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Origins of bulk viscosity in relativistic heavy ion collisions
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A variety of physical phenomena can lead to viscous effects. Several sources of shear and bulk viscosity
are reviewed with an emphasis on the bulk viscosity associated with chiral restoration and with chemical
nonequilibrium. We show that in linear response approximation and in a mean field treatment of the limiting case
of a second-order phase transition, the bulk viscosity peaks in a singularity at the critical point.
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I. INTRODUCTION AND THEORY

Viscosity has attracted remarkable attention in the RHIC
(Relativistic Heavy Ion Collider) community during the first
years of its running. In particular, experimental observations
of large elliptic flow have pointed to a small shear viscosity
and inspired the term “perfect liquid” [1]. In this paper, we
review the general theoretical definition of viscosity, then show
how five different physical effects can lead to nonzero viscous
coefficients (Sec. II). We focus on bulk viscosity and show that
one can find large, even singular, effects in the neighborhood
of Tc (Sec. III). Although the present study focuses on
understanding the behavior and physical explanation of the
coefficients, we speculate on the experimental manifestations
that large viscosities might bring about.

In nonviscous hydrodynamics, the elements of the stress-
energy tensor depend only on the energy density ε and particle-
number densities �n,

T̃
(non.visc.)
ij (r, t) = P(ε, �n)δij, (1)

where P is the pressure and ε and �n are implicitly functions
of r and t. The tilde denotes that Tij is evaluated in a
frame where the collective velocity u(r) = 0. In Navier-Stokes
hydrodynamics, viscosity is incorporated by altering T̃ so
that it includes terms proportional to the velocity gradients,
∂ui/∂rj , that is,

T̃
(N.S.)
ij = P (ε, �n)δij + η(ε, �n)

(
∂ui

∂rj

+ ∂uj

∂ri

− 2

3
(∇ · u)δij

)
+B(ε, �n)(∇ · u)δij. (2)

Here, η and B are the shear and bulk viscosities. In
ideal hydrodyanmics ∇ · u = (∂ε/∂t)/(P + ε), so the bulk
viscosity can be interpreted as describing the correction
to the pressure linearly proportional to the rate at which
the energy density changes, whereas the shear viscosity de-
scribes the asymmetry of T̃ij due to an anisotropic expansion.
In nonviscous hydrodynamics, accelerations are proportional
to the gradient of the pressure, while in general, accelerations
arise from derivatives of the stress-energy tensor,

(εδij + T̃ij )
∂uj

∂t
= − ∂

∂xj

T̃ij . (3)

Thus, the components of the stress-energy tensor can be
considered as representatives of the pressure in a given
direction, and any reduction or rise of T̃ij from viscous effects

will result in a slowing or acceleration of the expansion in that
direction.

Viscous coefficients can be expressed in terms of corre-
lations in the stress-energy tensor through Kubo relations.
These are derived by considering alterations of Tij due to a
perturbation V. In linear response theory,

δ〈Tij (r = 0)〉 = −(i/h̄)
∫

r ′
0<0

d4r ′〈[Tij (r = 0), V (r ′)]〉,

V (r ′) = r ′
i (∂iuj )T0j (r ′), (4)

where the perturbation represents the change to the Hamilto-
nian due to boosting according to a linear velocity gradient.

To derive the Kubo relations, one first makes the substitution
Tij → �Tij , where �Tij refers to the difference with respect
to the time-averaged value of Tij . After inserting (∂r ′

0
r ′

0) into
the integral, one can integrate by parts, and because of the
substitution with �Tij , one can dispose of the contributions at
r ′

0 = −∞ to obtain

δ〈Tij (r = 0)〉
= −(i/h̄)

∫
r ′

0<0
d4r ′(∂r ′

0
r ′

0

)〈[�Tij (r = 0),�T0j (r ′)]〉r ′
i (∂iuj )

(5)

= (i/h̄)
∫

r ′
0<0

d4r ′r ′
0

〈[
�Tij (r = 0), ∂r ′

0
�T0j (r ′)

]〉
r ′
i (∂iuj )

= (i/h̄)
∫

r ′
0<0

d4r ′r ′
0〈[�Tij (r = 0),�Tkl(r

′)]〉∂kul. (6)

The last step involved applying the conservation of the stress-
energy tensor, ∂tTi0 = −∂jTij .

For i �= j , symmetries constrain k and l to equal i and j,
which allows the extraction of the shear viscosity from Eq. (2),
such that

η = (i/h̄)
∫

r ′
0<0

d4r ′r ′
0〈[�Tij (0),�Tij (r ′)]〉, i �= j,

= lim
ω→0

−1

2ωh̄

∫
d4r ′eiωt ′ 〈[�Tij (0),�Tij (r ′)]〉. (7)

By considering the case where ∂iuj = (1/3)δij∇ · u, one can

0556-2813/2006/74(1)/014901(7) 014901-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.74.014901


KERSTIN PAECH AND SCOTT PRATT PHYSICAL REVIEW C 74, 014901 (2006)

inspect Tii in Eq. (6) to find the bulk viscosity

B = (i/3h̄)
∑

j

∫
r ′

0<0
d4r ′r ′

0〈[�Tii(0),�Tjj (r ′)]〉

= lim
ω→0

−1

6ωh̄

∑
j

∫
d4r ′eiωt ′ 〈[�Tii(0),�Tjj (r ′)]〉. (8)

The Kubo relations, Eqs. (7) and (8), are fully consistent with
quantum mechanics. The classical limit can be obtained by first
noting that 〈· · ·〉 refers to a thermal average with temperature
T = 1/β, then applying the identity [2]

e−βH V (t) = eiβh̄∂t V (t)e−βH , (9)

to one of the terms in the commutator in Eqs. (7) or (8), then
keeping the lowest term in h̄,

Tr e−βH [�Tij (0),�Tkl(r)] ≈ −ih̄βTr ∂t �Tij (0)�Tkl(r),
(10)

which after an integration by parts gives the classical limit of
the Kubo relations

η ≈ β

∫
r ′

0<0
d4r ′〈�Tij (0)�Tij (r ′)〉, i �= j, (11)

B ≈ (β/3)
∑

j

∫
r ′

0<0
d4r ′〈�Tii(0)�Tjj (r ′)〉. (12)

The classical limit has been applied to determine the shear
viscosity from simulations of molecular dynamics [3,4].

Although the Kubo relations are difficult to interpret
physically, they do make it clear that viscosity is related to
the size and to the damping of fluctuations of the elements Tij .
If fluctuations in Tij (at fixed energy) are large or if they are
slow to relax, a large viscosity will ensue.

Finally, since the Kubo relations are based on linear
response theory, i.e., assuming that the perturbation V (r) is
small, we emphasize that the corrections to the stress-energy
tensor represent an expansion in the velocity gradient. If
the stress-energy tensor is strongly altered, it brings into
question the validity of the linear approximation. This would
be especially true if the viscous coefficients diverge as will be
the case for the example discussed in Sec. III.

II. FIVE SOURCES OF VISCOSITY

Viscous effects arise whenever the elements of the stress-
energy tensor Tij have difficulty maintaining the equilibrium
values because of a dynamically changing system, i.e., one
with velocity gradients. In this section, we briefly review
five physical sources of viscosity, the first three of which
have already been explained in the literature. Although
viscosity in nonperturbative systems with ambiguous degrees
of freedom might defy the simple descriptions of the five
effects enumerated below, these examples provide physical
insight into the richness of possible root causes for shear and
bulk viscosity.

(i). Viscosity from non-zero mean free paths: This is the most
commonly understood source of viscosity. It is straightforward

to see how a nonzero collision time leads to an anisotropy
for Tij by considering a velocity gradient for a Bjorken
expansion, uz = z/τ , or equivalently, the velocity gradients are
∂zuz = 1/τ, ∂xux = ∂yuy = 0. We consider a particle whose
momentum is p′

z(τ ) when measured in the frame moving with
the collective velocity corresponding to its position. In the
absence of collisions, p′

z will fall with τ since the particle
will asymptotically approach a region where its velocity
equals the collective velocity, p′

z(τ + δτ ) = p′
z(τ )τ/(τ + δτ ).

Meanwhile, p′
x and p′

y are frozen. The resulting anisotropy in
the stress-energy tensor yields the following expression for the
shear viscosity [5,6],

η = (4/5)Pτc, (13)

where τc is the collision time. The anisotropy increases
the transverse pressure, giving radial flow an initial boost
[7], and decreases the longitudinal pressure, thus reducing
the longitudinal work which results in a larger transverse
energy [6]. It is also easy to see how such an expansion
does not yield a bulk viscosity for either ultrarelativistic or
nonrelativistic gases. In those cases, an isotropic expansion
scales all three momenta proportional to 1/τ , which maintains
thermal equilibrium, and collisions do not play a role. This is
not the case when m∼T , or especially if the gas has a mixture
of relativistic and nonrelativistic particles.

(ii). Viscosity from nonzero interaction range: If the range
of interaction between two particles extends a distance R,
interactions will share energy between particles from regions
with different collective energies. A particle at r = 0, where
the collective energy is zero, will share energy with particles
whose collective energy is (1/2)m(R∂ru)2. For Boltzmann
calculations, the viscosity will be proportional to PR2/τc [8],
with the constant of proportionality depending on the form
of scattering kernel. Both bulk and shear terms result from
a nonzero interaction range. In Boltzmann calculations, the
range of the interaction can approach zero for fixed scattering
rates if the over-sampling ratio is allowed to approach infinity.
Although this solves causality problems [9], it simultaneously
eliminates viscous terms arising from finite-range scattering
kernels, which might not be desirable. This has profound
effects on calculations of elliptic flow, which can vary by a
factor of 2 depending on the range of the scattering kernel [8].

(iii). Classical electric fields: Color flux tubes form after
the exchange of soft gluons between nucleons passing at
high energy, and they might also be formed during rapid
hadronization. Additionally, longitudinal color electric fields
might be created during the prethermalized stage of the
collision (color-glass condensate). Since these fields tend to
align with the velocity gradient, they can be a natural source of
shear viscosity. In fact, if the fields are purely longitudinal, the
elements of the stress-energy tensor become Tzz = −ε, Txx =
Tyy = ε. Thus, the transverse pressure becomes three times as
stiff as a massless gas, P = ε/3, which is usually considered
a stiff equation of state. The negative longitudinal pressure
signifies that the energy within a given unit of rapidity
is increasing because the work done by the expansion is
negative, similar to the stretching of a rubber band. This
hyper-shear can lead to the development of early collective
radial flow. A sophisticated calculation including the effects
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of interactions among the fields [10] showed a somewhat
dampened anisotropy compared to the simple limit discussed
here, with Txx = Tyy ≈ 0.5ε and Tzz ≈ 0.

(iv). Nonequilibrium chemistry: Chemical equilibirum can-
not be maintained unless the rate at which equilibrium abun-
dances change is much smaller than the chemical equilibration
rate 1/τchem, that is,

dN

dt
= −(1/τchem)(N − Neq). (14)

If the equilbrium number is slowly changing, abundances will
vary from equilbrium by an amount

δN = −τchem
dNeq

dt
. (15)

To associate this departure from equilibrium as a viscosity, one
must consider the corresponding change in pressure

δP = ∂P

∂n

∣∣∣∣
fixed ε

δN

	
, (16)

and make a connection between dNeq/dt in Eq. (15) with
∇ · u,

dNeq

dt
= −	

∂n

∂s
s∇ · u. (17)

Here, 	 is the volume, and the second relation exploits the
fact that entropy is conserved in a slow expansion. The bulk
viscosity is then found by comparison of the resulting change
in pressure with the definition of viscosity in Eq. (2),

δP = ∂P

∂n

∣∣∣∣
fixed ε

∂n

∂s
sτchem(∇ · u),

(18)

B = ∂P

∂n

∣∣∣∣
fixed ε

∂n

∂s
sτchem.

The bulk viscosity will be large whenever the equilibrium
number is rapidly changing; e.g., the temperatures are falling
below the masses, or masses are rising because of the
restoring of chiral symmetry. If the hydrodynamic equations
explicitly treat particle numbers as current obeying chemical
evolution rates, chemical nonequilibration would not need to
be accounted for through viscous terms.

(v). Viscosity from dynamic mean fields: Bosonic mean
fields, such as the σ field, obey the Klein-Gordon equation.
For fluctuations of wave number k → 0,

∂2

∂t2
�σ (t) = −mσ (T )2�σ (t) − �

∂

∂t
�σ (t),

(19)
�σ (t) ≡ σ (t) − σeq(ε),

where σeq(ε) is the equilibrium value of the condensate, which
is nonzero for k = 0. The value of σeq is determined by
minimizing the free energy, while the mass is related to the
curvature of the free energy near the minimum,

∂

∂σ
F (σ, T ) = 0, m2

σ (T ) = ∂2

∂σ 2
F (σ, T ). (20)

One can see the equivalence of Eq. (19) with the differential
equation for the harmonic oscillator after performing the

following substitutions,

kh.o./mh.o. → m2
σ , γh.o./mh.o. → �, (21)

where γh.o. is the drag coefficient for the harmonic oscillator,
kh.o. is the spring constant, and mh.o. is the particle mass.
The equivalence with the harmonic oscillator is shown in
Appendix A along with a derivation of the same result from
the perspective of linear response theory assuming a Langevin
force is added to the equations of motion.

For the harmonic oscillator, the mean value of the position
x is altered if the equilibrium position is moving. The amount
of the change was consistent with the drag force γ dxeq/dt

being equal and opposite to the restoring force kδx. The
corresponding result can be derived for the damped Klein-
Gordon equation,

δx = −γh.o.

kh.o.

dxeq

dt
, δσ = − �

m2
σ (T )

dσeq

dt
, (22)

where δσ is the mean offset from the equilibrium value. Thus,
m2

σ determines the restoring force, while � describes the drag.
Finite-size effects could be estimated by replacing m2 with
m2 + k2, where k2 would be given by the finite size, k∼1/L.
The resulting bulk viscosity is

B = ∂P

∂σ

∣∣∣∣
fixed ε

�

m2
σ

∂σeq

∂s
s. (23)

The bulk viscosity is then large for energy densities where σ is
rapidly varying, or when mσ is small, i.e., the critical region.

III. BULK VISCOSITY IN THE LINEAR σ MODEL

Both of the last two sources of viscosity described in the
previous section can be of special importance during the chiral
transition. First, since masses are changing suddenly near Tc,
chemical abundances should easily stray from equilibrium.
Secondly, the mean field, which is zero above Tc, suddenly
changes; and given the small masses in this region, large bulk
viscosities are expected.

As an example, we consider a simple example of a linear σ

model, where the coupling of the σ field to the quarks provides
the quark mass [11,12],

H = − 1

2
σ∇2σ + λ4

4

(
σ 2 − f 2

π + m2
π/λ2

)2 − hqσ

+Hquarks(m = gσ ), (24)

assuming only up and down flavored quarks. The resulting
equation of state and values for mσ and σ are displayed in
Fig. 1 for λ2 = 40. For couplings g<gc = 3.554, the
transition is a smooth cross-over, while for g = gc the
transition is second order, and for g>gc a first-order phase
transition ensues with Tc = 172 MeV. The values for gc

and Tc differ from [11] in that we neglect Fermi statistics
here and also use a different value for λ2. From Fig. 1,
one can see that mσ becomes small in the same region
in which the field rapidly changes, which results in a
peak in the bulk viscosity. For g = gc,m

2
σ ∼ |T − Tc|, and
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FIG. 1. For the linear σ model, the σ field and mass are shown as
a function of the temperature in the left panels. Near Tc, the masses
fall to zero and the mean value of the field changes rapidly, which
gives rise to a sharp peak in the bulk viscosity. The pressure and
temperature are displayed in the right-side panels as a function of
energy density. The transition is sharper for g = 3.4 (solid lines)
which is near to the critical value, than for g = 3.0 (dashed lines)
which results in a smooth cross-over.

the viscosity behaves ∼1/|T − Tc|. Since this is a mean field
calculation, we expect the critical exponent characterizing the
singularity to differ from a more realistic quantum calculation.

To calculate the bulk viscosity, we must evaluate the
expressions from the previous section for δn and δσ ,

δn = −τchem
dneq

ds
s∇ · u,

(25)

δσ = − �

m2
σ

dσeq

ds
s∇ · u.

These translated into changes in pressure, which can
be calculated as a function of σ, T , and the chemical
potential µ,

δP = ∂P

∂µ
δµ + ∂P

∂T
δT + ∂P

∂σ
δσ, (26)

where the last term is zero since σ is chosen to minimize
the free energy. The change in pressure can then be found by
solving for δµ and δT using knowledge of δn from Eq. (25)
and the condition that ε is fixed,

δε = ∂ε

∂µ
δµ + ∂ε

∂T
δT + ∂ε

∂σ
δσ = 0,

(27)

δn = ∂n

∂µ
δµ + ∂n

∂T
δT + ∂n

∂σ
δσ.

Solving for δµ and δT ,

δµ = (∂ε/∂T )δn + [(∂ε/∂σ )(∂n/∂T ) − (∂ε/∂T )(∂n/∂σ )]δσ

(∂ε/∂T )(∂n/∂µ) − (∂ε/∂µ)(∂n/∂T )
,

(28)

δT = (∂ε/∂µ)δn + [(∂ε/∂σ )(∂n/∂µ) − (∂ε/∂µ)(∂n/∂σ )]δσ

(∂ε/∂µ)(∂n/∂T ) − (∂ε/∂T )(∂n/∂µ)
.

The partition function and pressure for the quarks can be
calculated analytically for fixed σ ,

Pquarks(m = gσ, T ) = T ln Z

V
= 24

2π2
{m2T 2K0(m/T )

+ 2mT 3K1(m/T ))}, (29)

where the factor of 24 is the number of degrees of freedom.
Analytic expressions for the derivatives in Eq. (28) can also
be found, since derivatives of Bessel functions yield Bessel
functions.

Since equilibrium values are functions of T, the derivatives
with respect to the entropy density in Eq. (25) can be expressed
in terms of T as

dσeq

ds
= dσeq/dT

ds/dT
,

(30)
dneq

ds
= dneq/dT

ds/dT
.

The derivatives of neq and σeq in (30) must be found
numerically using the constraint that ∂P/∂σ = 0 at fixed T.
After substituting the expressions for dσeq/dT and dneq/dT

into Eq. (28) and then substituting the resulting expressions
for δµ and δT into Eq. (26), the resulting expression for δP is
linear in ∇ · u, thereby allowing the determination of the bulk
viscosity using δP = −B∇ · u.

The bulk viscosity was calculated assuming that the width
� = 400 MeV, that the chemical equilibration time scales
inversely with density, and that τchem = 1 fm/c for a density of
one quark per fm3.

For a Bjorken expansion ∇ · u = 1/τ , and assuming
an isentropic expansion starting with ε = 8 GeV/fm3 at
τ = 1 fm/c, we calculated both P and B as a function of τ .
To illustrate the size of the effect, we display both P and
the Navier-Stokes expression Tii = P − B∇ · u as a function
of the energy density for a Bjorken expansion in Fig. 2.
The effect is certainly dramatic for g ≈ gc; but since the
Kubo relations are based on linear response theory, the large
effect invalidates the underlying assumptions of Navier-Stokes
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FIG. 2. Upper panels: Bulk viscosity, scaled by the energy
density, is displayed for the linear σ model. Peak at Tc is due to
the σ field’s inability to reach equilibrium, while the peak at low
energy density is due to falling away from equilibrium. Viscous terms
are larger and sharper for couplings close to the critical coupling
(gc = 3.554). Lower Panel: For a Bjorken expansion (∇ · u = 1/τ ),
pressure is plotted alongside the Navier-Stokes expression, Tii =
P − B∇ · u. Since the Navier-Stokes expression and the linear
response approximation are only valid for small, linear changes to
the stress-energy tensor, the dynamics of the mean field should be
handled explicitly if the corrections are large, as in the lower left-hand
panel.

hydrodynamics. We expect Israel-Stewart [13–17] equations
for hydrodynamics to result in moderated effects compared
to Navier-Stokes, though they should give identical results
if the corrections are modest. If the effects are also large
in Israel-Stewart solutions, one should consider treating the
dynamics of the mean field explicitly along the lines of [11],
where the equations of motion for hydrodynamics and for the
the mean field were solved in parallel.

IV. SUMMARY

The simplicity of the Kubo relations, Eqs. (7) and (8),
masks the wide variety of physical sources of viscosity. The
one common aspect of the various sources is that nonzero
equilibration times or nonzero interaction ranges can always
be identified. We focused on bulk viscosities associated with
the chiral transition. In general, one would expect such
effects whenever a system needs to rapidly rearrange its basic
structure. In this sense, these effects have much in common
with supercooling or hysteresis. In the case of a first-order
transition where supercooling occurs, the departure from
equilibrium is not proportional to the rate at which the system is
changing, and the language of Navier-Stokes hydrodynamics
is inappropriate.

The peaking of the bulk viscosity near Tc is in stark contrast
to the behavior of the shear viscosity for many fluids, which
comes to a minimum near Tc [18]. In Ref. [18], convincing
physical arguments are presented that the shear viscosity for

the deconfinement transition also comes to a minimum near
Tc. If the source of the viscosity is mainly due to the system’s
failure to equilibrate a scalar quantity such as the σ field, one
physically expects the singularity to be confined to the bulk
viscosity. However, it is of interest that models of binary fluids
also make predictions of a singularity in the shear viscosity
near Tc as described in [19], where physical arguments are
made by thermodynamically linking the diverging correlation
length to a divergence in viscous forces. One lesson from the
study of critical phenomena is that critical exponents inferred
from mean-field models like those discussed here will likely
be incorrect, even though the qualitative behavior might be
well reproduced.

The implications for dynamics should be that the matter
accelerates more quickly because of the higher gradients in Txx

that occur when the interior energy density is above the critical
region. Once the matter flows into the viscous region of energy
densities, there should be a slowing down and a reduction of
surface emission. This trend would be in the right direction to
explain identical-pion correlation measurements which show
a rapid expansion with a sudden disintegration [20], but the
potential magnitude of the effects are not yet known.

Finally, we reemphasize that if one were to solve for
the evolution of the mean fields or chemistry while solving
the hydrodynamic evolution equations, one could forego
incorporating these effects through the viscosity coefficients.
If the stress-energy tensor is strongly affected, the proper
conclusion may be that rather than absorbing these effects
into viscous hydrodynamics, one should treat nonequilibrated
degrees of freedom explicitly. For instance, the dynam-
ics of the σ field can be calculated in parallel with the
hydrodynamic equations of motion as done in [11], though
it would be important to incorporate damping effects, which
were neglected there. Furthermore, chemical nonequilibration
might be accounted for by solving for the time evolution of
chemical abundances, then expressing the pressure in terms of
the resulting nonequilibrated densities.
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APPENDIX A: EQUIVALENCE BETWEEN
DAMPED HARMONIC OSCILLATOR AND

MEAN FIELD EQUATIONS

The differential equations for the harmonic oscillator and
for the Klein-Gordon equations,

m
d2x

dt2
= −γ

dx

dt
− k(x − x0(t)) + F (t),

(A1)
d2σ

dt2
= −�

dσ

dt
− m2

σ (σ − σeq) + F (t),
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are equivalent after the substitutions x ↔ σ,m ↔ 1, γ ↔ �,
and k ↔ m2

σ . Here, F (t) is an external random driving force,
i.e., a Langevin force. After solving the more physically
intuitive harmonic oscillator, a simple substitution will provide
the answer for the Klein-Gordon equation.

Here, we consider the harmonic oscillator where the
minimum of the potential moves with a velocity v0, x0 = v0t .
Defining x ′ ≡ x − x0(t), one can find the differential equation

m
∂2x ′

∂t2
= γ

∂x ′

∂t
− kx ′ + F (t) − γ v0. (A2)

Thus, the effect of moving the potential is a drag force γ v0,
which causes the mean position to be offset from the center of
the potential by an amount

δx ′ = −γ v0/k. (A3)

This illustrates the importance of the drag term and the
irrelevance of the mass term or strength of the random term.

The same result, Eq. (A3), can be derived from the classical
expression for linear response theory,

〈δx〉 = β

∫
dt ′〈x(t = 0)∂t ′V (t ′)〉, (A4)

where

V (t) = 1
2k[x − x0(t)]2 − 1

2kx2 ≈ −kxv0t,

which leads to

〈δx〉 = (kv0/T )
∫ 0

−∞
t ′dt ′〈x(0)∂t ′x(t ′)〉

= −(kv0/T )
∫ 0

−∞
dt ′〈x(0)x(t ′)〉. (A5)

The solutions can be written in terms of the external force in
frequency space using Green’s functions,

x(ω) = φ(ω)F (ω), (A6)

φ(ω) = 1

−mω2 − iγ ω + k
. (A7)

The correlations in time can be written as

〈x(0)x(t)〉 =
∫

dt ′dt ′′φ(−t ′)φ(t − t ′′)〈F (t ′)F (t ′′)〉, (A8)

where for a Langevin force, 〈F (t)F (t ′)〉 = Lδ(t − t ′),

〈x(0)x(t)〉 = L

∫
dt ′φ(−t ′)φ(t − t ′) (A9)

= L

2π

∫
dωe−iωtφ(ω)φ(−ω). (A10)

The integration over time then is∫ 0

−∞
dt〈x(0)x(t)〉 = L|φ(ω = 0)|2 = L

2k2
. (A11)

The strength of the Langevin force L can be determined by

calculating 〈x(0)2〉, then using the equipartition theorem.

〈x2〉 = L

∫
dt ′[φ(−t ′)]2 = L

2π

∫
dω|φ(ω)|2

= L

2πm2

∫
dω

{
1

(ω − iγ /2m − 	)
+ 1

(ω − iγ /2m + 	)

+ 1

(ω + iγ /2m − 	)

+ 1

(ω + iγ /2m + 	)

}
, 	 =

√
(k/m)2+(γ /2m)2,

= L

2kγ
, (A12)

which when combined with the equipartion theorem,
(1/2)k〈x2〉 = (1/2)T , gives

L = 2γ T . (A13)

As expected, the strength of the random force depends on
temperature and damping and is independent of the mass or
spring constant. When combined with Eq. (A4), it yields

〈δx〉 = −γ v0

k
, (A14)

which agrees with the simple statement above that on average
the position of the mass lags behind the minimum of the
potential by an amount such that the drag force γ v0 cancels
the restoring force of the spring kδx. It is remarkable that the
result is independent of either the mass or the temperature.

The zero mass limit can be linked to the diffusion equation.
To make this connection, we consider a random force F which
acts for a time δt . In the zero mass limit of Eq. (A1), particles
move by an amount

δx = −
(

k

γ
x + F

γ

)
δt, (A15)

which means the distribution changes as a result of the
underlying translation,

δf (x) = −f (x)
∂

∂x
δx − δx

∂f (x)

∂x
+ 1

2
δx2 ∂2f (x)

∂x2

= k

γ
δtf (x) + kx

γ
δt

∂f (x)

∂x
+ 1

2

(F 2 + k2x2)δt2

γ 2

∂2f (x)

∂x2
,

(A16)

where terms linear in F have been discarded assuming that
the sign of the force is random. Taking the limit δt → 0, and
assuming the force is of the Langevin form, F 2δt = L, one
finds

∂f (x)

∂t
= k

γ
f (x) + kx

γ

∂f (x)

∂x
+ D

∂2f (x)

∂x2
,

(A17)

D = L

2γ 2
= T

γ
.

Thus, if the dynamics of a field are described by either a
first- or second-order differential equation, the problem can
be mapped to the harmonic oscillator. Furthermore, if it is
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first order, as is the case for chemical equilibration, it can be
mapped to the diffusion equation.

After making the substitutions described in Eq. (A1), the
result translates to

〈δσ 〉 = m2
σ

�

dσeq

dt
. (A18)

The similarity between the equations of motion for a harmonic

oscillator and for fields allow an easier understanding of the
terms in the Klein-Gordon equation. The field’s effective mass
m2

σ plays the role of the spring constant and provides the
restoring force pushing the field toward equilibrium, whereas
the width � provides an effective drag force which impedes the
field from maintaining equilibrium. This might be opposite to
one’s intuitive expectation: that a large width � would indicate
a quick decay of any excitation of the field.
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