficient, apart from the
ambiguity of � vs �̄, to completely reconstruct the kinematics
of each event including the hyperon decay angles whose
distributions yield information on the final-state spin. The
ambiguity of � vs. �̄ is resolved by a solenoid magnet farther
downstream which bends the trajectories enough to allow the
sign of the charge of tracks to be determined.

The tracking detectors consisted of two detector stacks.
The first was ten planes of multiwire proportional chambers
(MWPCs) with planes alternately oriented at ±45◦ relative to
the horizontal (the u and v directions). These had a pitch of
1.27 mm and a separation of 1 cm between planes. The second
stack was 13 planes of drift chambers oriented vertically and
horizontally (the x and y directions) with an average separation
between planes of 1.35 cm. The 4 cm drift cells were read by
pairs of sense wires separated by 0.42 mm, which resolved the
usual left-right ambiguity. A set of three similar but larger drift
chambers was located inside the solenoid magnet to determine
the direction of deflection of tracks by the 1 kG magnetic
field.

Since the beam passed through all these chambers, it was
necessary to desensitize the center of each chamber. This was
done by electroplating additional metal onto a 3–10 mm length
of the relevant sense wires to thicken them at the position at
which the beam would pass, preventing gas amplification.

Four planes of microstrips with 100 µm pitch were
located upstream of the target. These provided tracking of
the individual incident p̄ for a fraction of the events. Four
planes provided no redundancy, so a beam track could be
reconstructed only for events in which exactly one cluster
was found on each plane. This applied for only about 45%
of events because of beam pile-up and detector aging in the
high-intensity beam. For other events, the average beam track
was used.

The target was enclosed within a 4.2 cm diameter vacuum
vessel. Scintillation counters were used to form a trigger which
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TABLE II. Spin correlations directly accessible with a transversely polarized target and unpolarized beam, alternative
traditional names for the spin correlations, and indicated correlation (multiplied by I0) in terms of the parameters of the
spin-scattering matrix given in Eq. (12).

Spin correlation Traditional I0 × Q [= 1
4 Tr (σ B̄

µ σB
ν Mσ B̄

j σB
k M†)]

Q[0p̄, 0p, 0�̄, 0�] = 1 I0 = 1
2 {|a|2 +|b|2 +|c|2 +|d|2 +|e|2 +|g|2}

Q[n�̄, n�] Cnn
1
2 {|a|2 − |b|2 − |c|2 + |d|2 + |e|2 + |g|2}

Q[np, n�] Dnn
1
2 {|a|2 + |b|2 − |c|2 − |d|2 + |e|2 − |g|2}

Q[np, n�̄] Knn
1
2 {|a|2 − |b|2 + |c|2 − |d|2 + |e|2 − |g|2}

Q[n�] = Q[n�̄] Pn = P̄ n Re(a∗e) − Im(d∗g)

Q[np] = Q[np, n�̄, n�] An = Cnnn Re(a∗e) + Im(d∗g)
Q[m�̄, l�] = Q[l�̄, m�] Cml = Clm Re(a∗g) + Im(d∗e)
Q[np, m�̄, m�] = −Q[np, l�̄, l�] Cnmm = −Cnll Re(d∗e) + Im(a∗g)
Q[m�̄, m�] Cmm Re(a∗d + b∗c)+Im(e∗g)
Q[l�̄, l�] Cll Re(−a∗d + b∗c) − Im(e∗g)
Q[np, l�̄, m�] Cnlm Re(e∗g)+Im(−a∗d + b∗c)
Q[np, m�̄, l�] Cnml Re(e∗g) + Im(−a∗d − b∗c)
Q[mp, m�] Dmm Re(a∗b + c∗d)
Q[mp, n�̄, l�] Cmnl Im(−a∗b + c∗d)
Q[mp, m�̄] Kmm Re(a∗c + b∗d)
Q[mp, l�̄, n�] Cmln Im(−a∗c + b∗d)
Q[mp, n�̄, m�] Cmnm Re(b∗e) − Im(c∗g)
Q[mp, l�] Dml Re(c∗g) + Im(b∗e)
Q[mp, l�̄] Kml Re(b∗g) + Im(c∗e)
Q[mp, m�̄, n�] Cmmn Re(c∗e) − Im(b∗g)

exploited the charged-neutral-charged signature of p̄p →
�̄� → p̄π+pπ− events by selecting events in which a p̄

entered the target vessel, no charged particles left the target
region, and at least one charged particle exited the tracking
chambers. Figure 2(b) shows the scintillators used to require
an incident p̄ and to veto events in which charged particles
exit the target area. Figure 2(a) shows the two scintillator
hodoscope planes which indicated a charged decay product.

The most significant change in the apparatus from previous
versions of PS185 was the change from a polyethylene active
target to a transversely polarized frozen-spin target [20]. As
described above, it has been shown [12] that this greatly
expands the accessible spin information. The target itself was
a solid 9 mm long, 6 mm diameter cylinder of frozen butanol
(C4H9OH) doped with TEMPO (C9H18NO) [21]. The axis of
the cylinder lay along the beam direction. Figure 3 shows the
nested cryostats and the windows which allowed the beam to
enter and the �̄� to exit. An extremely compact design was
achieved to hold the target at 60 mK within a room-temperature
outer vacuum vessel of only 2.1 cm radius. Such a compact
design was critical to the success of the experiment as it
allowed a significant fraction of the p̄p → �̄� → p̄π+pπ−
events of interest to be selected by their neutral intermediate
state. With a large target vessel, the hyperons would have
decayed internally and the trigger information would have
been lost.

The target was polarized roughly every 22 h by surrounding
it by a superconducting solenoid, with a field of up to 5 T,
and pumping it with microwaves to achieve dynamic nuclear
polarization. Initial polarizations up to 75.3% were achieved.

In frozen-spin mode, with a holding field supplied by an
internal solenoid, polarization lifetime was roughly 100 h with
beam on target. The average polarization over the run was
about 62%. The polarization direction was vertical (transverse
to the beam) and could be chosen to be positive or negative to
reduce systematic errors.

The beam rate on target was approimately 6 ×105 an-
tiprotons per second. The integrated beam on target for this
measurment was 1.6 × 1011 antiprotons. Scaling by the data
acquisition live time of 79.2% yielded an effective integrated
intensity of 1.27 × 1011 antiprotons.

V. DATA ANALYSIS AND CROSS SECTION RESULTS

A. Event reconstruction and kinematic fitting

The events of interest, p̄p → �̄� → p̄π+pπ−, are
characterized by their two-V structure resulting from the decay
of the neutral hyperons. The first goal of the analysis is to
extract the small number of candidates for this event topology
from the very large number of events (largely n̄n followed
by n̄ annihilation) that satisfy the charged-neutral-charged
trigger condition. Less than 0.1% of the recorded events were
ultimately found to be consistent with the p̄p → �̄� →
p̄π+pπ− hypothesis. The next goal is to determine which
candidate events match the constraints enforced by energy and
momentum conservation on real p̄p → �̄� → p̄π+pπ−
events. This is done by kinematic fitting of the event topologies
in the tracking chambers, which are in a region free of
magnetic field. This fit also provides the best estimate of
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FIG. 2. (a) A schematic plan view of the detectors, magnet, and target. The solenoid field, shown in the positive y direction, could be
reversed to reduce systematic uncertainties. Tracks from a typical event are superimposed. (b) An expanded view of the target region shows the
beam-defining scintillators and the veto scintillators used to select events in which only neutral particles exit the target. The hodoscope planes
completed the trigger by requiring charged particles downstream of the decay region.

the production and decay angles of interest and of their
correlations. Additionally, information from the three drift
chambers within the solenoidal magnetic field is used to
determine the sign of the charged particles. If at least one
particle’s sign can be clearly determined, then the �-�̄
ambiguity can be resolved and the event can be used in
determining spin correlations.

When possible, microstrip information was used in the
kinematic fit to define the position and direction of the
incoming p̄. When this was not possible, average beam
position and direction were used. Because of the very small
emittance of LEAR’s adiabatically cooled beam, this was
sufficiently precise.

Drift chamber wire positions and time-to-distance calibra-
tions were determined empirically from straight track data.
This allowed drift chamber hit positions to be accurately
determined, typically with better than 200 µm resolution.

For candidate p̄p → �̄� → p̄π+pπ− events, hit
positions were determined from MWPC wire positions and
from drift chamber wire position and time. A significant
walk correction was made for drift chamber hits based upon
time above threshold. Hits from all planes sharing a common
readout direction (x, y, u, or v) were then searched for 2-D track
projections (x-z, y-z, u-z, or v-z). Drift chamber hit positions on
a 2-D track candidate were iteratively improved by correcting
drift time to position conversion to reflect the apparent slope of
the track. To allow for crossing tracks, a hit could be included
in more than one 2-D track. A maximum track angle of 60◦
was allowed in each projection since tracking was inaccurate
beyond that range. Losses due to that cut were accounted for
as acceptance losses as discussed in the Sec. V D.

Combinations of three or more of these 2-D tracks were
then considered as candidate 3-D tracks. The 45◦ rotation of
the MWPC projections relative to the drift chamber projections
helped eliminate spurious combinations. Confidence-level
cuts based on χ2 were used to determine whether sets of
2-D projections were consistent with a 3-D track. Tracks
constructed from just two 2-D projections were considered
only if neither projection could be used to form a 3-D track
having more projections.

Candidate V’s were formed from pairs of 3-D tracks having
a distance-of-closest-approach consistent with zero. These V’s
were rejected if they were not consistent with in-flight decay
of a � in the momentum range (471–1161 MeV/c) expected
for p̄p → �̄� → p̄π+pπ−. A single 3-D track was allowed
to be included in more than one V to avoid losing a real V by
having a track misassigned to a false V.

Pairs of V candidates (which did not share any 3-D
tracks) were then considered as candidates for kinematic
fitting. The pair was first tested for rough consistency with
the kinematic hypothesis, e.g., transverse components of
momentum, calculated independently from the topology of
each V, should be opposite and equal, within errors.

For all tracking cuts, simulated events (discussed in
Sec. V B) were used as a guide in setting confidence-level
cuts to avoid cutting good events. The simulation included
effects due to finite resolution and multiple scattering.

Kinematic fitting was based upon the fact that the ideal
topology of an event (neglecting finite resolution, multiple
scattering, and interactions) can be completely predicted in
terms of 14 parameters: 3 components of beam momentum,
3 coordinates of production vertex, 2 decay lengths,
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FIG. 3. (Color online) Schematic cross-sectional view through
the cryostat system (four concentric vertical cylinders) holding the
frozen spin target (a horizontal cylinder). Coordinates are indicated
relative to the center of the target. The antiproton beam entered
through the four thin windows on the left and interacted in the frozen
butanol target. Hyperons escaped with relatively little interaction
through the large exit windows shown on the right. Dashed lines
represent 20 µm titanium windows while dash-dot lines represent
40 µm aluminum windows. Coils which provide the holding field are
shown shaded. The trigger selected only those events in which the
hyperons survived long enough to escape the cryostat and pass the
veto detectors before decaying.

2 production angles (�c.m. and �c.m.), and 4 decay angles
(θ�, φ�, θ�̄, φ�̄). The production and decay angles are of
greatest interest since they hold the information on the spin
dynamics. By varying these 14 parameters, it should be
possible to find a hypothesis that is consistent with the hits on
the observed V pair, within errors. If satisfactory consistency
cannot be achieved, then the pair can be rejected as not
originating from p̄p → �̄� → p̄π+pπ−. If an acceptable
fit can be found, then it gives the best estimate of the 14
parameters.

When evaluating consistency of a hypothesized set of
parameters we not only used the measured track hits but also
included a data point to represent, with appropriate errors, the
knowledge of the beam energy and beam direction for that
event. Individual hits (as opposed to tracks) were treated as
measurements in evaluating the goodness of fit. The errors
on the measurements were not treated as being independent,
however. Evaluation of goodness of fit took into account the
fact that the errors in hit positions on any given track were
correlated because of multiple scattering. This correlation was
increased by the fact that the scattering did not always happen
uniformly along a track but could be greatly increased at
points where the particle hit a wire of the tracking chambers.
Simulated events were used to study the covariance introduced

by multiple scattering and to ensure that the fitting procedure
properly accounted for it.

A generalization [13] of the Levenberg-Marquardt [22]
method was used to adjust the 14 parameters to minimize
a likelihood statistic (analogous to χ2) which accounted for
covariance due to multiple scattering. The estimated errors on
parameters were assigned based on the covariance matrix from
the fit. As an example of the accuracy of event reconstruction,
the azimuthal production angle �c.m.was typically determined
with an r.m.s. error of less than 0.4◦ [except when it diverged
near the poles at sin(�c.m.) = 0]. Also, cos(�c.m.) had a
mean r.m.s. error of roughly 0.04 for the worst-case events
(�c.m. ≈ 90◦) falling roughly linearly to less than 0.004 for 0◦
and 180◦ scattering.

The fit was heavily overconstrained by the measured
topology of the event, along with the 12 constraints due
to 4-momentum conservation at all three vertices. A rough
measure of fit quality Q was calculated by treating the
likelihood statistic as if it were χ2 distributed and calculating
the confidence level. A flat distribution over 0 � Q � 1 would
be expected from a true χ2 statistic. The actual fit-quality
distribution has a large peak below Q = 0.008 resulting from
unrelated background events (such as antineutron annihilation)
which produce large numbers of tracks. This very sharp peak
was cut early in the analysis and will not be included in
the discussion of fit quality which follows. The remaining
Q distribution is shown in Fig. 4. The peak at high fit quality
(0.9 � Q � 1.0) is understood as resulting from events in
which no track was substantially deflected by hitting a chamber
wire. Conversely, the peak at low Q results largely from events
in which one or more tracks suffered significant deflection.
As shown in Fig. 4, the Monte Carlo simulation correctly
predicted the general shape of the observed distribution,

FIG. 4. Distribution of fit quality Q found by treating liklihood as
if it were distributed with a χ 2 statistic. Dotted line is the Monte Carlo
prediction normalized to the data over the interval 0.1 � Q � 1.
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including the skew toward high Q and the peaks at large and
small Q. The small residual differences are believed to result
from imperfect modeling of the multiple scattering and matter
distribution.

Events withQ< 0.1 were rejected. This cut not only cleanly
rejected the spike of background events at very low Q, but
also rejected a significant fraction of the events from quasifree
�̄� production on a bound proton in a carbon, oxygen, or
nitrogen nucleus in the target. The efficiency of rejection of
such events was tested by fitting the p̄p → �̄� → p̄π+pπ−
hypothesis to a dataset which was collected using a pure carbon
target. These events showed a peak at low Q, with about half
the events being eliminated when events with Q< 0.1 were
cut. The remaining tail extended across the Q distribution.
By scaling that data to the number of nonhydrogen nuclei in
the doped butanol target, the quasifree contamination can be
estimated as 1.7 ± 0.1% of the final �̄� data set. Since the
protons involved are unpolarized, this is expected to appear
mostly as a dilution of the extracted spin observables. This
effect has been included in estimates of the systematic errors.

The cut was expected to reject approximately 9% of good
p̄p → �̄� → p̄π+pπ− events and so would be expected
to not significantly bias spin correlations unless there was a
strong angular variation in the losses. Monte Carlo simulated
distributions for azimuthal production angle and individual
decay angles matched those of the actual accepted angular
distributions, without indication of angular variation of the
losses. Furthermore, analysis of Monte Carlo simulated data
with the same analysis cuts showed the reconstructed spin
correlation and spin-scattering matrix parameters to be in
agreement, within expected statistical errors, with those used
to generate the Monte Carlo events.

Kinematic fitting in the field-free region cannot distinguish
the � from the �̄. Tracks were extended into the solenoid,
and the three drift chambers there were searched for triplets of
hits which could be used to assign a charge to at least one of
the tracks. The hits were compared to predictions based upon
the reconstructed momentum and angle of the track and both
possible charges. Expected covariance of the hits, which was
large because of multiple scattering in the coils of the solenoid,
was taken into account. Any track which was well fit by one
charge hypothesis acted as a “vote” for which V was the �. In
principle, a single vote was sufficient to resolve the ambiguity
and properly identify all four tracks. Events with multiple votes
occasionally had two tracks which voted differently on which
V should be identified as the �. Additionally, 8% of the events
were unusable because they had no vote or had conflicting
votes.

A naı̈ve estimate of the error rate of these individual
votes can be achieved by assuming the error rate is a
constant, uncorrelated with the number of votes. The rate
of inconsistency between the votes in two-vote events would
then imply a 3.1% error rate on individual tracks. Assuming
that the same error rate applies for those events which have
only a single vote leads to the estimate that in total the �-�̄
identification was interchanged in 1.1% of the reconstructed
events.

More careful evaluation, however, shows that this naı̈ve
estimate underpredicts the actual rate of inconsistency for

multiple-vote events, indicating a correlation between num-
ber of votes and error rate. Without adjustable parameters,
the Monte Carlo simulation described in the next sec-
tion makes an excellent prediction of both the observed
distribution of number of votes per event and the rate of
inconsistent votes as a function of the number of votes. This
gives some confidence in the Monte Carlo prediction that the
actual fraction of events in which the �-�̄ identification
was interchanged is only 0.7% with no marked dependence
on �c.m.. The smaller value results from the Monte Carlo’s
prediction of a lower error rate for single-vote events than for
two-vote events.

Combining these two estimates, a (0.9 ± 0.2)% misiden-
tification rate was assumed when correcting for contami-
nation as explained in Sec. V D. The estimated error of
±0.2% was included in the systematic error analysis. This
contamination was negligible in all but the two most back-
angle bins.

A total of 30 818 events were successfully kinematically
reconstructed as �̄� events with the �-�̄ ambiguity resolved.

B. Monte Carlo simulation

An understanding of the angular dependence of acceptance
is critical to successful extraction of spin-scattering infor-
mation from angular distributions. The acceptance function
used to extract spin observables was evaluated using a
simulation designed to incorporate the empirical detector
response along with predicted particle interactions. The Monte
Carlo simulation was also used in tuning algorithms and setting
cuts to optimize tracking, V finding, and fitting. Simulated
events were also used to study systematic errors.

The GEANT-based [23] simulation included multiple scat-
tering, δ-ray production, and hadronic interactions. The latter
was especially important for the final-state p̄, which has a
large annihilation cross section. The description of the mass
distribution included the target, cryostat, scintillators, chamber
foils, gas, and wires.

The position and response of detectors were determined
empirically when possible and used as input for simulation.
Positions of trigger scintillators were determined by tracking
through the microstrip detectors using data from dedicated
calibration runs taken with a thick scatterer upstream of the
microstrips. These data were also used to determine tracking
chamber positions and to measure their efficiencies as a
function of track slope and position.

Simulation of the wire chambers included observed de-
crease in chamber efficiencies near the sense wires, the
observed effective size of the “dead spot” built into the center
of each plane, and the observed decrease in efficiency on the
neighboring drift chamber sense wire due to field distortion at
the dead spot.

The effect of the trigger scintillators was an important
component of the simulation. Use of trigger scintillators was
essential to selecting out the rare events of interest. The
cryogenic target, however, made it impossible to place the
scintillators as close to the production point as had been done
in all previous versions of the PS185 experiment. Therefore a
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FIG. 5. (Color online) Comparison of hyperon decay vertex z-
coordinate distributions between data (solid line) and simulated data
set (shaded).

large fraction of all p̄p → �̄� → p̄π+pπ− events were lost
because at least one hyperon decay occurred upstream of the
veto scintillators.

Figure 5 shows a comparison between simulated and
measured distributions, as an example of a test of the
simulation. The z component of the vertex position of �

decay is shown. The distribution is seen to be well predicted
by simulation, including the sharp rise due to the position
of the veto scintillators. The target, as shown in Fig. 3(b),
is located upstream of this position but the veto scintillators
prevent triggers for events in which the decay occurs farther
upstream.

C. Differential cross section

The �c.m.-averaged differential cross section for �̄�

production at pp̄ = 1.637 GeV/c can be found from the
spin-matrix parameters {a, b, c, d, e, g}, determined as
described in the following sections, as〈

dσ

d��

〉
≡ 1

2π

dσ

dcos�c.m.

= I0

= 1

2

{
a2 + b2 + c2 + d2 + e2 + g2}.

The differential cross section so found is shown as dark points
in Fig. 6. The cross section is essentially identical to that
found by counting �̄� events within each cos(�c.m.) bin and
correcting for mean acceptance over the angular distributions
found below.

The unequal bin widths seen in Fig. 6 were chosen to give
roughly equal statistics of observed �̄� events in each of
sixteen cos(�c.m.) bins. This allowed a stable fit of the eleven
spin-matrix parameters to be performed in each bin. Uniform
binning would have sacrificed forward-angle cos(�c.m.) reso-
lution or resulted in low-statistics fits at back angles leading
to instability and large errors. The cross section is discussed
here, in advance of the explanation of the fitting procedure,
to motivate this choice of cos(�c.m.) bins, which applies to all
subsequent discussion of the matrix parameters.

The open points in Fig. 6 show a renormalized version of
a previously published result [2] from an earlier version of
the PS185 experiment using unpolarized polyethylene target

FIG. 6. Results for the φ-averaged differential cross section
(solid). The previous measurement [2] at 1.642 GeV/c, scaled
by a factor of 1.26 to match present integrated cross section, is
superimposed (open diamonds).

cells surrounded by scintillator. Those measurements were
made at pp̄ = 1.642 GeV/c, which is very nearly the same
beam momentum as the present data, pp̄ = 1.637 GeV/c.
For the purpose of comparison of shapes, the older result has
been scaled up by a factor of 1.26 to match the integrated
cross section of 81.1 ± 0.5+5.8

−7.5µb measured in the present
experiment (where the first error is statistical and the second
is systematic). The systematic errors assigned to the present
measurement are larger than on earlier ones because the
cryogenic polarized target introduced larger uncertainties in
target thickness, target position relative to trigger counters,
and hadronic interactions. As described in Sec. V E, these
systematic errors have been realistically estimated, so an
explanation is required for the apparent discrepancy between
the present and previous determinations of total cross section.
The normalization discrepancy in early PS185 results has
already been described in an earlier publication [3]. Hadronic
interactions and multiple scattering were not included in
the custom-written Monte Carlo simulation code used to
determine acceptance corrections in early analyses of PS185
data [1,2]. Versions of a GEANT-based simulation have been
used in calculating acceptances for more recent results [3,4].
Inclusion of hadronic interactions and multiple scattering
increased the estimated yield by 8–12%. With a 10 ± 2%
adjustment in normalization, the older result gives σ =
70.4 ± 0.4 ± 2.2µb, which roughly agrees with the present
result within errors. The spin correlations are insensitive to
any systematic error on overall normalization.

Comparison of the two data sets in Fig. 6 shows some
difference in shape of the distribution at forward angle. The
present analysis took into account correlated errors due to
track deflections caused by multiple scattering. This allowed
events to be reconstructed which might otherwise have been
lost. The older analysis did not allow for multiple scattering in
event reconstruction. The lost events would not have been
compensated for by acceptance corrections since multiple
scattering was not included in the Monte Carlo simulation.
Furthermore, estimates of expected losses, found by disabling
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the multiple-scattering correlation in fitting in the present
analysis, indicate that the effect is greatest at forward and back
angles, where hyperon momenta are low. The sharper peak at
forward angles seen in the present data is therefore believed
to be accurate, while the older data are slightly distorted by
multiple-scattering losses.

D. Fitting spin-scattering matrix parameters

For each bin in �c.m., Eq. (11) represents the distri-
bution of events across a 5-D space of angles [�c.m.,

cos(θ�̄), φ�̄, cos(θ�), φ�], which will be represented by a
5-D vector �v for notational convenience. With only roughly
2000 events in each �c.m. bin, performing a simple χ2 fit by
subdividing each of the five coordinates into bins is excluded.
An unbinned maximum-likelihood fitting technique was em-
ployed. This is often called simply maximum-likelihood
fitting, a name that fails to distinguish from other fit methods
such as χ2 minimization, which also correspond to a maximum
likelihood.

Unbinned fitting is a limiting case of fitting with Poisson
statistics. If the data were binned into K bins with nk being the
number of events in bin k, then the likelihood of the observed
data set would be

L = K

�
k=1

e−φ(�vk,�a)��vk

{
(φ(�vk, �a)��vk)nk

nk!

}
,

where φ(�vk, �a) is the probability density function which
depends on the 11 real parameters of the spin-scattering matrix,
here represented as the 11-D vector �a. The volume of the k-th
5-D bin is ��vk . If the number of bins K now becomes large
compared to the number of events N, then nk will be zero
for most bins and will be unity for N bins. In this limit, the
likelihood becomes

L = K

�
k=1

e−φ(�vk,�a)��vk
N

�
j=1

φ(�vj , �a)��vj ,

where the second product runs over only the occupied bins.
Neglecting background contamination, φ is the intensity
distribution, described by Eq. (11), scaled by the integrated
luminosity of the experiment, the solid angle corresponding
to the �c.m.-bin considered, and the average acceptance
probability for coordinates �vk .

Taking the log of L introduces a sum of ln(��vj ) terms
which would diverge in the limit of infinitesimal bin size.
Since these terms are independent of �a, discarding them does
not change the value of �a which maximizes the likelihood. Let
M′ represent −2 ln(L) with these terms discarded. Then in the
limit of infinitesimal bin size,

M′ = 2
∫

φ(�v, �a)d�v − 2
N∑

j=1

ln(φ(�vj , �a)).

Maximization of the likelihood for a data set {�v1, . . . ,
�vN } can be accomplished by finding the parameters �a which
minimize M′. Writing φ(�v, �a) as µ(�v, �a)A(�v), where A is the
acceptance and µ is the remainder of the probability den-
sity function [which, neglecting background contamination,

would be Ifinal(�c.m.,�c.m., k̂
p̄
, k̂

p
) scaled by the integrated

luminosity and the solid angle],

M′ = 2
∫
µ(�v, �a)A(�v)d�v − 2

N∑
j=1

ln(µ(�vj , �a)) − 2
N∑

j=1

ln(A(�vj)).

The last term, which is independent of �a, can be discarded
without affecting the position of the minimum. This gives the
final function to be minimized, which will be called M.

The first term of M, which incorporates the acceptance
function, could in principle be evaluated by Monte Carlo
integration (with each simulated event being processed by
the analysis routines to see whether it would be successfully
reconstructed). However, minimization of M would then
require prohibitive reevaluation of this term for each new
set of parameters �a being tested. Fortunately, the structure
of Ifinal in Eq. (11) permits a great simplification. Each of
the 20 terms of Eq. (11) can be written as a product with
an �a-dependent dynamic term (containing the Q’s and I0)
multiplying a purely geometric term Gi(�v) that depends on
�v but not on the parameters �a. So µ can be written as

µ(�v, �a) =
20∑
i=1

Di(�a)Gi(�v),

allowing the first term of M to be simplified since

∫
µ(�v, �a)A(�v)d�v =

20∑
i=1

Di(�a)
∫

Gi(�v)A(�v)d�v

=
20∑
i=1

Di(�a)Wi,

where the weights Wi are the moments of the acceptance which
are independent of �a and so need to be evaluated only once
by Monte Carlo integration. To perform this integration, the
simulation was used to generate events uniformly distributed
in �v space without weighting to match the observed spin
correlations. The fitting procedure is then to search for the
�a that minimizes

M = 2
20∑
i=1

WiDi(�a) − 2
N∑

j=1

ln(µ(�vj , �a)).

As explained above, an estimated (0.9 ± 0.2)% rate of
misidentification of � and �̄ causes contamination of �c.m.

bins with data from the supplementary angle. Because the
differential cross section is strongly forward peaked, this is
a negligible effect except for the two most back-angle bins.
The predicted misidentification rate at forward angles leads
to an 8% contamination of the most back-angle bin. To allow
for this, the µ(�v) used in back-angle bins was not simply
Ifinal(�v, �a) scaled by the integrated luminosity and solid angle.
Rather, Ifinal(�v, �a) was replaced by an appropriately weighted
linear combination of Ifinal(�v, �a) and the background term
Ifinal(�vreversed, �aforward) where �vreversed is the corresponding point
in �v space reached by reversing � and �̄ identification, and
�aforward is the set of parameters that applies to the forward-angle
bin. Fitting of forward-angle bins was carried out first to allow
this contamination to be correctly modeled when fitting the
back-angle bins.
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Minimization in the 11-dimensional �a space was accom-
plished by the Polak-Ribière conjugate gradient method [22].
To guard against false minima, each minimization was carried
out multiple times with different randomly chosen starting
points. For most cos(�c.m.) bins, a common minimum was
found in every search. In the worst case, the fit converged on
false minimum less than 65% of the time. Additionally, Monte
Carlo simulated data sets were generated with similar statistics
and spin correlations to the actual data. Fitting these simulated
data sets demonstrated the robustness of the technique for
converging on the proper minimum and allowed determination
of a scale of confidence level for numerical values of M.
Unlike χ2,M has no a priori expected value for good fits
because it is arbitrarily offset from the true log likelihood.
There was no indication that M values obtained for the real
data were systematically higher than what was expected for a
good fit, based on values obtained for corresponding simulated
data sets.

Use of the curvature matrix, based on the assumption of
parabolic behavior of M near the minimum, was found to give
inaccurate estimates of the errors on the �a parameters. Errors
were instead determined by using a “brute-force” search of
the space around the minimum to find the maximum possible
change in each parameter (in conjunction with changes in
all other parameters) consistent with an increase of less than
1 in the value of M. Since M differs from −2ln(L) only
by a constant offset, a given change in M has the same
interpretation as the equivalent change in −2ln(L). These
maximum-acceptable (positive and negative) changes in each
parameter will be referred to as the ‘1σ ’ errors since they
cover the confidence interval that would be covered by 1σ

in the case of Gaussian errors. Similarly, a ‘2σ ’ error bound
on each parameter was found by determining the maximum
possible (positive or negative) change in each parameter for
which M would exceed its minimum value by less than 4.

Once the best-fit parameters �a have been found, I0 and
all the Q’s can be determined (even those Q’s not directly
measurable in an experiment with an unpolarized beam and
a transverse target polarization). But, since the errors on
the parameters are highly correlated, the error on each spin
correlation cannot be determined by simple lowest-order error
propagation. Even if the correlation matrix were determined,
error propagation would be unreliable. A far superior estimate
of the error on each spin-correlation comes from the same
brute-force search for �M = 1 and �M = 4 regions. At each
point, all quantities of interest, such as spin correlations, were
calculated. The maximum positive and negative excursions
of each such quantity from its best-fit value, consistent with
�M< 1 and �M< 4, were taken to be the ‘1σ ’ and ‘2σ ’
errors, respectively, on that calculated quantity.

E. Systematic errors

Overall normalization errors would not affect measured
spin correlations but would directly change I0 and equivalently
the �c.m.-averaged differential cross section presented in
Fig. 6. Since the experiment focused on spin correlations,
overall normalization was not controlled as carefully as other

aspects of the experiment. The length of the cylindrical frozen
butanol target was measured to be 9.0 ± 0.5 mm. An upper
limit on the misalignment of the target axis relative to the
beam was 20◦, which could increase effective target thickness
by up to 6%. The uncertainty in effective position of veto
scintillators relative to the target was estimated at 1 mm, which
was found, through Monte Carlo simulation, to cause less
than 4% uncertainty in normalization. Statistical error in the
estimate of quasifree contamination introduced a negligible
systematic error. The overall fractional systematic uncertainty,
estimated by adding these contributions in quadrature, is
+7.1%/−9.3%. This gives the systematic error, quoted above,
on the total cross section, σ = 81.1 ± 0.5+5.8

−7.5 µb. This same
fractional systematic error applies to the bins of 〈 dσ

d�
〉 in

Fig. 6. While the normalization error cancels in spin observ-
ables, all spin-matrix parameters would scale by the square
root of any overall normalization factor. Since this is a common
factor on all terms, it is not included in the error band assigned
to each of these parameters. It should be remembered that an
overall normalization error of +3.5%/ − 4.8% applies to the
spin-matrix parameters.

The reconstructed angles for each event, �vk =
[�c.m., cos(θ�̄), φ�̄, cos(θ�), φ�], are not known exactly but
are extracted with known errors and correlations. The method
of unbinned maximum-likelihood fitting treats each event as
a precise point in the 5-D �v space and does not incorporate
a method of allowing for the finite errors on these points.
Neglecting these finite errors introduces a source of systematic
error in addition to the statistical error discussed above. The
method of estimating these systematic errors was based on
the use of simulated data with errors and event statistics
similar to the actual data. These simulated data sets were
generated based on spin correlations chosen to nearly match
those found in the data. Simulated events were kinematically
fit giving �vk’s with errors similar to the real data. Unbinned
maximum-likelihood fits were then used to extract best-fit
values of the spin-transfer matrix parameters, which were then
used to calculate spin correlations and all other variables of
interest, as described in the next section. The fitting process
was then repeated using the ideal �vk’s, which had been used
by the Monte Carlo to generate the simulated data. The
differences between best-fit values of each variable fit to the
simulated data and the best-fit values fit to the ideal �vk’s was
a measure of the systematic error in that variable because
of the finite resolution of the �vk’s. Changes in each variable
of interest were calculated independently, rather than using
error propagation to extract the expected effect. Ideal fits
were compared to fits using kinematically fit finite-resolution
data for ten different simulated data sets. Additionally, since
kinematic fitting was quite time consuming, the statistics of
this study were augmented by generating an additional 20
data sets by simply smearing each ideal �vk by its estimated
resolution rather than simulating an event and operating the
full analysis chain on it. Estimates of systematic error due
to finite resolution were thus found as the r.m.s. shift from
the zero-resolution value for each variable of interest in each
�c.m. bin. This contribution typically dominated the overall
systematic error estimates, which are shown with each variable
in the next section.
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The nonhydrogen nuclei in the target were unpolarized
so quasifree events misidentified as free p̄p → �̄� →
p̄π+pπ− events would exhibit no correlation to target
polarization direction. The effect of the small quasifree
contamination could therefore be estimated by introducing
an appropriate fraction of isotropically distributed simulated
events in place of some of the events of a simulated data
set. The estimated quasifree contamination (from analysis of
carbon-target data) was typically only about 1% but rose to 3%
at the farthest back angle. Systematic errors for each variable of
interest were again found by determining the r.m.s. shift of that
variable caused by the simulated contamination. This small
contamination generally caused smaller systematic errors than
did the effects of finite resolution.

Several precautions were taken to reduce systematic effects
due to target polarization. The direction of target polarization
was reversed during data collection to cancel systematic effects
due to any up-down asymmetry of the detectors. Average target
polarization was measured by nuclear magnetic resonance
measurements at the beginning and end of each data-collection
period (between target repolarizations) to improve estimates
of its value at intermediate times. Data-collection periods were
typically limited to a quarter of the polarization lifetime to keep
the polarization high and to improve accuracy of estimated
polarization. The probability density function used to weight
each measurement in the unbinned fit was not based upon an
average polarization but on the best estimate of the polarization
at the time that event was recorded.

An additional systematic error results from uncertainty
in initial polarization and from possible inhomogeneities in
target relaxation. The fractional error in measured target
polarization is estimated at �P/P = 2.3%. The average
polarization measured at the end of a data-collection period
could not determine whether depolarization was nonuniform
due to beam heating. However, the target was kept cold
enough that relaxation time was not strongly temperature
dependent. Inhomogeneity of depolarization was estimated to
contribute an uncertainty of at most �P/P = 3.8% just before
repolarization. These errors combined to give a worst-case
estimate of �P/P = 4.5% at the end of the data-collection
period.

The maximum systematic error due to polarization was
estimated by shifting polarizations by 4.5% and determining
the size of the shift of extracted observables of interest. This
was found to be a smaller error than that due to resolution
or quasifree background. All three effects were added in
quadrature bin-by-bin for all variables of interest to obtain
the overall systematic error estimate, which is plotted as an
error band at the bottom of plots of each variable of interest.

VI. SPIN CORRELATION RESULTS

Figures 7 and 8 show the best-fit values of the 11 parameters
of the spin-scattering matrix fit to the data in bins of �c.m..
Parameter a is chosen to be real (and nonnegative) so Im(a) is

(a)

(b) (b)

(c) (c)

FIG. 7. Fit results for spin-matrix parameters a, b, and c. Arbitrary phase is chosen by constraining parameter a to be real and nonnegative.
Statistical errors are shown on each data point, with 2σ error bars superimposed (dashed). Estimated systematic error width is shown at the
bottom of each plot (dark-shaded region).
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(d)

(e)

(g) (g)

(e)

(d)

FIG. 8. Fit results for spin-matrix parameters d, e, and g. Statistical errors are shown on each data point, with 2σ error bars superimposed
(dashed). Estimated systematic error width is shown at the bottom of each plot (dark-shaded region).

zero. On each point, the dark bar indicates the 1σ error range
while the dashed bar represents the 2σ error. Because of the
actual shape of the M hypersurface, some of the error bars are
highly asymmetric, and the 2σ error is often very different from
twice the 1σ error. The black band at the bottom of each plot
indicates the estimated systematic error. Overall normalization
error is not included in the systematic-error band. These, and
other results presented below, are available in table form [24].

Table II shows how each of the 19 directly measurable spin
correlations (and I0) can be calculated from the parameters �a
for the spin-scattering matrix. While the spin correlations can
be calculated directly from the best-fit values of the parameters,
as explained above, their errors cannot be found by propagation
of the errors on the parameters. Results for I0( = 〈 dσ

d�
〉) have

already been shown in Fig. 6. Results for the polarization
Q[n�] = Q[n�̄], often denoted P� and P�̄, are shown in
Fig. 9 as filled circles with 1σ and 2σ errors indicated. Also
shown are results from the previous PS185 measurement [2]
at pp̄ = 1.642 GeV/c, which can be seen to be in good agree-
ment. Similarly, Fig. 10 shows those 2-spin correlations which
can be measured without a polarized target. These correlations
of the spins of the final-state � and �̄ are commonly denoted
Cmm,Cml, Cnn, and Cll . Again good agreement is seen with
the previous results.

A particular combination of these observables, which has
direct physical interpretation, is the singlet fraction (the
fraction of �̄� pairs which are produced in a spin-singlet
state), which can be written as

SF = 1
4 (1 − Q[n�, n�̄] + Q[m�,m�̄] + Q[l�, l�̄]). (13)

This can be calculated directly from the spin-scattering matrix
parameters as

SF = |b − c|2
4I0

. (14)

This is shown in Fig. 11. Again the errors have been assigned
by directly determining the limits of change in SF for a
maximum acceptable change in log likelihood. Previous PS185

FIG. 9. Current results for polarization, Q[n�] = Q[n�̄] (filled
circles). The previous measurement [2] at 1.642 GeV/c is su-
perimposed (open squares). Statistical errors are shown on each
current data point, with 2σ error bars superimposed (dashed). The
estimated systematic error width is shown at the bottom of each plot
(dark-shaded region).
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(a) (b) (c) (d)

FIG. 10. Current results for previously measured spin correlations between �̄ and � (filled circles). Previous measurements [2] are
superimposed (open squares). Statistical errors are shown on each current data point, with 2σ error bars superimposed (dashed). Estimated
systematic error width is shown at the bottom of each plot (dark-shaded region). Spin correlations are (a) Q[m�̄, m�], (b) Q[m�̄, l�], (c)
Q[n�̄, n�], and (d) Q[l�̄, l�].

results [2] at pp̄ = 1.642 GeV/c are shown for comparison.
The earlier results were determined from Eq. (13) using spin
correlations which had been separately extracted from the data.
Unphysical negative values could then occur as a result of
statistical fluctuations or heightened sensitivity to systematic
errors in the linear combination of observables. The present
results were extracted using Eq. (14) and so are constrained to
be nonnegative throughout the range of their error bars. It is
interesting to note that the often-accepted empirical rule that
SF = 0 for this reaction is clearly broken at back angles.

Figure 12 shows results for Q[np, n�] and Q[np, n�̄],
conventionally denoted as Dnn and Knn, respectively. These
results, which have already been published in [14], disagree
strongly with predictions from both meson-exchange [7]
and quark-gluon [9] models. While these results have been
published, the present paper is the first to document the
details of the technique used to extract them. Measurement
of these spin correlations was the main goal of this experiment

FIG. 11. Current results for singlet fraction SF (filled circles).
Previous measurement [2] is superimposed (open squares). Statistical
errors are shown on each current data point, with 2σ error bars
superimposed (dashed). Estimated systematic error width is shown at
the bottom of each plot (dark-shaded region).

because two competing classes of models made differing
firm predictions for these observables. While both classes of
model enjoyed success in explaining the observations made
with unpolarized targets, these results suggest that additional
dynamics will have to be included into the models. The
wealth of additional spin-dynamics information presented
below may help constrain and test refinements made to match
the surprising results in these 2-spin correlations.

The remaining 12 directly measurable spin correlations are
shown in Fig. 13. The first of these, Q[np], is the analyzing
power, often denoted An. The remainder are correlations
between initial proton spin and components of one or both
final-state spins. Errors are seen to be small enough, even
on most 3-spin correlations, to allow structures to be clearly
resolved. This underscores the advantage of fitting the spin-
scattering matrix parameters. If these directly measurable spin
correlations had been determined by a direct fit of Eq. (11) to
the observed distribution, their errors would have been much
larger, so meaningful structure would have been impossible to
extract in most cases.

Of the 256 spin correlations, Q[jp̄, kp, µ�̄, ν�], defined
by Eq. (6), one is trivially unity and 128 are constrained to
be zero by parity conservation of the strong interaction. An
additional 88 can be neglected because symmetry requires
that they are identical to (or the negative of) another one
being considered. In this sense, there are 39 nontrivial spin
correlations in addition to I0. These cannot be said to be 40
independent observables since they can be expressed in terms
of just 11 real parameters of the spin-scattering matrix at each
�c.m.. However, there are 40 quantities which would be directly
measurable given arbitrary beam and target polarization. Of
these, 20 (including I0) are directly measurable in the present
experiment and have been presented above. However, since
the spin-scattering matrix is fully determined, the remaining
20 spin correlations can equally well be extracted just as
the directly measurable ones are in the present analysis. The
eight such observables shown in Fig. 14 would be directly
measurable (i.e., would appear explicitly in the description
of the angular distribution) without a polarized beam if
the target were longitudinally polarized. Although the target
polarization in the present experiment is purely transverse,
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FIG. 12. Results for spin transfer observ-
ables Q[np, n�] (often called depolarization,
Dnn) and Q[np, n�̄] (often called spin transfer,
Knn) at 1.637 GeV/c, compared to MEX [7]
and QG [9] model predictions at 1.642 GeV/c.
Statistical and systematic errors are shown as in
previous figures.

these observables are still determined (in some cases, quite
accurately) in this present measurement. Similarly, Fig. 15
gives the results for spin observables that would be directly
measurable only if the antiproton beam were polarized. Again,

some of these are quite well determined by the present data set.
In rare cases, a double minimum in the log-likelihood function
M results in disjoint regions falling within the 1σ limit. These
are indicated in Fig. 15 by a second disjoint error bar.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 13. Results for the 12 additional spin observables which appear directly in the measured angular distribution. Statistical and systematic
error estimates are displayed as before. The spin observables displayed are (a) Q[np], (b) Q[mp, m�], (c) Q[mp, l�], (d) Q[mp,m�̄],
(e) Q[mp, l�̄], (f) Q[mp, m�̄, n�], (g) Q[mp, n�̄, m�], (h) Q[mp, n�̄, l�], (i) Q[mp, l�̄, n�], (j) Q[np, m�̄, m�], (k) Q[np, m�̄, l�]., and (l)
Q[np, l�̄, m�].
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(a) (c)

(d)(b)

(e) (f) (g) (h)

FIG. 14. Results for eight spin observables which do not appear directly in the measured angular distribution. Direct measurement of an
individual one of these observables would require a longitudinally polarized target proton but would not require beam polarization. Statistical
and systematic error estimates are displayed as before. The spin observables displayed are (a) Q[lp, m�], (b) Q[lp, l�], (c) Q[lp, m�̄], (d)
Q[lp,m�̄, n�], (e) Q[lp, n�̄, m�], (f) Q[lp, n�̄, l�], (g) Q[lp, l�̄], and (h) Q[lp, l�̄, n�].

VII. DISCUSSION AND CONCLUSIONS

The method of determining the spin-scattering matrix sug-
gested in [12] has been successfully applied in practice. This is
a unique case in which the full spin structure of a two-fermion
interaction has been determined from a single measurement.
The self-analyzing property of hyperons combined with a
transversely polarized target allows this unusual access to
the spin structure of the production of strange-antistrange
quark pairs. The data set of about 2000 events per �c.m. bin
has proven sufficient to accurately determine the parameters
and from them to learn the spin correlations as well as other
functions such as SF and 〈 dσ

d�
〉. By construction, the results are

guaranteed to be internally consistent, obeying all constraints
imposed by the symmetries of the strong interaction under
parity and charge conjugation. Numerical values for these
results are available [24].

Apart from the small background subtraction at back angles,
all results shown for each angular bin have been obtained
completely independently of the results at other angular bins
and are based on nonoverlapping sets of events. The smooth
variations as a function of �c.m. seen in most of the spin
correlations is in no way built into the analysis technique.
The fact that the angular variation of the data appears smooth
is a reassurance that the entire chain of event reconstruction
and data analysis is performing reasonably and extracting
meaningful results. Similarly, the fact that the bin-to-bin scatter
in the data appears to be consistent with the assigned error bars
is an independent verification of the validity of the method of
error analysis.

The most important aspects of these results, relating to
Q[np, n�] and Q[np, n�̄], have already been presented in [14].
As shown in Fig. 12, the measured values of these spin
correlations differ markedly from the predictions of a meson
exchange (MEX) model [7] and a quark-gluon (QG)-inspired
model [9] despite the fact that both these models reasonably
describe the significant spin-structure observable with an
unpolarized target.

All MEX models generally predict a large tensor interaction
which couples spin-triplet p̄p initial state to spin-triplet �̄�

final state, flipping the spin in the process. For this reason,
both the spin transfer, Q[np, n�̄], and the depolarization,
Q[np, n�], are predicted to be strongly negative. This pre-
diction holds even in the presence of initial- and final-state
interactions, which have been included in the prediction shown
by solid lines in the figures. The measured values are far less
strongly negative than the predictions and, in fact, are positive
at forward angle indicating that both final-state particles tend to
be aligned with the initial proton spin. Furthermore, Q[np, n�̄]
is strongly positive at back angles, meaning that the normal
component of the proton’s spin is transferred to the �̄ in
contrast to the MEX prediction.

All existing calculations using QG models have been
restricted to 3P0 vacuum terms, and 3S1 gluon terms. So the
interaction is purely spin triplet, having SF = 0 built into the
model. Here, there is a much smaller tensor interaction and so
less spin flip. It was because of this characteristic difference be-
tween QG and MEX models that Q[np, n�] was first suggested
[11] as an observable which would distinguish experimentally
between the two classes of model. A vanishing singlet fraction
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(a) (b) (d)

(e) (f) (g)

(j)

(i) (l)

(k)

(h)

(c)

FIG. 15. Results for the final 12 spin observables which do not appear directly in the measured angular distribution. Direct measurement
of an individual one of these observables would require a polarized antiproton beam. Statistical and systematic error estimates are displayed
as before. For one angular bin in each of figures (a) and (l), double minima resulted in disjoint regions falling within the 1σ limit. The
spin observables displayed are (a) Q[mp̄,mp], (b) Q[mp̄, mp, n�], (c) Q[mp̄, mp,m�̄, m�], (d) Q[mp̄, mp, m�̄, l�], (e) Q[mp̄,mp, l�̄, l�], (f)
Q[mp̄, lp], (g) Q[mp̄, lp, n�], (h) Q[mp̄, lp, m�̄, m�], (i) Q[mp̄, lp, m�̄, l�], ( j) Q[mp̄, lp, n�̄], (k) Q[mp̄, lp, l�̄, m�], and (l) Q[lp̄, lp].

necessarily implies that Q[np, n�] = Q[np, n�̄]. This is
reflected in the predictions of the QG model shown as dotted
lines in Fig. 12. As shown in Fig. 11, however, the singlet
fraction is distinctly nonzero at back angles, in violation of
the assumptions of the existing models. This manifests itself
in the data as a large difference in back-angle behavior of the
two distributions.

Apart from large �c.m. and very small �c.m., the QG
model is seen to dramatically overpredict both Q[np, n�]
and Q[np, n�̄]. Predictions have also been made [25] for the
transfer of other components of proton spin to the spin of the
� and �̄. These are compared to the data in Fig. 16. While the
disagreement is not as striking, partly because of the relatively
larger error bars, it is clear that significant modification of
the model will be needed to match these correlations and
to predict the others reported here. A modification which is
clearly required is inclusion of singlet strength, such as 1S0.

While a great wealth of information has been gained on
the spin dynamics of p̄p → �̄� at pp̄ = 1.637 GeV/c,
few conclusions can be drawn because theoretical models lag
significantly behind in understanding the data at this point.

Availability of these data may inspire increased theoretical
activity.

Among the most precisely determined spin correlations
is one that has not previously been measured. The ana-
lyzing power (a correlation of spin only with scattering
angle, not with other spins) Q[np] [Fig. 13(a)], usually
denoted An, is constrained to vanish at cos(�c.m.) = ±1
but has now been determined to be strongly positive in
the forward hemisphere and mostly negative for back an-
gles. The complex angular structures of the 2-spin corre-
lations, Q[m�̄,m�],Q[m�̄, l�],Q[n�̄, n�], and Q[l�̄, l�],
[Figs. 10(a)–10(d), respectively] although consistent with
previous measurements [2], are now revealed in far more detail.
Among the 3-spin correlations, some of the directly mea-
surable ones show the cleanest structure with Q[np,m�̄, l�]
[Fig. 13(k)] and Q[np, l�̄, m�] [Fig. 13(l)] showing remark-
ably similar behavior, while it is not trivially expected that
they should be equal. A distinctly different structure is seen
in Q[np,m�̄,m�] (= −Q[np, l�̄, l�]) [Fig. 13(j)] which is
more compressed to forward angles. Even some of the 4-spin
correlations are determined well enough to unveil distinct
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(a)

(e)

(f)

(g)

(h)

(b) (c)

(d)

FIG. 16. Comparison of quark-gluon predictions [25] to measured spin-transfer and depolarization observables. Measured results presented
in Figs. 13 and 14 are repeated here for comparison with the predictions. Statistical and systematic error estimates are displayed as before. The
spin observables displayed are (a) Q[mp, m�], (b) Q[mp, m�̄], (c) Q[mp, l�], (d) Q[mp, l�̄], (e) Q[lp, m�], (f ) Q[lp, m�̄], (g) Q[lp, l�], and
(h) Q[lp, l�̄].

angular structure. Regions of nonvanishing correlation are
seen, for example, in Q[mp̄, lp,m�̄,m�],Q[mp̄, lp,m�̄, l�],
and Q[mp̄, lp, l�̄, m�] [Figs. 15(h), 15(i), and 15(k), respec-
tively]. It would be fruitless to speculate on the meaning of
each of these structures individually. A coherent picture will
required theoretical modeling to simultaneously explain all
available spin correlations or equivalently to directly predict
the coefficients of the spin-scattering matrix. This difficult
task is made all the more difficult by the strength of the
initial- and especially final-state interactions. But even in their
presence, the physics reduces to just 11 real parameters at
each angle. There may be advantages to comparing theories to
the experimentally determined spin-matrix parameters. They
may tie in more directly to the underlying spin physics of
the model. Also, the process of determining the quality of the

agreement is simplified by removing the “double counting”
which is inherent in comparing up to 40 spectra when all the
physics reduces to just 11 sets of parameters.
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