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Isospin violation in the vector form factors of the nucleon
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A quantitative understanding of isospin violation is an increasingly important ingredient in the extraction of
the nucleon’s strange vector form factors from experimental data. We calculate the isospin-violating electric
and magnetic form factors in chiral perturbation theory to leading and next-to-leading order, and we extract the
low-energy constants from resonance saturation. Uncertainties are dominated largely by limitations in the current
knowledge of some vector meson couplings. The resulting bounds on isospin violation are sufficiently precise to
be of value to on-going experimental studies of the strange form factors.
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I. INTRODUCTION

Since a nucleon has no valence strange quarks, the strange
form factors provide information about the dynamics of virtual
quarks within a nucleon. In recent years the strange electric
and magnetic form factors have been studied experimentally
by the SAMPLE [1], A4 [2,3], HAPPEX [4,5], and G0 [6]
Collaborations, and theoretically via lattice QCD simulations
[7–12], chiral perturbation theory [13–17], and hadron models
[18–25]. (For a discussion of earlier theoretical studies, see
Ref. [26].) A central conclusion of recent research is that the
strange electric and magnetic form factors are small, perhaps
even small enough to require a careful understanding of the
competing effects from isospin violation.

The inequality of up and down quarks, in terms of both
mass and electric charge, produces effects that mimic the
strange form factors. Extraction of the authentic strange quark
effects from experimental data requires this isospin violation
to be understood theoretically. There have been a number of
theoretical studies of isospin violation in this context [27–31],
but it is not yet clear that uncertainties in these results are
negligible with respect to the strange form factors. Refer-
ences [27,28] used quark model discussions to determine the
isospin-violating contributions and found them to be less than
1%; in fact, the strange magnetic form factor received no
contribution at all for vanishing momentum transfer. This null
contribution at Q2 = 0 is not due to any symmetry of QCD,
and therefore the chiral perturbation theory (ChPT) study
in Ref. [29] did find a nonzero contribution, but it includes
an undetermined low-energy constant. One could think of
extracting the physics of this constant, for example, from
the light-cone baryon model of Ref. [30] or from the quark
model approach of Ref. [32], though it is difficult to see how
to match these models to the consistent low-energy effective
theory description of ChPT in order to avoid double counting
problems.

In the present work, we address two main goals. First
we revisit the calculation of chiral loops, this time using
both a manifestly covariant formalism [33] and heavy-baryon
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ChPT. We find that the two formalisms offer complementary
advantages for various aspects of this calculation. Since the
isospin-violating effects begin at rather high orders in the chiral
expansion, leading order (LO) = O(p4) and next-to-leading
order (NLO) = O(p5) (where p collectively stands for small
parameters like momenta, the pion mass, or the electric
coupling), the cross-check of the entire calculation in both
formalisms is valuable, and we are able to identify and correct
some errors in Ref. [29].

Our second major goal in the present work is to estimate
the lone combination of low-energy constants that appears in
the chiral perturbation theory expressions. For this, we employ
resonance saturation. The physics producing isospin violation
in the nucleon’s vector form factors is seen to be ρ-ω mixing,
and numerical values for the required vector meson couplings
are obtained from recent dispersive analyses.

A question that cannot be fully answered by our work relates
to the convergence of the chiral expansion. With only LO and
NLO results, it is impossible to make any definitive statement
about convergence. A completely consistent extension beyond
NLO seems unwarranted, since it would involve two-loop
integrals and would introduce additional unknown low-energy
constants. However, given the apparent smallness of the
strange form factors and of the isospin violating form factors,
we can neglect contributions that are simultaneously isospin
violating and strange. This allows the discussion of isospin
violation to occur within two-flavor ChPT, where convergence
properties are known to be dramatically better than for the
three-flavor theory.

The present work thus provides a complete discussion of
the physics at LO for the electric and at NLO for the magnetic
isospin-violating form factors, producing numerical values for
isospin violation in the magnetic moment, electric radius, and
magnetic radius, which are of direct relevance to the ongoing
experimental studies of strange form factors.

The outline of our presentation is as follows. We define the
form factors under consideration and their leading moments in
Sec. II. The chiral representation of the Dirac form factors to
leading order and of the Pauli form factors to next-to-leading
order is derived in some detail in Sec. III. In order to provide
resonance-saturation estimates for unknown chiral low-energy
constants, we calculate the contributions of ρ-ω mixing in
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Sec. IV, which also allow for some insight into higher-order
contributions beyond what is strictly calculated in ChPT. The
pertinent formalism used to do this consistently with chiral
constraints is included. We conclude our findings in Sec. V.
Some technical details are relegated to the Appendices.

II. BASIC DEFINITIONS

We define the isospin symmetry breaking Dirac and Pauli
form factors according to

〈p( �p′) + n( �p′)|1

2
(ūγµu − d̄γµd)|p( �p) + n( �p)〉

= ū(p′)
[
γµF

v/

1 (t) + iσµνq
ν

2mN

F
v/

2 (t)

]
u(p),

(1)

〈p( �p′) − n( �p′)|1

6
(ūγµu + d̄γµd)|p( �p) + n( �p)〉

= ū(p′)
[
γµF

s/

1 (t) + iσµνq
ν

2mN

F
s/

2 (t)

]
u(p),

where qµ = p′
µ − pµ, t = q2, and v/, s/ refer to isospin-

breaking pieces in the isovector and isoscalar vector currents,
respectively. Our notation is linked to that used in Refs. [27,29]
by

F
v/

i (t) = u−dF
p+n

i (t), F
s/

i (t) = u+dF
p−n

i (t).

The Sachs form factors are defined in terms of these as

G
v/,s/

E (t) = F
v/,s/

1 (t) + t

4m2
N

F
v/,s/

2 (t),

(2)
G

v/,s/

M (t) = F
v/,s/

1 (t) + F
v/,s/

2 (t).

Current conservation implies F
v/,s/

1 (0) = 0, while the Pauli form
factors are normalized to the isospin-breaking pieces of the
(anomalous) magnetic moments,

F
v/,s/

2 (0) = κv/,s/. (3)

To complete the definition of the leading moments of these
form factors, we define radius-like terms as the coefficients of
form factor terms linear in t,

F
v/,s/

1/2(t) = F
v/,s/

1/2(0) + ρ
v/,s/

1/2t + O(t2),
(4)

G
v/,s/

E/M (t) = G
v/,s/

E/M (0) + ρ
v/,s/

E/Mt + O(t2).

Finally, the proton’s neutral weak form factors G
p,Z

E/M depend
on one specific linear combination of isospin-breaking form
factors,

G
p,Z

E/M (t) = (1 − 4 sin2 θW )Gp

E/M (t) − Gn
E/M (t)

−Gs
E/M (t) − G

u,d
E/M (t), (5)

where θW is the weak mixing angle, Gs
E/M (t) are the strange

vector form factors, and

G
u,d
E/M (t)

.= G
s/

E/M (t) − G
v/

E/M (t). (6)

We will use an analogous notation also for the leading
moments, i.e., κu,d = κs/ − κv/, etc. Equation (5) demonstrates
that the isospin-breaking form factors “simulate” strangeness

form factors even in a world without strange quarks [29,34],
such that they have a direct impact on the accuracy to which
the strangeness form factors can be extracted from data.

III. CHIRAL PERTURBATION THEORY

A. Effective Lagrangians

We have performed the relevant loop calculations both
in the heavy-baryon formalism [35,36] and in the infrared
regularization scheme of relativistic baryon ChPT [33]. For
reasons of briefness, we only display the relativistic forms of
the relevant Lagrangian terms in this section. The equivalent
heavy-baryon forms can be found in the quoted references.

The Goldstone boson (pion) Lagrangian is given, at leading
order, by

L(2)
ππ = F 2

4
〈uµuµ + χ+〉, (7)

where the matrices u2 = U collect the pion fields in the usual
manner, uµ = iu†∇µUu† with the covariant derivative ∇µ.
The field χ+ = u†χu† + uχ †u contains the quark mass terms,
χ = 2B diag(mu,md ) + . . ., where B is linked to the quark
condensate in the chiral limit, and F can be identified with the
pion decay constant, F = Fπ = 92.4 MeV. 〈. . .〉 denotes the
trace in flavor space.

A striking observation is that the leading term generating
the charged-to-neutral pion mass difference [37],

L(2)
ππγ ∗ = ZF 4〈Q2

+ − Q2
−〉 ⇒ M2

π+ − M2
π0 = 2Ze2F 2,

where Q± = 1
2 (uQu† ± u†Qu), Q = diag(e, 0), does not fea-

ture in the following calculation: in nuclear physics language,
this operator breaks only charge independence (independence
under completely general rotations in isospin space), but not
charge symmetry (rotations by π about a fixed axis in isospin
space, resulting in the simultaneous exchange of u and d
quarks, as well as protons and neutrons) as required for the
form factors in Eq. (1), so the pion mass difference alone
will never generate contributions to the form factors under
investigation, and we will neglect terms that are of second
order in isospin breaking.

The leading-order pion-nucleon Lagrangian is given by

L(1)
πN = 
̄

{
i �D − m + gA

2
�uγ5

}

, (8)

where Dµ is the usual covariant derivative acting on the
nucleon, m is the nucleon mass in the chiral limit, and gA can
be identified with the axial coupling constant, gA = 1.26. Of
the second-order pion-nucleon Lagrangian (that also contains
all possible effects of virtual photons), we only quote the terms
relevant to our calculation:

L(2)
πNγ ∗ = 
̄

{
c5χ̃+ + f2F

2〈Q+〉Q+

+ σµν

8m
(c6F

+
µν + c7〈F+

µν〉)
}


. (9)

Here we have introduced the notation Õ = O − 1
2 〈O〉 for

traceless operators. F+
µν = u†Fµνu + uFµνu

† contains the
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usual electromagnetic field strength tensor. There are two types
of terms in Eq. (9): c6 and c7 are related to the isovector and
isoscalar anomalous magnetic moments (in the chiral limit)
according to

κv = κp − κn = c6, κs = κp + κn = c6 + 2c7, (10)

with the experimental values κv = 3.706, κs = −0.120, while
the operators proportional to c5 and f2 generate the leading
proton-neutron mass difference

�m
.= mn − mp = 4B(mu − md )c5 + e2F 2f2. (11)

As all our results will be expressible in terms of �m, we
do not have to care about the precise separation of this mass
difference into its strong (∝c5) and electromagnetic (∝f2)
parts. We have neglected to spell out terms in Eq. (9) that lead
only to a common nucleon mass shift and can be taken care of
by replacing the nucleon mass in the chiral limit by its physical
value, m → mN = 1

2 (mp + mn).
Finally, the following fourth-order terms [38,39] contribute

to the isospin-breaking form factors:

L(4)
πNγ ∗ = 
̄

{
−e107

2
〈F+

µν〉χ̃+ − e108

2
〈F̃+

µνχ̃+〉

+h40F
2〈Q+〉〈Q̃+F̃+

µν〉

+h43F
2〈Q+〉Q̃+〈F+

µν〉
}

σµν
. (12)

The terms proportional to e107 and h43 contribute to κs/; the
terms multiplied by e108 and h40, to κv/. Therefore, both form
factors contain one counterterm proportional to mu − md and
e2. The constants e108, h40 contain a divergent piece,

e108 = er
108(λ) + βe108L, h40 = hr

40(λ) + βh40L,

where L has a pole in (d − 4),

L = λd−4

16π2

{
1

d − 4
+ 1

2
[γE − 1 − log 4π ]

}
,

λ is the dimensional regularization scale, and γE is Euler’s
constant. The scale-dependent finite constants er

108, h
r
40 obey a

renormalization group equation according to

λ
d

dλ
er

108(λ) = − βe108

16π2
, λ

d

dλ
hr

40(λ) = − βh40

16π2
.

In order to render the isospin-breaking magnetic moments
finite and scale independent, we find the β functions

βe108 = 2g2
Ac5

F 2
, βh40 = −g2

Af2

F 2
.

In contrast, e107 and h43 are finite and scale independent.
It should be mentioned that Ref. [29] included the �(1232)

as an explicit field in ChPT. When the corresponding loop
diagrams were computed, their momentum dependences were
found to be negligible relative to the final error bands on the
form factors. Since these effects would also be insignificant
relative to the error bands that will be obtained in the present
work, we omit the explicit �(1232) field from the outset. In
the framework used here, its effects would show up via higher-
order low-energy constants that are beyond the accuracy we
aim at in this work.

B. Power counting

We repeat here some power counting arguments that were
already put forward in Ref. [29].

It is easy to see that the usual (isospin-conserving) vector
form factors receive polynomial contributions to the leading
moments, i.e., magnetic moment, electric (or Dirac) radius,
and magnetic (or Pauli) radius, at chiral orders p2, p3, p4,
respectively. Pion loop contributions start at O(p3); therefore,
such loop effects can generate a parameter-free leading-order
prediction for the magnetic radius. The leading magnetic
radius term has to scale as M−1

π ; this infrared singularity has
been well known for a long time [40].

From the previous section, it is obvious that polynomial
contributions to the leading moments of the isospin-violating
form factors always have to include factors of either mu − md

or e2; therefore, they are suppressed by two orders in the
chiral power counting with respect to the isospin-conserving
ones. Therefore, we find precisely the terms of L(4)

πNγ ∗ in
Eq. (12) contributing to the magnetic moments, while oper-
ators of electric and magnetic radius type would arise at orders
p5 and p6. On the other hand, the pion loop diagrams with
additional mass insertions of the c5, f2 operators in Eq. (9),
shown in Fig. 1, start to contribute only one order higher
than the same diagrams without mass corrections, so leading
loop contributions are also of order p4. This means that while
a prediction of the isospin-violating magnetic moments is
hampered by the a priori unknown L(4)

πNγ ∗ counterterms, both
electric and magnetic radii can be unambiguously predicted
at leading order; and for the magnetic radii, even the next-to-
leading-order corrections are free of unknown parameters. The
leading infrared singularity in the magnetic radius scales as
�m/M2

π ; the leading electric and subleading magnetic radius
terms, as �m/Mπ .

A calculation of the isospin-violating Pauli (or magnetic)
form factor up to O(p5) is massively facilitated by the fact that
no two-loop diagrams contribute. This can be seen as follows:

(i) As mentioned in Sec. III A, the pion mass difference
alone cannot generate charge symmetry breaking terms.
Therefore, diagrams with two pion loops would require another

(a) (b) (c)

(d) (e)

FIG. 1. One-pion loop diagrams. Full/dashed/wiggly lines de-
note nucleons/pions/vector currents, respectively. Filled circles in
diagrams (d) and (e) represent the magnetic couplings from L(2)

πNγ ∗ .
Crossed diagrams of (c) and (e) are not depicted separately. Mass
insertions on the nucleon propagator lines, yielding the physical
proton and neutron masses, are not explicitly shown.
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π+

np p

π+

np p

FIG. 2. A pair of two-loop diagrams. Closed wiggly lines denote
virtual photons. Sum of both contributions to the magnetic form factor
drops out.

(subleading) charge symmetry breaking vertex or the nucleon
mass difference in order to contribute, which would then,
however, be at least of order p6.

(ii) Two photon loops are of second order in isospin
breaking and can be disregarded. In addition, it is easily
seen in the heavy-baryon formalism that such diagrams with
only leading-order photon couplings cannot generate the spin
operators necessary for a magnetic contribution.

(iii) Finally, there might be diagrams with one pion and
one photon loop. The only diagrams that generate a magnetic
structure at O(p5) are of the type (a) in Fig. 1, with one
additional photon loop attached. However, it can be checked
in the heavy-baryon formulation that the sum of the two
diagrams in Fig. 2 is proportional to the anticommutator of
the two Pauli-Lubanski spin operators stemming from the
pion-nucleon couplings, and therefore it again only yields a
contribution to the electric form factor. The same mechanism
can be checked for all other possible diagrams.

Furthermore, also one-loop diagrams with isospin-breaking
vertices (other than the nucleon mass difference insertion) can
be ruled out of consideration:

(iv) Tadpole graphs with isospin-breaking couplings fail to
generate infrared singularities proportional to M−1

π .
(v) The third-order pion-nucleon Lagrangian contains

isospin-breaking pion-nucleon coupling constants. However,
these affect only the π0NN coupling, hence they do not
contribute in a type (a) diagram, while the remaining diagrams
in Fig. 1 are subleading in their contributions to the Pauli form
factor and therefore can only play a role at O(p6).

Finally, the only one-photon loops contributing to the
magnetic form factor are the ones depicted in Fig. 3. They have
no t dependence up to the chiral order considered here, and
it is easily calculated that their contribution to F2(0) exactly
cancels.

Therefore, we have proven that the only infrared singular
contributions to the charge symmetry breaking form factor
radii, and all contributions up to O(p4) for the Dirac and
up to O(p5) for Pauli form factor in addition to the L(4)

πNγ ∗

FIG. 3. One-photon loop diagrams with magnetic couplings. Sum
of both diagrams vanishes. (Addition of a crossed right diagram is
implied.)

counterterms in Eq. (12), are given by nucleon mass difference
effects in the diagrams in Fig. 1.

C. Chiral representation of the form factors

In this section, we write down the chiral representations of
the charge symmetry breaking form factors, the Dirac form
factors to leading order, and the Pauli form factors up to next-
to-leading order. We decompose all form factors according
to

F
v/,s/

1/2(t)
.= F

v/,s/

1/2(0) + F̄
v/,s/

1/2(t), (13)

where current conservation dictates

F
v/

1 (0) = F
s/

1 (0) = 0.

For convenience, we define an overall dimensionless prefactor

C = g2
AmN�m

(4πFπ )2
≈ 1.4 × 10−3. (14)

Then the t-independent terms of the Pauli form factors are
given by

F
v/

2 (0) = 4C

[
1 + 2 log

Mπ

λ
− π (κv + 6)Mπ

2mN

]
+ 8mN

[
e2F 2hr

40 − 2B(mu − md )er
108

]
,

(15)

F
s/

2 (0) = −4C
π (κs + 1)Mπ

mN

+ 8mN [e2F 2h43 − 2B(mu − md )e107].

Altogether, we find for the ultimately required combination

G
u,d
M (0) =F

s/

2 (0)−F
v/

2 (0)

=−4C

[
1 + 2 log

Mπ

λ
+ π (2κs − κv − 4)Mπ

2mN

]
+ κ

u,d
CT ,

(16)

where

κ
u,d
CT = 8mN

[
e2F 2

(
h43 − hr

40

)
− 2B(mu − md )

(
e107 − er

108

)]
. (17)

Note that in order to ease notation, we suppressed the scale
dependence of hr

40, e
r
108, and κ

u,d
CT in Eqs. (15)–(17) that is

necessary to compensate for the chiral logarithms.
Up to the order we are considering, the chiral representa-

tions of the form factors F
s/

1/2(t) display no t dependence,

F̄
s/

1 (t) = F̄
s/

2 (t) = 0. (18)

This is because only diagram (a) in Fig. 1 contains a two-pion
cut and therefore generates momentum dependence in the low-
energy region, and because the isoscalar vector current does
not couple to pions at this order. The t dependence of the form
factors F

v/

i (t), on the other hand, is given unambiguously in
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terms of pion loop contributions and can be written as

F̄
v/

1 (t) = −2g2
AMπ�m

F 2
π

[γ̄0(t) − 4γ̄3(t)], (19)

F̄
v/

2 (t) = −4g2
AmN�m

F 2
π

×
(

ξ (t) − Mπ

mN

[γ̄0(t) − 5γ̄3(t)]

)
. (20)

The explicit representations of the loop functions ξ (t), γ̄0/3(t)
are given in Appendix A1. We note that the corresponding
expressions reported in Ref. [29] contain errors: Eqs. (53)
and (54) in that work are too large by factors of 2 and
4, respectively; Eqs. (19) and (20) of the present work are
the correct expressions, and we obtained them separately
from heavy-baryon ChPT and from infrared regularization.
Expanding the loop functions to linear order in t, we find the
radius term according to

ρ
u,d
M = 2C

3M2
π

[
1 + 5πMπ

4mN

− 3πMπ

mN

]

= 2C

3M2
π

[
1 − 7πMπ

4mN

]
, (21)

where the first correction stems from F
v/

1 (t) and the second
from the subleading terms in F

v/

2 (t). Numerically, we find
that because of the large enhancement factor of 7π/4 ≈
5.5, the next-to-leading-order correction reduces the leading
prediction for the magnetic radius term by as much as 80%.

IV. CONTRIBUTIONS FROM ρ-ω MIXING

The missing ingredient needed to make the chiral repre-
sentations of the previous section predictive is a value for
the counterterm combination κ

u,d
CT that is unconstrained from

symmetry arguments. As no phenomenological information is
available to fix these constants, we have to resort to model
estimates in order to get a handle on them. The obvious model
to use seems to be resonance saturation.

The method for estimating chiral low-energy constants by
including heavier resonance fields in the theory and matching
their low-energy limit to higher-order operators was first
introduced systematically in the context of meson ChPT in
Refs. [37,41,42]. It was shown to work rather well for the
constants in L(4)

ππ ; in particular, those constants that receive
contributions from vector and axial vector resonances were
shown to be numerically dominated by these (a modern version
of the concept of “vector meson dominance”).

In Ref. [43], this method was extended to the pion-nucleon
sector, nucleon resonances [in particular, the �(1232)] were
included, and it was demonstrated that most of the constants
in L(2)

πN can also be well understood this way. However, little is
known about how well this procedure works for higher-order
pion-nucleon coupling constants. Reference [44] found for the
nucleon vector form factors that the isovector couplings in
particular are not well saturated by the ρ contribution alone.
This observation agrees with the results of various dispersive
analyses of these form factors (see, e.g., Refs. [45–47]) that

always require several resonances per channel in order to
describe the data adequately.

Despite this rather pessimistic view, there is reason to
believe that resonance saturation for the isospin-violating
vector form factors might, in principle, work better than
for the isospin-conserving ones; we will comment on this
point again at the end of Sec. IV B. The only resonances
that can contribute at tree level are vector mesons, and
isospin violation is provided by the well-known mixing of
the isovector ρ0 and the isoscalar ω state. We lay out the
formalism for incorporating vector mesons and their mixing
and coupling to vector currents and nucleons in the following
section before presenting analytical and numerical results for
the isospin-violating magnetic moments. Contributions to the
higher moments (electric and magnetic radii) will come as a
benefit that allows us to estimate higher-order corrections to
the leading chiral loop predictions.

A. Formalism, Lagrangians

We here discuss the ingredients necessary to describe the
interaction of vector mesons with external currents as well as
nucleons. We use the antisymmetric tensor formulation that
was shown to be particularly useful in the context of ChPT
and resonance saturation investigations [37,41]. Most of the
literature is concerned with vector mesons in the context of
SU(3) ChPT; we will here only be concerned with the SU(2)
subsystem and adapt the formalism accordingly. In SU(2), the
antisymmetric tensor Vµν is given in terms of ρ and ω fields
according to

Vµν = 1√
2

( �ρµν · �τ + ωµν).

The free Lagrangian for Vµν then takes the form

LV = −1

2
〈DµVµνDρV

ρν〉 + M2
V

4
〈VµνV

µν〉. (22)

In particular, Eq. (22) leads to a common vector meson mass
Mρ = Mω = MV . For numerical results, we will use the mass
of the ρ,MV = 770 MeV. The coupling of the vector mesons
to external vector (and axial vector) sources is given by

LV γ = FV

2
√

2
〈V µνF+

µν〉, (23)

where F+
µν contains the electromagnetic field strength tensor

proportional to the quark charge matrix Q = e/3 diag(2,−1)
(as opposed to the nucleon charge matrix Q used elsewhere
in this text). Eq. (23) correctly reproduces the SU(3) relation
for the vector meson decay constants Fρ = 3Fω = FV . Phe-
nomenologically, this relation is rather well fulfilled, Fρ =
152.5 MeV, Fω = 45.7 MeV.

Mixing of ρ0 and ω has been discussed in a formalism
similar to the one presented here in Ref. [48], albeit in
the framework of SU(3). Here, we perform an analogous
construction for SU(2). We are not interested in (isospin-
conserving) quark mass renormalization effects of the vector
meson masses, but only in terms contributing to ρ-ω mixing.
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One single such term can be constructed,

Lmix = vmix

8
〈Vµν〉〈Ṽ µνχ+〉, (24)

where we have once more used the notation Ṽµν = Vµν −
1
2 〈Vµν〉. If we match Eq. (24) to the SU(3) result in Ref. [48],
also invoking quark counting rules [49], the mixing parameter
can be identified with vmix = 2MV /B. In addition, there is a
ρ-ω transition through an intermediate photon via the
interaction term Eq. (23). Combining both effects, one finds
the on-shell mixing amplitude

�ρω = 2MV (mu − md ) + e2F 2
V

3
. (25)

The latest analysis of experimental data [50] yields

�ρω = (−3.75 ± 0.36) × 10−3 GeV2, (26)

well in agreement with earlier numbers [48].
The coupling of vector mesons to baryons, formulated in the

antisymmetric tensor formalism, was discussed in Ref. [51].
The relation of the generic couplings used in that reference to
the more conventional vector and tensor couplings was given
in Ref. [44]. For a more compact presentation, we rewrite the
terms from Ref. [51] in an SU(2) form, employing immediately
standard couplings, which results in

LV N = −MV√
2


̄

[
σµν

4mN

{
gρκρṼµν + gωκω

2
〈Vµν〉

}

+ γ µ

M2
V

{
gρ[Dν, Ṽµν] + gω

2
[Dν, 〈Vµν〉]

}]

. (27)

We remark here that we totally neglect ρ-φ mixing in
this analysis (which would be present at least in an SU(3)
extension). Although the φ-nucleon couplings are not as
small as the Zweig rule might lead one to expect (see, e.g.,
Refs. [46,47]), the mixing is roughly an order of magnitude
smaller than that between ρ and ω [52,53] and therefore
beyond the accuracy we aim to achieve by this model
estimate.

B. Analytical results

The ρ-ω mixing contributions to the isospin-violating
Dirac and Pauli form factors can be derived from the two
diagrams depicted in Fig. 4. They are given in terms of the
various coupling constants defined in the previous section as

ρ0

ω ρ0

ω

FIG. 4. Two diagrams involving ρ-ω mixing that contribute to
the isospin-breaking form factors. Double lines denote vector meson
propagators; cross represents the mixing vertex.

follows:

F
v/

1 (t)|mix = − gωFρ�ρωt

MV

(
M2

V − t
)2 ,

F
s/

1 (t)|mix = − gρFω�ρωt

MV

(
M2

V − t
)2 ,

(28)

F
v/

2 (t)|mix = −gωκωFρMV �ρω(
M2

V − t
)2 ,

F
s/

2 (t)|mix = −gρκρFωMV �ρω(
M2

V − t
)2 .

From these, one can easily derive the leading moments:

κu,d
mix = (gωκωFρ − gρκρFω)

�ρω

M3
V

,

(ρu,d
1 )mix = (gωFρ − gρFω)

�ρω

M5
V

, (29)

(ρu,d
2 )mix = (gωκωFρ − gρκρFω)

2�ρω

M5
V

.

For the phenomenological discussion, we will be even more
interested in the leading moments of the Sachs form factors,
which are given in terms of the above as

ρ
u,d
E = ρ

u,d
1 + κu,d

4m2
N

,

(30)
ρ

u,d
M = ρ

u,d
1 + ρ

u,d
2 .

In light of these results, we want to comment on the
claim made earlier that the saturation of coupling constants by
vector meson contributions might work better here than for the
isospin-conserving form factors considered in Ref. [44]. The
reason is that the additional propagator in the mixing case leads
to a higher power of vector meson masses in the denominators
of the leading moments, Eq. (29). A heavier pair of isovector
and isoscalar vector resonances sufficiently close to each other
in mass to mix, e.g., the ρ(1450) and the ω(1420) [54], would
yield contributions of the same form as Eq. (29), but suppressed
by a higher power of mass ratios MV ′/MV ≈ 2 than their
unmixed contributions to the conventional form factors.

Finally, we want to comment on the possibility of isospin
violation other than through mixing. In particular, it is possible
to construct a mechanism for “direct” isospin breaking in the
vector-meson-nucleon couplings in analogy to Eq. (12),

Lu,d
V N ∝ 
̄σµν{eρ〈Ṽµνχ̃+〉 + eω〈Vµν〉χ̃+}
,

which results in the ρ coupling as an isoscalar and the ω

coupling as an isovector to the nucleons. (Analogous terms
with the charge instead of the quark mass matrix are easily
written.) We disregard this possibility for the reason that the
vector-meson–nucleon coupling strengths are extracted from
dispersive analyses on the assumption of isospin symmetry
(with the exception of ρ-ω mixing in the isovector spectral
function); i.e., the ω couplings, for instance, are identified as
certain pole strengths in the isoscalar channel. In this way, an
isospin-breaking ρ-nucleon coupling would just be taken as
part of the ω resonance, and vice versa.
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TABLE I. ρ-nucleon coupling constants and corresponding form
factor contributions. “1-loop” and “2-loop” refer to the part of the
nonresonant two-pion continuum used to extract the ρ couplings. For
details, see main text.

Refs. [46,60] Ref. [61] + Ref. [61] +
1-loop 2-loop

gρ 4.0 5.4 6.2
κρ 6.1 6.8 5.1
102 × κs/ 0.9 1.4 1.2
102 × κs/

4m2
N

(GeV−2) 0.3 0.4 0.3

102 × ρ
s/

1 (GeV−2) 0.3 0.3 0.4
102 × ρ

s/

2 (GeV−2) 3.1 4.6 4.0

C. Numerical results

The couplings of the vector mesons to nucleons are a
rather delicate issue, and we prefer to rely as directly as
possible on data rather than on models. To this end, we
concentrate on values extracted from dispersive analyses of
electromagnetic form factors of the nucleon and disregard
values extracted from meson exchange models of nucleon-
nucleon scattering or pion-photo-/electroproduction (see, e.g.,
Refs. [55–58]). As it is well known that pure vector meson
dominance does not yield an adequate description of the
isovector spectral function, where the two-pion continuum
leads to a significant enhancement on the left shoulder of
the ρ peak [59], more recent analyses [46,47,60,61] make use
of the full pion form factor plus ππ → NN̄ partial waves.
In order to approximately disentangle the spectral function
from Ref. [61] into a nonresonant two-pion continuum plus
a ρ contribution, we follow the method of Ref. [62] and add
a Breit-Wigner parametrization of the ρ resonance to either
the chiral one-loop or the two-loop [62] representation of
the two-pion cut contributions. This decomposition is model
dependent, but probably adequate for a model estimate of
low-energy constants. The different values in Table I give a
rather consistent picture of the ρ-nucleon coupling constants
on an accuracy level of 20%–30%. See Appendix B for the
relations between various coupling definitions.

The ω coupling constants are calculated from pure zero-
width resonance pole residues as found in dispersive analyses.
The most noteworthy point about the numbers in Table II is the
sign change in κω in Refs. [47,63] as compared to Ref. [46] and
other earlier analyses. While the vector coupling gω seems to

TABLE II. ω-nucleon coupling constants and corresponding
form factor contributions. For details, see main text.

Ref. [46] Ref. [47] Ref. [63]

gω 41.8 43.0 42.2
κω −0.16 0.41 0.57
102 × κv/ −0.8 2.2 3.0
102 × κv/

4m2
N

(GeV−2) −0.2 0.6 0.8

102 × ρ
v/

1 (GeV−2) 8.8 9.1 8.9
102 × ρ

v/

2 (GeV−2) −2.8 7.5 10.1

be determined consistently (although rather larger than what
is inferred from NN scattering [55,56]), the tensor coupling
gωκω is not at all consistent, with not even the sign fixed.
This uncertainty in κω turns out to be by far the dominant
uncertainty in this analysis.

Considering the leading moments of G
u,d
E/M , we observe the

following:

(i) κu,d : The numbers in Tables I and II suggest that as
the small tensor coupling of the ω is relatively enhanced by
the larger ρ decay constant, κs/ and κv/ contribute numbers of
similar size. The uncertainty in κω completely dominates the
uncertainty of the estimate,

κu,d
mix = −0.020 · · · +0.020, (31)

where we also included the error in the determination of the
mixing angle in Eq. (26). The negative value corresponds to
the most recent dispersive analysis [63].

(ii) ρ
u,d
E : The large vector coupling of the ω, enhanced by

the ρ decay constant, completely dominates this quantity, such
that one has (

ρ
u,d
E

)
mix ≈ −(

ρ
v/

E

)
mix.

Foldy terms hardly play a role, such that even the large
uncertainty in κω does not spoil the prediction. We find(

ρ
u,d
E

)
mix = −[0.07 · · · 0.10] GeV−2, (32)

where the range includes the uncertainty in �ρω.
(iii) ρ

u,d
M : Again, the ω couplings to the nucleon yield

the largest contributions. The uncertainty is dominated by the
uncertainty in κω, leading to a range(

ρ
u,d
M

)
mix = −[0.03 · · · 0.15] GeV−2. (33)

The recent analysis [63] suggests values larger in absolute
magnitude within that range.

D. Discussion

The above estimates for κu,d , ρ
u,d
E , and ρ

u,d
M correspond to

low-energy constants that enter the chiral representations of
the corresponding form factors at O(p4),O(p5), and O(p6),
respectively. As we have only calculated G

u,d
E up to O(p4) and

G
u,d
M up to O(p5), the estimate for κu,d is the only one that

is strictly needed for numerical results. However, to test the
potential size of higher-order corrections, it may still be very
useful to compare the estimates of the previous subsection to
the chiral loop contributions.

One downside of the resonance saturation method is that
if we want to identify some resonance contribution with the
finite part of a chiral coupling constant, it is not obvious at
what scale this identification is to be made. It seems to be
common wisdom, though, that this scale ought to be roughly
at the resonance mass; we will therefore choose λ = Mρ . We
decompose Eq. (16) according to

κu,d = κu,d
χ (Mρ) + κ

u,d
CT (Mρ) (34)
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and set κ
u,d
CT (Mρ) = κu,d

mix. Numerically, we find from Eq. (16)
for the chiral part

κu,d
χ (Mρ) = 0.025. (35)

If we vary the saturation scale λ in the range 0.5 · · · 1.0 GeV, we
find κu,d

χ = 0.020 · · · 0.028, which may serve as an indicator
of the uncertainty of the resonance saturation method as such.
These values are all of the same order of magnitude as κu,d

mix in
Eq. (31). Even within the large error range for κu,d

mix, however,
we predict κu,d to be positive,

κu,d = 0.005–0.045. (36)

The most recent values for the coupling constants, with a
negative κu,d

mix, lead to a substantial cancellation between loop
effects and counterterm contributions and altogether to a very
small total κu,d .

For the magnetic radius term, the two leading chiral
contributions are unambiguously given in terms of loop effects.
Evaluating Eq. (21) numerically, we find the chiral prediction
at NLO to result in(

ρ
u,d
M

)
χ

= (0.05 − 0.04) GeV−2 = 0.01 GeV−2. (37)

Figure 5 shows the purely chiral NLO representation of G
u,d
M (t)

in the range 0 � −t � 0.3 GeV2, together with the range of
counterterm values as estimated from Eq. (31), shown as a
grey band. For comparison, the LO and NLO representations
are also shown for κ

u,d
CT (Mρ) = 0. Although the uncertainty

is sizeable, G
u,d
M (t) is predicted to be positive and smaller

than 0.05 in this range. Because of the substantial cancellation
between chiral LO and NLO contributions to the magnetic
radius, the t dependence is very weak. Also, the curvature
induced by chiral loop effects is minimal.

Even if the large cancellation between the LO and NLO
terms for the magnetic radius is considered accidental, the
(formally next-to-next-to-leading) vector meson contribution

0 0.1 0.2 0.3

−t [GeV
2
]

−0.01

0

0.01

0.02

0.03

0.04

0.05

G
Mu,

d (t
)

LO+NLO, κCT=κmix

LO+NLO, κCT=0
LO, κCT=0

FIG. 5. Form factor G
u,d
M (t). Dashed line is the LO chiral

prediction, full line includes the NLO order corrections, both with
κ

u,d
CT (Mρ) = 0. Grey band is the chiral NLO representation with

κ
u,d
CT (Mρ) = −0.020 · · · + 0.020.

0 0.1 0.2 0.3

−t [GeV
2
]

−0.01

0

0.01

0.02

0.03

0.04

0.05

G
Mu,

d (t
)

LO+NLO+VM mixing
LO+NLO, κCT=0
LO, κCT=0

FIG. 6. Same as in Fig. 5, except the grey band now includes the
full t-dependence of the mixing amplitude.

in Eq. (33) is seen to be at least of the same order of
magnitude, potentially larger than both. The vector meson
mixing contributions lead to a sign change in the radius as
compared to the chiral prediction. Together with a positive
magnetic moment, this means the form factors increase in
absolute magnitude for nonvanishing virtuality in electron
scattering experiments, t < 0. This is shown in Fig. 6, where,
in comparison to Fig. 5, we have replaced the low-energy
constant contribution κ

u,d
CT (Mρ) = κu,d

mix by the full t dependence
of the mixing amplitude, Eq. (28). As the complete mixing
amplitude contains no more parameters than the constant at
t = 0, the uncertainty band can get even narrower: the upper
boundary of the band (given by the vector meson parameters
from Ref. [46]) changes very little and stays below 0.05, while
the lower boundary (given essentially by the parameters from
Ref. [63]) rises with −t .

We want to emphasize that this combined chiral plus vector
meson mixing representation as shown in Fig. 6 goes beyond
strict effective field theory. We believe, however, that the
additional t dependence of the mixing contributions provides
a good estimate of the most important higher-order terms that
go beyond our chiral calculation, for the following reasons:
the strongest t dependence from pion loops has to correspond
to cuts in the low-energy region, and among these, two-pion
cuts are certainly the most prominent (see, e.g., Ref. [59]
on three-pion cut contributions to nucleon form factors); but
we have already calculated the two-pion cuts up to NLO,
and we do not expect higher-order corrections to these to be
unreasonably large (witness Ref. [62] for two-loop corrections
to the two-pion continuum). We therefore find it reasonable
to expect low-energy constants (corresponding to resonance
physics) to dominate the missing pieces beyond the NLO chiral
representation. We argued earlier that we expect resonance
contributions beyond ρ-ω mixing to be minor corrections and
consider their possible impact well covered by the uncertainty
bands in Figs. 5 and 6. Note finally that such a combined
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0 0.1 0.2 0.3

−t [GeV
2
]

−0.01

−0.005

0

0.005

0.01

0.015

G
Eu,

d (t
)

LO
LO+NLO*
VM−mixing

FIG. 7. Contributions to the form factor G
u,d
E (t). Full line is

the LO chiral prediction; dashed line contains partial NLO order
corrections as discussed in the text. Grey band is the vector meson
mixing contribution.

approach worked rather well for the isospin-conserving form
factors in Refs. [44,64].

We now turn to the electric form factor G
u,d
E (t). It can only

be predicted unambiguously to leading order in ChPT, where
one has G

u,d
E (t) = F

u,d
1 (t). This is shown as the dashed line in

Fig. 7. A partial higher-order correction is given by the chiral
contributions to t/4m2

N × F
u,d
2 (t), see Eq. (2), which is added

to the leading-order expression for the full line in Fig. 7 and
can be seen there to be also numerically subleading.

The leading chiral prediction for the electric radius term is,
from Eq. (19) and Appendix A1,

(
ρ

u,d
E

)
χ

= 5πC

6MπmN

+ O
(
M0

π�m
)
. (38)

Numerically, this amounts to(
ρ

u,d
E

)
χ

= 0.03 GeV−2, (39)

which demonstrates that the vector meson contribution, see
Eq. (32), is numerically dominant, albeit formally subleading.
It again leads to a sign change compared to the leading chiral
prediction. This can also be seen from Fig. 7, where the full ρ-ω
mixing amplitude is depicted as a grey band, corresponding
to the range of vector meson coupling constants yielding the
electric radius range in Eq. (32). Compared to G

u,d
M (t), the band

is better constrained because the particularly controversial
coupling κω plays no major role in the electric form factor.
Chiral and vector meson contributions are combined in
Fig. 8, where we have taken the partial NLO chiral contribu-
tions described above as an uncertainty for higher-order loop
corrections. Errors from both sources were added linearly. We
consider this band a conservative estimate. Because of the
bigger mixing amplitude, the total form factor is positive but
remains small (<0.01), therefore, it is well constrained in the
whole momentum transfer range considered.

0 0.1 0.2 0.3

−t [GeV
2
]

0

0.005

0.01

G
Eu,

d (t
)

LO(+NLO*)+VM−mixing

FIG. 8. Complete form factor G
u,d
E (t). Band combines uncer-

tainties in the vector meson mixing amplitude with those from
higher-order chiral corrections.

To put these numbers into perspective concerning the
strangeness form factor measurements, we want to compare
them to some experimental results on the latter. Reference [65]
is a recent attempt to combine all available world data on
parity-violating electron scattering and to perform a best fit
for the leading strangeness moments. The fit including only
leading-order moments (e.g., no strange magnetic radius)
yields

κs = 0.12 ± 0.55 ± 0.07,
(40)

ρs
E = (−0.06 ± 0.41 ∓ 0.00) GeV−2,

while a fit allowing for next-to-leading-order moments results
in ρs

M = (0.7 ± 6.8) GeV−2; i.e., the data are not sufficiently
accurate yet to pin down the magnetic radius to reasonable
accuracy. So while the central values of Eq. (40) are already
of comparable magnitude to κu,d , ρ

u,d
E , the isospin-violating

moments are still, by a factor of 6–10, smaller than the
combined uncertainties on the strangeness moments.

In Table III, we also compare our results to a few selected
individual experimental numbers on strangeness form factors
[1,3,5]. We contrast those results with bands for the isospin-
violating form factors in the same kinematics, i.e., for the
same combination of electric and magnetic, and the same
momentum transfer t. The error band corresponds to a worst-
case combination of the bands discussed in connection with
Figs. 6 and 8. The conclusion is similar: the uncertainty from
isospin breaking is still smaller than the overall experimental
error, but it is more relevant as measurements become more
and more precise.

V. SUMMARY AND CONCLUSIONS

In this paper, we have reinvestigated the isospin-breaking
vector form factors of the nucleon that are increasingly
becoming a necessary ingredient in the precise extraction of the
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TABLE III. Comparison of selected experimental measurements of strange form factors to the results of this
work. Electric/magnetic column shows the linear combination of strange electric and magnetic form factors as well
as the momentum transfer in the respective kinematics; column Gs gives the corresponding result. Column Gu,d gives
the range of isospin-breaking form factor contributions for the same linear combination, in the same kinematics, as
predicted in this work.

Experiment Electric/magnetic Gs Gu,d

SAMPLE [1] GM (−0.1 GeV2) 0.37 ± 0.20 ± 0.26 ± 0.07 0.02 · · · 0.05
A4 [3] [GE + 0.106GM ](−0.108 GeV2) 0.071 ± 0.036 0.004 · · · 0.010
HAPPEX [5] [GE + 0.080GM ](−0.099 GeV2) 0.030 ± 0.025 ± 0.006 ± 0.012 0.004 · · · 0.009

strange vector form factors. Our findings can be summarized
as follows:

(i) We calculated the isospin-breaking electric and magnetic
form factors G

u,d
E/M (t) to leading and next-to-leading order in

two-flavor chiral perturbation theory, correcting some errors in
Ref. [29]. Up to this order of accuracy, all loop effects are due to
the proton-neutron mass difference. Only one combination of
unknown low-energy constants enters the chiral representation
of these form factors, namely, a contribution to the isospin-
breaking magnetic moment. Leading- and next-to-leading-
order contributions to the magnetic radius are seen to cancel to
a large extent, causing a very weak momentum dependence.

(ii) To estimate the missing counterterms, we employ
the method of resonance saturation. We provide analytic
expressions for the isospin-breaking magnetic moment as well
as for (formally subleading) electric and magnetic radii in
terms of various vector meson coupling constants and the
ρ-ω mixing angle. While most of these phenomenological
parameters are known to apt precision, by far the most
uncertain coupling is the ω-nucleon tensor coupling, which
dominates the rather broad error band in our prediction for the
isospin-breaking magnetic form factor.

(iii) For the electric and magnetic radii where counterterms
are relevant only at subleading orders, we find that the
combination of the relatively small nucleon mass difference,
which is responsible for the chiral loop contributions, and the
strong vector-meson–nucleon couplings, which numerically
enhance the effect of low-energy constants, tends to upset
the hierarchy suggested by chiral power counting. The vector
meson mixing contributions lead to sign changes in the radii
compared to the purely chiral predictions.

(iv) We combined chiral loop contributions and the full
vector meson mixing amplitudes in a phenomenological
approach, adding the various uncertainties to produce con-
servative error bands. We found that G

u,d
E/M (t) are both positive

in the momentum transfer range 0 � −t � 0.3 GeV2, with
approximate upper limits G

u,d
M (t) < 0.05,G

u,d
E (t) < 0.01.

To sharpen our findings and make the prediction for the
isospin-breaking vector form factors even more stringent, the
predominant task would be to improve on our knowledge
of the ω-nucleon tensor coupling, if feasible. Higher-order
chiral calculations would be extremely tedious as they would
involve two-loop diagrams with pions and photons, and they
are unlikely to be of high numerical relevance compared to the
resonance physics considered in this article.
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at the Forschungszentrum Jülich for its support and hospitality
during part of this work. Partial financial support under
the EU Integrated Infrastructure Initiative Hadron Physics
Project (Contract Number RII3-CT-2004-506078) and DFG
(SFB/TR 16, “Subnuclear Structure of Matter”) is gratefully
acknowledged. Furthermore, this work was supported by the
Natural Sciences and Engineering Research Council of Canada
and the Canada Research Chairs Program.

APPENDIX A: CHIRAL BACKGROUND

1. Loop functions

Here we spell out the explicit forms of the loop functions
used in Sec. III C:

γ̄0(t) = 1

16π

(
2Mπ√−t

arctan

√−t

2Mπ

− 1

)
,

γ̄3(t) = 1

16π

(
4M2

π − t

4Mπ

√−t
arctan

√−t

2Mπ

− 1

2

)
, (A1)

ξ (t) = − 1

16π2

(
σ log

σ + 1

σ − 1
− 2

)
,

where σ = √
1 − 4M2

π/t . γ̄0/3(t) are linked to the loop
functions γ0/3(t) used in Ref. [36] via

γ̄0(t) = Mπ (γ0(t) − γ0(0)), γ̄3(t) = M−1
π (γ3(t) − γ3(0)).

The leading t dependence of these functions is given by

γ̄0(t) = t

192πM2
π

+ O(t2),

γ̄3(t) = − t

192πM2
π

+ O(t2), (A2)

ξ (t) = t

96π2M2
π

+ O(t2).

We note that the functions in Eq. (A1) are the heavy-
baryon loop functions that were reproduced from the infrared
regularized loops by strict expansion in chiral powers. As we
are only interested in the form factors in the spacelike region,
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we disregard the complications ensuing from the anomalous
threshold of the triangle diagram. We want to emphasize,
though, that these representations do not reproduce the correct
threshold behavior of the spectral functions.

2. Separate diagrams

For completeness, we show here the various contributions
to F

v/

1/2(0), F s/

1/2(0) from the diagrams displayed in Fig. 1.

Of course, F
v/

1 (0) = F
s/

1 (0) = 0 in the sum of all diagrams
is a necessary requirement. The prefactor C is as defined in
Eq. (14).

F
v/

1 (0)[(a)] = −2F
v/

1 [(b)] = −2F
v/

1 [(c)] = 6πMπ

mN

C,

(A3)

F
s/

1 [(b)] = −F
s/

1 [(c)] = 3πMπ

mN

C,

F
v/

2 (0)[(a)] = 4

[
1 + 2 log

Mπ

λ
− 4πMπ

mN

]
C,

F
v/

2 [(b)] = −F
s/

2 [(b)] = 4πMπ

mN

C,

(A4)

F
v/

2 [(d)] = −1

3
F

v/

2 [(e)] = π (κp − κn)Mπ

mN

C,

F
s/

2 [(d)] = 1

3
F

s/

2 [(e)] = −π (κp + κn)Mπ

mN

C.

APPENDIX B: VECTOR MESON COUPLING CONSTANTS

In this Appendix, we briefly spell out how to relate the
vector-meson–nucleon coupling constants used in this paper
to those in Refs. [46,47,62,63].

In Ref. [62], the strength of the ρ contributions to the
isovector spectral functions of the Sachs form factors is
parametrized in terms of two coupling constants bE,M that
are given in terms of gρ, κρ according to

bE = gρFρ

2Mρ

(
1 + κρM

2
ρ

4m2
N

)
, bM = gρFρ

2Mρ

(1 + κρ). (B1)

In Ref. [62], the numerical values bE = 1.0, bM = 3.6
were extracted. Using the updated empirical isovector spectral
function from Ref. [61], we find the slightly shifted numbers
bE = 1.1, bM = 3.7, whereas fitting the phenomenological ρ

contribution with just the one-loop two-pion continuum leads
to bE = 1.2, bM = 4.2. These numbers, together with Eq.
(B1), feed into Table I.

The ω coupling constants are given as pole residues aω
1,2

in the isoscalar spectral functions of Dirac and Pauli form
factors in Refs. [46,47,63]. The coupling constants gω, κω can
be calculated from these as

gω = 2aω
1

FωMω

, κω = aω
2

aω
1

. (B2)

The pole residues from Ref. [63] used for Table II are aω
1 =

0.752 GeV2, aω
2 = 0.425 GeV2.
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