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Nuclear liquid-gas phase transition studied with antisymmetrized molecular dynamics
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The nuclear liquid-gas phase transition of the system in ideal thermal equilibrium is studied with
antisymmetrized molecular dynamics. The time evolution of a many-nucleon system confined in a container
is solved for a long time to get a microcanonical ensemble of a given energy and volume. The temperature
and the pressure are extracted from this ensemble and the caloric curves are constructed. The present work is
the first time that a microscopic dynamical model which describes nuclear multifragmentation reactions well is
directly applied to get the nuclear caloric curve. The obtained constant pressure caloric curves clearly show the
characteristic feature of the liquid-gas phase transition, namely negative heat capacity (backbending), which is
expected for the phase transition in finite systems.
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I. INTRODUCTION

Phase transition is an interesting phenomenon which
appears in various physical systems. In nuclear systems with
the excitation energies of a few to 10 MeV/nucleon, the
existence of the liquid-gas phase transition has been speculated
based on the resemblance between the equation of state (EOS)
of homogeneous nuclear matter and the Van der Waals EOS.
However, the confirmation of the phase transition for realistic
nuclear systems requires more careful arguments.

First of all, any nuclear system accessible by experiments
consists of a finite number of nucleons. Because of this, it
may be generally believed that the phase transition tends to
be smeared out due to the finite size effect, which is a correct
statement for canonical ensembles specified by temperature.
However, by studying microcanonical ensembles with fixed
energies, a quite prominent signal of the phase transition is
expected in finite systems, that is backbending (or negative
heat capacity) in caloric curves [1–3]. Many experimental and
theoretical works have been devoted to search for such a signal
in various physical systems [4–11].

Another complexity comes from the fact that the excited
systems for the study of nuclear liquid-gas phase transition
are produced in dynamical processes of nuclear reactions in
laboratories. In fact, it is considered that the liquid-gas phase
transition is somehow related to the multifragmentation phe-
nomenon which is observed in the various nuclear reactions,
such as in the relatively low energy region where the neck or
midrapidity component may be created in dissipative binary
reactions [12–14], in higher energy central collisions where
clusters are produced copiously in expanding system [15], and
also in peripheral collisions where the excited projectile-like
fragment breaks up into pieces [7]. Thus intensive studies
have been done to search evidences of the phase transition in
these experimental data and some of the works have reported
that indications of the phase transition have been obtained
[7,9,16–20]. However, the conclusion has not come yet and
much efforts are still required. The difficulty is due to the
nontrivial dynamical effects contained in the experimental
data. Even though it may be true that the part of the system
is equilibrated in good approximation as is indicated by the

success of statistical models [1,21–23], the ambiguities enter in
the data analysis through the identification of the equilibrated
thermal source. On the other hand, there are several models
which can predict the experimental observables without such
ambiguities by simulating the dynamics of these reactions
microscopically [24–29]. By carefully studying the time
evolution of dynamical reactions, it may be possible to discuss
how well the thermalization is achieved in dynamical collisions
and how the results of dynamical reactions are related to the
thermal properties, such as phase transition. For this purpose,
the dynamical models should correctly describe the thermal
properties as well as dynamical reaction mechanisms. It can be
verified by applying these models directly to the ideal systems
in thermal equilibrium, though the attempts for this direction
have not been done sufficiently.

The aim of the present work is to demonstrate that the
nuclear liquid-gas phase transition in ideal thermal equilibrium
can be described by antisymmetrized molecular dynamics
(AMD) which is a microscopic dynamical model based on
the degrees of freedom of interacting nucleons [27,28,30].
We utilize the same AMD model that has been applied to
nuclear collisions and successfully reproduced various aspects
of experimental data [27,28,30–36].

To achieve this aim, the equilibrated systems are con-
structed and their statistical properties are studied in the
following way. Firstly, we prepare the initial state putting
A nucleons (N neutrons and Z protons) arbitrarily within a fixed
radius rwall, and solve the time evolution of the system by AMD
for a long time. In order to confine the system in the container of
volume V = 4

3πr3
wall, we introduce a certain reflection process

at the container wall. Then we regard the state at each time
as a sample of the statistical ensemble with energy E, volume
V and particle number A = N + Z. It should be emphasized
that this ensemble is a microcanonical ensemble with a fixed
energy E because the initial energy E is conserved through the
AMD time evolution. By extracting the statistical information
(temperature T and pressure P) from the ensembles, we can
construct the caloric curves. The existence of the liquid-gas
phase transition can be checked by finding a part with negative
heat capacity (backbending) in these caloric curves, which is
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the characteristic feature of first order phase transition for finite
systems [1–3].

One of the advantages of the present study as a statistical
model, compared to conventional statistical models [1,21,22],
is that the calculation is based on the nucleon-nucleon
interaction, rather than the nuclear binding energies and
level densities given externally. Another advantage is that the
interactions among fragment nuclei and nucleons are naturally
taken into account, while they are usually ignored in other
statistical models by the freeze-out assumption.

There have been several discussions on the question
whether molecular dynamics models can describe the sta-
tistical properties of nuclear systems for which quantum
and fermionic features are essential [37–41]. It has been
shown that molecular dynamics can be consistent with the
quantum and fermionic caloric curve if the wave function is
fully antisymmetrized and an appropriate quantum branching
process is taken into account [37,38,40,41].

There are several works [37–39,41–46] that studied the
nuclear liquid-gas phase transition using molecular dynamics
models and some of the works claimed that a clear signal of
phase transition, namely plateau or backbending in the caloric
curves, is obtained. However, the molecular dynamics models
utilized in these works have not been successfully applied to
the dynamical multifragmentation reactions. Another problem
is that the effective interactions adopted in these works some-
times do not satisfy the saturation property of infinite nuclear
matter and none of them succeeded in obtaining plateau or
backbending with an appropriate effective interaction so far.
Furthermore, these works have calculated the constant volume
caloric curves or those with a harmonic oscillator confining
potential but have not explicitly shown the constant pressure
caloric curves for which plateau or backbending is expected
most clearly. On the other hand, our present study uses the same
framework of AMD (AMD/DS) that has already been utilized
for nuclear collision simulations [30,33] and the Gogny force
[47] as the effective interaction between nucleons, which
satisfies the saturation property of infinite nuclear matter. We
also draw the caloric curves at constant pressure.

This paper is organized as follows. In Sec. II, we show
features of the Gogny force when it is applied to infinite
nuclear matter. In Sec. III, the framework of the AMD is
explained, which is used to calculate the time evolution of
many-nucleon system to create a microcanonical ensemble.
The reflection process to confine the system in a given volume
is also explained. In Sec. IV, the method to extract the
statistical information (temperature T and pressure P) from
our calculations is described. Then in Sec. V, the obtained
caloric curves with constant volume and also with constant
pressure are shown. The dependence of the caloric curves on
the theoretical ambiguities is also discussed. Section VI is
devoted to a summary and future perspectives.

II. EFFECTIVE INTERACTION AND THE PROPERTY OF
INFINITE NUCLEAR MATTER

In the present study, we adopt the Gogny force [47] as the
effective nuclear interaction. The Gogny force is one of the
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FIG. 1. The EOS of symmetric nuclear matter. Each full line
shows the pressure as a function of the density for the given
temperature (0, 5, 10, 15, and 20 MeV). This EOS is obtained
by adopting the Gogny force and assuming uniform density in the
Hartree-Fock framework. Below the dotted line, the liquid and gas
phases coexist if nonuniform density is allowed. The dashed lines
are the EOS in this coexistence region obtained by the Maxwell
construction.

most successful effective interactions to reproduce the ground
state properties of nuclei in mean field theories. The Gogny
force satisfies the saturation property of the nuclear matter
with the incompressibility K = 228 MeV when it is applied
to infinite nuclear matter with the uniform Hartree-Fock
approximation. The saturation property is essential for the
discussion of the similarities and the differences between finite
and infinite nuclear systems. The equation of state (EOS) of
nuclear matter at finite temperatures can be also obtained by
the uniform Hartree-Fock approximation, which is shown in
Fig. 1. The dotted line is obtained by the Maxwell construction.
Below this line, the system prefers to split into two parts,
namely liquid and gas phases with different densities, rather
than the uniform phase, and the actual EOS are the dashed
lines in this coexistence region.

The caloric curves for the infinite nuclear matter can be also
obtained by the Maxwell construction. The obtained caloric
curves with constant volume and with constant pressure are
shown in Figs. 2(a) and 2(b), respectively. The existence of
phase transition can be recognized in both caloric curves.
However, only the constant pressure caloric curves show
temperature plateau at coexistent region. The constant volume
caloric curves show monotonic increase of temperature with
the energy increase even in the coexistent region. Finding a
temperature plateau in the constant pressure caloric curves is
an easy way to identify first order phase transition in infinite
systems.

In the realistic nuclear systems, however, the number of
nucleons is several hundred at most. We have to carefully treat
these systems because the ideas for infinite systems sometimes
cannot be applied to such small systems. Nevertheless,
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FIG. 2. (Color online) The caloric curves of infinite nuclear
matter obtained by applying the Maxwell construction to the EOS
(Fig. 1). The line of E/A = (3/2)T is drawn for the comparison.
(a) The constant volume caloric curves drawn for the aver-
age densities ρ = 0.40ρ0, 0.30ρ0, 0.23ρ0, 0.18ρ0, 0.15ρ0, 0.10ρ0,

0.07ρ0, 0.04ρ0, 0.02ρ0, and 0.015ρ0, where ρ0 = 0.17 fm−3 is the
normal nuclear matter density. (b) The constant pressure caloric
curves for the pressures P = 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20,
0.25, 0.30, and 0.40 MeV/fm3. The meaning of the diamond marks
is explained in Sec. V C.

Gross et al. [1–3] have pointed out that the essence of
phase transition is the anomalous concavity of the entropy
S(E) = ln W (E), with W (E) being the number of microstates,
and the effect of phase transition can be clearly observed
even in finite systems by finding backbending (negative heat
capacity) in the microcanonical caloric curves.

III. FRAMEWORK

The microcanonical ensemble with energy E, volume V
and particle number A = N + Z can be obtained by solving
the time evolution of the many-nucleon system confined in a
container and regarding the state at each time as a sample of the
ensemble. For the time evolution calculation, we utilize AMD,
which is a microscopic dynamical model based on the degrees
of freedom of interacting nucleons [27,28,30]. AMD uses a
fully antisymmetrized product of Gaussian wave packets,

〈r1 . . . rA|�(Z)〉 = det
ij

[
exp

{
−ν

(
rj − Zi√

ν

)2}
χαi

(j )
]
, (1)

where the complex variables Z = {Zi ; i = 1, . . . , A} represent
the centroids of the nucleon wave packets. The width parameter
ν is treated as a constant parameter and taken as ν = 0.16 fm−2

so as to reasonably describe the ground state of light nuclei
such as 16O. The spin-isospin states (χαi

= p ↑, p ↓, n ↑,
and n ↓) are also independent of time. Because of the
antisymmetrization, an AMD wave function |�(Z)〉 contains
many quantum features so that it is even utilized for the study
of nuclear structures [48].

The time evolution of the centroids Z, which parametrize
|�(Z)〉, is determined by a stochastic equation of motion

d

dt
Zi = {Zi ,H} + �Zi , (2)

where {Zi ,H} is the deterministic term derived from the
time-dependent variational principle and �Zi is the stochastic

term, which is important to describe the appearance of various
reaction channels in multifragmentation, for example. The
stochastic term �Zi is also essential for the consistency
with the quantum statistics [37,38,40,41]. Two origins of the
stochastic term �Zi are considered; one is the two-nucleon
collisions and the other is related to the unrestricted single-
particle motion in the mean field and the localization of
single-particle wave functions when fragments are formed
[30,32,33].

In the following subsections, we briefly explain these terms
referring to Refs. [30,32,33]. In this paper, we introduce
several new improvements which are necessary for the present
application because the energy conservation and the motion of
emitted nucleons should be treated very consistently.

A. AMD time evolution

1. Deterministic part of the equation of motion

The deterministic term is derived from the time-dependent
variational principle and given by

{Ziσ ,H} = 1

ih̄

∑
jτ

C−1
iσ,jτ

∂H
∂Z∗

jτ

, (3)

where

Ciσ,jτ = ∂2

∂Z∗
iσ ∂Zjτ

ln〈�(Z)|�(Z)〉 (4)

with σ, τ = x, y, z [27,28,30]. The derived equation contains
the expectation value of the effective Hamiltonian H, which is
given by

H(Z) = 〈�(Z)|H |�(Z)〉
〈�(Z)|�(Z)〉 + Kmod(Z) + Vmod(Z). (5)

Equation (5) contains the modification terms Kmod(Z) and
Vmod(Z) for the kinetic and potential energies, respectively,
both of which are for the treatment of the gaseous nucleons.
If a nucleon is located out of nuclei and there are almost no
other nucleons around it, the wave function of such a nucleon
is interpreted to have a sharp momentum distribution rather
than the momentum distribution corresponding to the Gaussian
wave packet in Eq. (1). This change of interpretation has been
necessary for the consistency of Q-values of nucleon emission
and fragmentation [27,28,30], and is very important for the
definition of temperature in the present work. By this modifi-
cation, the zero-point kinetic energies of gaseous nucleons are
subtracted from the total kinetic energy [27,28,30] by

Kmod(Z) = −3h̄2ν

2M
A + T0(A − NF (Z)), (6)

where the zero-point kinetic energies of isolated fragments are
also subtracted. The function NF (Z) stands for the number of
isolated fragments and nucleons which are assumed to have the
definite center-of-mass momenta without zero-point energies.
Therefore we take T0(A − NF ) as the physical zero-point
kinetic energy instead of (3h̄2ν/2M)A. The functional form of
NF (Z) is given in Appendix A. The parameter T0 should be
3h̄2ν/2M in principle, but it may be adjusted to fine-tune the
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binding energies of nuclei. With the Gogny force, the binding
energies for a wide range of nuclear chart are reproduced
reasonably well by taking T0 = 9.20 MeV which is close to
3h̄2ν/2M = 10.0 MeV [30,49]. In Appendix A, the degree of
isolation Ii for a nucleon i is introduced. Using Ii , the total
zero-point kinetic energy can be written as

T0(A − NF ) = T0

A∑
i=1

(1 − Ii) (7)

so that the physical zero-point kinetic energy associated to
the nucleon i may be considered as T0(1 − Ii). The potential
energy should be also modified following the same change
of interpretation of gaseous nucleons, because the spatial
distribution of each gaseous nucleon is wide correspondingly
to the sharp momentum distribution. The details of the
modification term Vmod(Z) are also given in Appendix A. The
parameters of the modification terms are chosen in such a way
that a nucleon is treated as a gaseous nucleon (with a sharp
momentum width) if the number of other nucleons around it
is less than about 2. The binding energies of small nuclei such
as deuteron and triton are utilized to fix some parameters.

Equation (5) defines the total energy that is to be conserved
by the deterministic term {Zi ,H}. The same energy is
conserved also by the stochastic term. However, we need
to be careful in treating the term Kmod(Z) because the
force −T0{Zi ,NF } originating from this term is not always
physically reasonable (see Sec. III A4).

2. Stochastic treatment of single particle motion

The stochastic term �Zi in Eq. (2) consists of two
contributions. The first one is the stochastic two-nucleon
collision term [27,28,30] which is not shown explicitly in the
following formulation for simplicity. The second one is related
to the change of the phase space distribution by the mean field
propagation. We follow the formalism of AMD/DS given in
Refs. [30,33], but also introduce new improvements which are
crucial in the present study.

We write the Wigner function of the nucleon k as the mean of
the stochastic phase space distributions of deformed Gaussian
shape,

fk(x, t) = g(x; Xk(t), Sk(t)) (8)

=
∫

g(x; X, S)wk(X, t)
d6X

π3
(9)

with

g(x; X, S) = 1

8
√

det S

× exp

[
−1

2

6∑
a,b=1

S−1
ab (xa − Xa)(xb − Xb)

]
.

(10)

We have introduced the six-dimensional phase space coordi-
nates

x = {xa}a=1,...,6 =
{√

νr,
p

2h̄
√

ν

}
. (11)

At an initial time, fk is represented by a single Gaussian
wave packet g(x; Xk, Sk) with Skab = 1

4δab and the wave
packet centroid Xk is identified with the physical coordinate
Wk [27,28,30],

X = {Xka}a=1,...,6 = {ReWk, ImWk} . (12)

For a short time, the time evolution of gk(x, t) ≡
g(x; Xk(t), Sk(t)) by the Vlasov equation,

δgk

δt
= −∂h

∂p
· ∂gk

∂r
+ ∂h

∂r
· ∂gk

∂p
, (13)

is characterized by the time evolution of the first and the second
moments of the distribution

δ

δt
Xka(t) = δ

δt

∫
xagk(x, t)

d6x

π3
, (14)

δ

δt
Skab(t) = δ

δt

∫
(xa − Xka(t))(xb − Xkb(t))gk(x, t)

d6x

π3
,

(15)

in which (δ/δt)gk(x, t) is given by Eq. (13). A special notation
of the time derivative (δ/δt) is adopted for the mean field
propagation. The mean distribution [Eq. (9)] does not change
when a part of the time evolution of the shape Skab is converted
into a stochastic Gaussian fluctuation �Xka(t) to the centroid
Xka(t) as

d

dt
Xka(t) = δ

δt
Xka(t) + �Xka(t) (16)

�Xka(t) = 0, (17)

�Xka(t)�Xkb(t ′) = Dkab(t)δ(t − t ′), (18)

where Dkab(t) denotes the strength and correlation of fluctu-
ations. Correspondingly, the equation of motion for Skab(t) is
given by

d

dt
Skab(t) = δ

δt
Skab(t) − Dkab(t). (19)

In order that the Vlasov equation is satisfied, the choice of
Dkab(t) is arbitrary as far as the positive definiteness of Dkab(t)
and Skab(t) is guaranteed.

In the original version of AMD/DS in Refs. [30,33], Dkab

was chosen as the component diffusing beyond the original
width of the wave packet, that is,

D
(1)
kab(t) = lim

�t→0

1

�t

∑
c

max

(
0, λc − 1

4

)
OacObc, (20)

where Oab and λa are the diagonalizing orthogonal matrix
and the eigenvalues of the symmetric matrix Sk(t) + δ

δt
Sk�t .

With this original choice, however, there is no accordance
between the momentum spreading of the distribution Sk and the
zero-point kinetic energy T0(1 − Ik) assumed in the conserved
energy (Sec. III A1). This accordance is important for the
full consistency of the energy conservation and the precise
evaluation of the temperature in the present work. Therefore
we utilize the arbitrariness of D and introduce another choice
D = D(1) + D(2) by adding a term D(2) as explained below.
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Ignoring the effect of antisymmetrization for simplicity, the
expectation value of the kinetic energy of an emitted nucleon
k can be written as

KHamil = 2h̄2ν

M

(
X2

k4 + X2
k5 + X2

k6

) + T0(1 − Ik), (21)

which is a part of the conserved energy H and includes the
zero-point kinetic energy. On the other hand, if we use the
phase space distribution g(x; Xk, Sk), the kinetic energy is
given by

Kdistr = 2h̄2ν

M

(
X2

k4 + X2
k5 + X2

k6

) + 4

3
T0 Trp Sk, (22)

where (3h̄2ν/2M) has been replaced by T0 consistently with
Eq. (6) and a special notation Trp Sk ≡ Sk44 + Sk55 + Sk66 has
been used. If only D(1) is taken, (1 − Ik) usually decreases
faster than 4

3 Trp Sk , when the nucleon k is going out of a
nucleus. Therefore, in order to keep the accordance of KHamil

and Kdistr, we choose Dk so as to satisfy the condition

Trp Sk = 3
4 (1 − Ik), (23)

when the right hand side is getting smaller than the left hand
side. This requirement can be satisfied by scaling Skab as

Skab(t + �t) = RkS
′
kab (24)

by a factor

Rk = min

{
3
4 (1 − Ik)

Trp S ′
k

, 1

}
, (25)

where S ′
kab = Skab(t) + ( δ

δt
Skab − D

(1)
kab)�t . This corresponds

to taking the choice Dkab(t) = D
(1)
kab(t) + D

(2)
kab(t) with

D
(2)
kab(t) = lim

�t→0

1

�t
(1 − Rk)S ′

kab. (26)

3. Decoherence process

The fluctuation �X has been introduced in Eq. (16) by
the condition that the single-particle dynamics of the mean
field propagation would be reproduced. However, the mean
field propagation is not sufficient to approximate the time
evolution of many-body systems, at least, in the sense that
the idempotency of the one-body density matrix (ρ̂2 = ρ̂) is
unphysically kept during the mean field propagation. After
enough time has past in the multifragmentation reactions,
for example, the reduced one-body density matrix would be
rather represented by an ensemble of density matrices in
each of which single-particle wave functions are localized
in fragments. This means that the coherence of the single-
particle state is lost at some time (quantum branching).
The decoherence is due to the many-body correlations and
therefore its time scale (coherence time τ0) should be related
to many-body effects in some way.

In Refs. [30,33], the decoherence is assumed to take
place for a nucleon when it is scattered by a two-nucleon

collision, which is the effect beyond mean field. In the
present calculation, however, we choose a different pre-
scription to investigate the dependence on the decoherence
process.

For each nucleon k, if there are more than three other
nucleons within the radius of 2 fm (measured in Re W/

√
ν),

a decoherence process is assumed to take place with the
probability of 1/τ0 per unit time. When a decoherence process
takes place, it affects all the nucleons i that are located
within the radius of 2 fm including the nucleon k itself and
each of the single particle wave packet of the nucleon i is
replaced by a Gaussian wave packet with the phase space distri-
butions

Siab =




1
4 (a = b = 1, 2, 3)
1
4 (1 − Ii) (a = b = 4, 5, 6)

0 (a 
= b).

(27)

The momentum widths are replaced by 1
4 (1 − Ii) rather than

the standard Gaussian width 1
4 in order to satisfy Eq. (23).

It should be noted that a single decoherence process affects
several nucleons at once and therefore the rate of decoherence
for a specific nucleon is approximately proportional to the
number of the neighboring nucleons. We take τ0 = 500 fm/c
for usual calculations in the present work, but we also check
the dependence of the results on τ0 in Sec. V C.

4. The stochastic equation of motion

The stochastic equation of motion for the wave packet
centroids Z is given by [30,32]

d

dt
Zi = {Zi ,H} +

A∑
k=1

(
(�Zi)

(k)
flct + (�Zi)

(k)
dssp

)
, (28)

(�Zi)
(k)
flct = {

Zi , O′
k + T0Ik

}
Ck

, (29)

(�Zi)
(k)
dssp = µk

(
Zi ,H′)

Nk
. (30)

The fluctuation term (�Zi)
(k)
flct is obtained by converting the

fluctuation �Xka of the physical coordinate W to that of the
original AMD coordinates Z. This conversion is done [30,32]
by introducing an expectation value Ok(Z, t) of a stochastic
one-body operator which generates the fluctuation as {Zi ,Ok}
by the Poisson brackets [Eq. (3)]. O′

k in Eq. (30) is different
from Ok by the Lagrange multiplier terms for the conservation
of the three components of the center-of-mass coordinate and
those of the total momentum [30,32]. The term T0{Zi , Ik} in
(�Zi)

(k)
flct is introduced in order to cancel the unphysical force

−T0{Zi , Ik} in the deterministic term {Zi ,H}. Such a force
does not exist for the single-particle motion in the mean field
one-body dynamics. The subtraction is introduced as a term
in (�Zi)

(k)
flct for a technical reason (related to the dssp term)

so that the Hamiltonian H with the zero-point correction term
T0(1 − Ik) is still the conserved energy.
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The term (�Zi)
(k)
dssp is the dissipation term to achieve the

energy conservation, where (Ziσ ,H′) is defined by

(Ziσ ,H′) = 1

h̄

∑
jτ

C−1
iσ,jτ

∂H′

∂Z∗
jτ

. (31)

The coefficient µk for each k is determined so that the
energy violation by the (�Zi)

(k)
flct term is compensated by

(�Zi)
(k)
dssp. Lagrange multiplier terms are included in the

effective Hamiltonian H′, assuming that (�Zi)
(k)
dssp conserves

some global one-body quantities such as the center-of-mass
coordinate, the total momentum, the total orbital angular
momentum, and the monopole and quadrupole moments in
the coordinate and momentum spaces [30,32].

The subscripts Ck and Nk mean that the contents of the
brackets are calculated by limiting to the subsystem Ck or
Nk . Ck is the cluster that includes the nucleon k, where the
clusters are identified by the condition that two nucleons i and
j belong to the same cluster if |Zi − Zj | < 1.75. Nk stands for
a neighborhood of nucleon k defined by

Nk = {i; |Wi − Wk| < 2.5, i ∈ Ck, i 
= k, and Mi > 1}, (32)

where Mi is the number of nucleons within the distance of 3 fm
(measured in Re W/

√
ν) from nucleon i. These limitations

ensure that the fluctuation Xka for the nucleon k should affect
only the nucleons within the interactive range of the nucleon k
when the conservation laws are imposed. The condition Mi >

1 in Eq. (32) is introduced to exclude gaseous nucleons (here
we regard the nucleon i with Mi � 1 as gaseous) from Nk so that
the dynamics of the gaseous nucleon i faithfully follows the
single-particle motion determined by the deterministic term
{Zi ,H} and the fluctuation term

∑A
k=1(�Zi)

(k)
flct. The choice

of Ck and Nk here is similar to Refs. [30,32], but has been
updated in order to carefully treat gaseous nucleons, which is
required for the precise definition of temperature.

We cancel the fluctuation for a nucleon k when the number
of nucleons in Nk is less than five to prevent small clusters
from unphysically breaking.

B. Reflection at the wall

To obtain a microcanonical ensemble with a fixed volume,
we need to keep nucleons inside the container with a given
volume V = 4π

3 r3
wall during the time evolution. We introduce

a kind of reflection process for this purpose, when nucleons
or fragments are going out of the container. At each time step
after the time evolution without any effect of the container
wall, we judge whether each nucleon k is in the container
( 1√

ν
|ReWk| � rwall). If an isolated nucleon k is located outside

the container and its momentum Pk = 2h̄
√

νImZk directs
outward, we change the momentum direction P̂k = Pk/|Pk|
into an inward direction P̂′

k which satisfies Rk · P̂′
k < 0, where

Rk = 1√
ν
ReZk . We randomly choose the direction P̂′

k as in the
case of the reflection by an irregular surface. The absolute value
of the momentum |P′

k| is adjusted so as to conserve the total
energy which is sometimes affected by antisymmetrization.
The total angular momentum of the system is not conserved

because of the irregular reflection, which allows us to construct
a microcanonical ensemble without the constraint of the total
angular momentum.

When a nucleon which belongs to a cluster, where we regard
the nucleon i and j belong to the same cluster when |Wi −
Wj | < 0.8, is located outside the container, we apply a similar
reflection procedure to the center of mass coordinate of the
cluster. If one applied the reflection procedure to each of the
nucleons in the cluster as is done in Refs. [37–41,45,46], the
cluster would be unphysically broken by the crash to the wall.

When a nucleon k is reflected, the shape Sk has to be
reflected consistently with the change of the momentum
direction P̂k → P̂′

k . We consider the reflection with respect
to the plane that includes the point Rk and is perpendicular to
n̂k = (P̂′

k − P̂k)/|P̂′
k − P̂k|, and hence the component parallel

to n̂k is reversed. According to this operation, the coordinate or
momentum vector xk in the intrinsic frame of the wave packet
k is transformed into

x′
k = xk − 2 (xk · n̂k) n̂k = Tkxk, (33)

(Tk)στ = δστ − 2nkσnkτ (σ, τ = x, y, z). (34)

By defining the transformation matrix in the phase space as

Tk =
(

Tk 0
0 Tk

)
, (35)

the transformation of the shape Sk is given by

S ′
kab =

∑
cd

(Tk)ac(Tk)bdSkcd . (36)

In the actual calculation, for the purpose of numerical
stability, we introduce a small delay time τdelay for the response
to the fluctuation �Xka [30,32]. This delayed fluctuation
ka(t) also has to be transformed as ′

ka = ∑
b(Tk)abkb when

a nucleon k is reflected.

IV. CALCULATION OF TEMPERATURE AND PRESSURE

In order to obtain caloric curves, we need to extract the
temperature T of each microcanonical ensemble {E,V,A}.
We also need to know the pressure P of the ensemble in order
to draw the constant pressure caloric curves. In this section,
we explain how to obtain T and P in our calculation.

The microcanonical temperature is defined by T −1 =
(∂S/∂E)|V,A. This quantity can be evaluated with a good pre-
cision by using the average kinetic energy of gaseous nucleons.
When the total volume is V > A/ρ0, where ρ0 = 0.17 fm−3

is the normal nuclear density, it is possible to find a partial
system composed of gaseous nucleons to which classical ideal
gas relations are applicable. Let us call this partial system
G which will be defined below. Appendix B shows that the
microcanonical temperature T of the ensemble {E,V,A} can
be obtained from the average kinetic energy of G-subsystem
as

T = 2

3

〈KG

AG

〉
{E,V,A,AG>0}

, (37)
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where KG and AG are the kinetic energy and the number
of nucleons of G-subsystem, respectively, and the brackets
〈 〉{E,V,A,AG>0} denote the average value for the microcanonical
ensemble with AG > 0. Because of the consistency of Eqs. (21)
and (22), KG can be calculated as

KG =
∑
k∈G

{
2h̄2ν

M

(
X2

k4 + X2
k5 + X2

k6

) + 4

3
T0 Trp Sk

}
. (38)

The first term is the contribution from the wave packet centroid.
The accumulated delayed fluctuation τdelayk [32] should
be included in this term because the corresponding shape
shrinking has been already applied. The second term is the
contribution from the momentum widths of Sk .

According to Appendix B, G-subsystem can be defined
arbitrarily as far as the following two conditions are satisfied.
The first condition is that the quantum effect should be negli-
gible for any nucleon in G-subsystem. The second condition
is that the G-subsystem should be selected without using
momentum variables, i.e., the configurations with different
nucleon momenta should be equally taken into account if they
have the same nucleon positions.

In our actual calculation, G-subsystem has been chosen in
the following way. We select the nucleons k for which the
density of the nucleons with the same spin-isospin

ρα =
∑

i∈αk,i 
=k

(
2ν

π

)3/2

e−2(ReWk−ReWi )2
(39)

is sufficiently low (ρα � ρG = (1/200)ρ0) so that the antisym-
metrization effect can be neglected. It is necessary to eliminate
the nucleons belonging to clusters because the discrete level(s)
of the internal degrees of freedom can only be treated quantum
mechanically. Therefore, among the selected nucleons, we
choose the nucleons k which do not have more than one other
nucleon within the distance of rG = 3 fm (if we use Mk defined
in Sec. III A2, we choose the nucleon k which satisfy the condi-
tion Mk � 1). Because of our reflection procedure, it is possible
that nucleons locate outside the container in short time interval.
Those nucleons are excluded from the selected nucleons. The
above selections are done based on spatial coordinates without
any momentum selection. We define the system composed of
these selected nucleons as G-subsystem. The results should
be independent of the definition of G as far as the necessary
conditions are respected, which will be checked in Sec. V C
by changing the criteria in our definition of G.

For the calculation of the pressure P, we adopt the common
definition of pressure as the external force necessary to keep
the volume. Namely, the pressure is given by

P = 2

4πr2
wallτtotal

∑
reflections

�p · N̂, (40)

where the summation is taken over all the reflections at the
container wall (see Sec. III B) which occurred during the time
evolution of the total time τtotal,�p is the momentum change
at each reflection, and N̂ is the normal vector. Factor two is
from the fact that when a nucleon or a fragment hits the wall
the total momentum of the rest of the system is also changed
for the momentum conservation.

V. THE STUDIED SYSTEM AND OBTAINED CALORIC
CURVES

A. The studied system

In the present study, the system with (N,Z) = (18, 18) is
considered, which is the same system taken in Refs. [45,46].
There are several examples indicating that phase transition
exists even in such small systems [4–6].

Microcanonical ensembles are constructed with the
radius of the container rwall = 5, 5.5, . . . , 15 fm, which
correspond to the average densities A/( 4π

3 r3
wall) = 0.40ρ0,

0.30ρ0, . . . , 0.015ρ0, and the energy E∗/A = 4,

6, . . . , 28 MeV, where E∗ stands for the excitation
energy relative to the ground state of 36Ar nucleus
(Eg.s. = −8.9A MeV). The minimum radius rwall = 5 fm
corresponds to a volume of the container V = 2.5V0, where
V0 = A/ρ0, and therefore we do not consider a compressed
liquid nucleus in this study.

The time evolution was calculated up to 20000 fm/c, which
is much longer than a typical nuclear reaction time scale
(∼100 fm/c). The states for the first 5000 fm/c were discarded
in order to remove the initial state dependence. Samplings were
done at every 10 fm/c. Similar calculations were carried out
four times independently to improve the statistics.

B. Obtained caloric curves

The obtained constant volume caloric curves with rwall = 5,
5.5, 6, 6.5, 7, 8, 9, and 11 fm are shown in Fig. 3. The caloric
curves with rwall = 13 and 15 fm are also constructed, but they
are not shown in Fig 3 because the complete equilibration
could not be achieved by our investigation time (20000 fm/c)
in the low energy cases (E∗/A = 4 ∼ 8 MeV) (the results
systematically differ if we start the calculation with a quite
different initial state). Otherwise, fairly smooth caloric curves
are obtained. The negative heat capacity (backbending) or

0
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20

0 5 10 15 20 25 30

T
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]

E*/A [MeV]

E/A=(3/2)T

FIG. 3. The constant volume caloric curves for the A = 36 system
obtained by AMD. The lines correspond to the container size rwall =
5, 5.5, 6, 6.5, 7, 8, 9, and 11 fm from the top. Statistical uncertainty
is shown by error bars. The line of E/A = (E∗ + Eg.s.)/A = (3/2)T
is drawn for comparison.
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FIG. 4. (Color online) The constant pressure lines drawn on
E-V plain. The circles indicate the points where the microcanonical
ensembles are constructed. The lines correspond to the constant
pressure lines with P = 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20,
0.25, 0.30, and 0.40 MeV/fm3, which are obtained by performing
the transformation between volume V and pressure P with the
interpolation at each energy E. Statistical uncertainty is shown by
error bars.

plateau does not appear in the constant volume caloric curves,
which is consistent with the result of Ref. [46] with another
version of AMD. It was expected from the fact that the constant
volume caloric curves for infinite nuclear matter do not show
the plateau even in coexistent region [Fig. 2(a)].

Although this result (Fig. 3) is somehow similar to the
caloric curves for infinite matter [Fig. 2(a)], the transition from
the liquid-gas phase coexistence to the pure gas phase is not
clear. It is difficult to judge clearly whether the phase transition
exist or not from the constant volume caloric curves. On the
other hand, the constant pressure caloric curves which showed
plateau in the case of infinite nuclear matter [Fig. 2(b)] are
expected to show the signal of the liquid-gas phase transition
most clearly. Therefore, the judgment should be done with the
constant pressure caloric curve, not with the constant volume
caloric curve.

Constant pressure caloric curves can also be constructed
from our results as follows. After the evaluation of all the
ensembles {E,V,A}, we eventually know the temperature
and the pressure at each lattice point on the E-V plain
indicated by circles in Fig. 4. From these results, we can
draw constant pressure lines on the E-V plain by performing
the transformation between volume V and pressure P with
the interpolation at each energy E. The obtained constant
pressure lines are shown in Fig. 4. The relation between
energy E and temperature T along these constant pressure
lines corresponds to the constant pressure caloric curves. These
caloric curves should not be confused with the caloric curves
for the constant pressure ensemble {E,P,A}. The obtained
caloric curves are those calculated from the microcanonical
ensemble {E,VP ,A}, where the volume VP is chosen so that
the ensemble gives a certain pressure P. Figure 5 shows the
constant pressure caloric curves with the pressure P = 0.02,
0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 MeV/fm3

0
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]
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E/A=(3/2)TE*/A=T2/8

T2/13

FIG. 5. (Color online) The constant pressure caloric curves for
the A = 36 system obtained by AMD. The lines correspond to
the pressure P = 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.25,
0.30 and 0.40 MeV/fm3 from the bottom. Statistical uncertainty
is shown by error bars. The curves of E∗/A = T 2/(8 MeV) and
E∗/A = T 2/(13 MeV), and the line of E/A = (3/2)T are drawn for
comparison.

obtained by the above procedure. In each caloric curve with
P <∼ 0.15 MeV/fm3, negative heat capacity is observed clearly,
which is the signal of first order phase transition. For example
at P = 0.05 MeV/fm3, the caloric curve start from E∗/A =
8 MeV and the temperature decreases till the energy of
16 MeV even the system is heated up from 8 to 16 MeV,
and after the energy of 16 MeV, the temperature goes up
with a slope 3/2. By the comparison with the infinite nuclear
matter caloric curves [Fig. 2(b)], the caloric curves with P <

0.20 MeV/fm3 in Fig. 5 can be interpreted as the caloric
curves drawn from the liquid-gas phase coexistence to the pure
gas phase. Figure 6 shows the fragment mass distributions
for the ensembles along the P = 0.05 MeV/fm3 line. Full
lines are the distributions of the fragments identified by the
condition that two nucleons i and j belong to the same cluster
if | 1√

ν
Re(Wi − Wj )| < rclust = 2.5 fm. These distributions do

not necessarily correspond to the fragments which would
be emitted when the container wall is removed. In fact, the
distributions change when rclust is varied. The dashed lines
in Fig. 6 show the fragment mass distributions obtained with
rclust = 3.0 fm. Nevertheless, these distributions are helpful for
the qualitative understanding of the change of the system with
energy increase. When the energy is low (E∗/A = 8 MeV), the
distribution shows U-shape with two peaks so that the typical
configuration at this energy is a large nucleus coexisting with a
few gaseous nucleons. When the energy is increased (E∗/A =
12 ∼ 16 MeV), the peak at the large fragment becomes
smaller and the distribution changes into shoulder-like and
power-low-like shapes. Thus complex configurations with
many intermediate and light mass fragments are typical at these
energies, and the proportion of light fragments increases as
the energy increases (from E∗/A = 12 to 16 MeV). When the
energy is sufficiently high (E∗/A = 20 MeV), the distribution
changes into exponential shape, which can be interpreted as
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FIG. 6. (Color online) The fragment mass distributions along the P = 0.05 MeV/fm3 line. Full lines are the distributions obtained with
rclust = 2.5 fm. Dashed lines are the distributions obtained with rclust = 3.0 fm.

the nucleons are moving almost freely at this energy, although
a few nucleons come close and make compounds with small
probability. The change of the distribution is fully consistent
with the interpretation of the caloric curve, that is, the system
along the P = 0.05 MeV/fm3 line changes from liquid-gas
phase coexistence at low energy to pure-gas phase at high
energy.

The caloric curves in Fig. 5 do not contain the pure liquid
phase because of our choice of the container size rwall � 5 fm.
Nevertheless, we can roughly guess the pure liquid caloric
curve from our result as follows. Diamond marks in the
constant pressure caloric curves for infinite nuclear matter
[Fig. 2(b)] indicate the points corresponding to the density
with rwall = 5 fm. These points are inside of the plateau region,
but are very close to the left edge of the coexistence region.
Furthermore, as is seen in Fig. 2(b), the pure liquid caloric
curves are almost independent of the pressure unless the liquid
is compressed with higher pressure (P > 0.3 MeV/fm3). We
can guess the corresponding line by connecting the leftmost
points of our AMD result and the line can be compared
to the Fermi gas formula E∗/A = aT 2 for excited nuclei.
The pure liquid caloric curve should be slightly left to the
connected line. Thus our AMD result seems to be consistent
with the quantum and fermionic statistics with a reasonable
level density parameter a−1 = 8 ∼ 13 MeV.

If we simply define the critical point as the point where
the negative heat capacity disappears, the critical temperature
and the critical pressure can be estimated as TC ∼ 12 MeV
and PC ∼ 0.20 MeV/fm3, respectively. These values are
lower than those of infinite nuclear matter (TC ∼ 16 MeV
and PC ∼ 0.3 MeV/fm3). The lowering of TC seems to be
reasonable because the existence of the surface for fragments
reduces the interaction energy gain by being fragments (liquid
phase).

C. Check of the theoretical ambiguities

As is mentioned in Sec. IV, the measured temperatures
should be independent of the choice of G-subsystem as far
as the conditions described in Sec. IV are satisfied. This can
be checked by changing the criteria in the definition of G.
In Sec. IV, G-subsystem has been selected as the subsystem

of the nucleons which satisfy ρα � ρG = (1/200)ρ0 and do
not have more than one other nucleon within the distance of
rG = 3 fm.

According to Appendix B, the dependence on ρG and rG

should be weak if only exist. This is actually demonstrated in
Fig. 7 which shows the temperatures obtained with different
choices of parameters (rG and ρG) to select G-subsystem.
The parameters are chosen so that the average number of
nucleons in G-subsystem 〈AG〉 becomes about half and about
a quarter of the original choice. The open points show the
dependence on rG and the solid points show the dependence
on ρG. The temperatures are almost independent of the choice
of the parameters. Only small dependence on the parameters
can be noticed when 〈AG〉 <∼ 1. This is probably because
we measure the temperature by using only the states with
AG > 0 (see Appendix B). Nevertheless, the dependence is
very weak and seen only at low energy and at small volume
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FIG. 7. (Color online) The temperatures obtained with different
parameter sets (rG and ρG) for choosing G-subsystem. The results
of the systems with rwall = 5, 9, 15 fm and E∗/A = 6, 14, 22 MeV
are shown. The abscissa 〈AG〉 is the average number of nucleons in
G-subsystem and the parameters are chosen so that 〈AG〉 becomes
about half and about a quarter of the original choice [rG = 3 fm and
ρG = (1/200)ρ0]. The open points show the dependence of rG and
the solid points show the dependence of ρG, which are connected by
lines to guide eyes. Statistical uncertainty is similar to or smaller than
the size of points.
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FIG. 8. (Color online) The AMD results of the constant pressure caloric curves with P = 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.25,
0.30, and 0.40 MeV/fm3 from the bottom when the coherence time is varied: (a) τ0 = 250 fm/c, (b) τ0 = 1000 fm/c, (c) the same procedure
as in Refs. [30,33].

so that the ambiguity associated with this issue would hardly
affect the obtained results shown in Sec. V B and would not
change the conclusions.

In the current AMD dynamical calculation, the coherence
time τ0 (Sec. III A3) is somehow arbitrary. The above results
(Figs. 3–7) are obtained with the choice τ0 = 500 fm/c. We
should check the robustness of the obtained results against
the arbitrariness of the coherence time. Thus we have done
the calculations with τ0 = 250 and 1000 fm/c. The obtained
constant pressure caloric curves are shown in Figs. 8(a) and
8(b), respectively. Furthermore, we have done the calculation
with another choice of the decoherence process adopted in
Refs. [30,33] and the obtained constant pressure caloric curves
are shown in Fig. 8(c). By the comparison of the diagrams in
Figs. 8 and 5, we notice some change of the leftmost point
of each caloric curve, which can be interpreted as the change
of the level density parameter a for the liquid caloric curve.
This dependence limits the possible range of the coherence
time τ0 when the level density parameter a is known. For
the quantitative discussion of the level density parameter, it is
known that the effects of correlations beyond mean field are
important [50]. In any case, negative heat capacity is observed
in all the caloric curves for a wide range of τ0.

VI. SUMMARY

In this paper, we have constructed the microcanonical
caloric curves of a system with 36 nucleons [(N,Z) =
(18, 18)] using the microscopic time evolution of AMD. We
applied the same AMD model that has been applied to nuclear
reactions successfully.

For the first time as a molecular dynamics calculation for
nuclear systems, we have constructed the constant pressure
caloric curves and found that negative heat capacity appears
there with an appropriate nuclear force (the Gogny force).
Negative heat capacity (backbending) is a specific character
of first order phase transition in finite systems. Thus we
confirm the existence of nuclear liquid-gas phase transition
under the ideal thermal equilibrium condition with AMD.

The obtained fragment mass distributions also support the
existence of the phase transition. We have checked that the
extracted temperature from the ensembles do not change when
different criteria to choose the nucleons for the temperature
measurement are used as long as necessary conditions are
satisfied. We have also checked the obtained conclusions
are insensitive to the theoretical ambiguity, i.e., the coherence
time τ0. The critical temperature and the critical pressure are
estimated as TC ∼ 12 MeV and PC ∼ 0.20 MeV/fm3, but
these values may slightly depend on the choice of τ0. As for
a future study, it is interesting to investigate the dependence
of the backbending and the critical point on the size and the
isospin composition of the system.

We have also shown constant volume caloric curves, but
the signal of the phase transition can not be seen clearly there.
It suggests that it is important to identify the path of caloric
curves drawn on E-V plain when those are constructed from
experimental data to discuss the existence of nuclear liquid-gas
phase transition.
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APPENDIX A: THE MODIFICATION OF THE ENERGY
FOR GASEOUS NUCLEONS

The fragment number NF utilized in this paper is similar
to the one in Ref. [49], but a small modification is introduced.
The fragment number of Ref. [49] was defined as

N (0)
F =

A∑
i=1

I (0)
i , I (0)

i = g(ki)

nimi

, (A1)

where

ni =
A∑

j=1

f̂ij , mi =
A∑

j=1

1

nj

fij , ki =
A∑

j=1

f̄ij , (A2)
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and

f̂ij = F (dij , ξ̂ , â), fij = F (dij , ξ,a), f̄ij = F (dij , ξ̄ , ā),

(A3)

dij = |Re(Zi − Zj )|, (A4)

F (d, ξ, a) =
{

1 (d � a)

e−ξ (d−a)2
(d > a),

(A5)

g(k) = 1 + g0e
−(k−M)2/2σ (A6)

·
ξ a ξ̂ â ξ̄ ā g0 σ M

2.0 0.6 2.0 0.2 1.0 0.5 1.0 2.0 12
. (A7)

In the present study, a gaseous nucleon is counted as a
separate ‘fragment’ for the convenience of the temperature
measurement. We allow a few gaseous nucleons get spatially
close by regarding the nucleon i as gaseous when the number
of the neighboring nucleons including itself

qi =
A∑

j=1

fij (A8)

is less than about three. This description is achieved by defining
the fragment number NF as

NF =
A∑

i=1

Ii , Ii = (1 − w(qi))I (0)
i + w(qi), (A9)

where

w(q) = F
(
q, 1

/
2σ 2

q ,Q
)

(A10)

and the parameters are taken as σq = 0.85 and Q = 2.5. The
newly introduced function w(qi) becomes zero unless q <∼ Q

and the degree of isolation Ii reduces to the original one I (0)
i .

On the other hand, Ii becomes close to one for the nucleons
with qi <∼ Q.

The potential energies between the gaseous nucleons (qi <∼
Q) are also modified in the present study. The term Vmod

of Eq. (5) is introduced for this purpose. The potential
energy between two gaseous nucleons is calculated by folding
the widely spread wave functions with their interaction.
The spread wave function, keeping the centroid position in
coordinate and momentum space same as the original Gaussian
wave function [Eq. (1)], is given by

φi(r; α) =
(

2ν

π (1 + α)

) 3
4

exp

[
− ν

1 + α

(
r − Z′

i√
ν

)2
]

(A11)

Z′
i = ReZi + i(1 + α)ImZi , (A12)

where α is a smearing parameter. By denoting the potential
energy between nucleon i and nucleon j as Vij calculated with
the original Gaussian [Eq. (1)] and Vij (α) calculated with the
smeared Gaussian [Eq. (A11)], Vmod is given by

Vmod =
A∑

i<j

w(qi)w(qj )[−Vij + Vij (α)]. (A13)

The smearing parameter is chosen as α = 3 in order to
reasonably reproduce the binding energies of small nuclei such
as deuteron, triton and 3He in case those stable compounds
are formulated during dynamical processes. The density-
dependent part of the effective interaction is also included
in Vmod with a similar approximation used in the triple-
loop approximation [32]. When we evaluate Vij (α) with the
density-dependent part, we have also modified the density
ρ(r) consistently with the transformation of the wave function
[Eq. (A11)] as

ρ(r; α) =
∫ (

2ν

πα

) 3
2

e−(2ν/α)(r−r′)2
ρ(r′)d3r ′. (A14)

APPENDIX B: TEMPERATURE CALCULATION BY
GASEOUS NUCLEONS

The microcanonical temperature is defined by T −1 =
(∂S/∂E)|V,A. We will show that this quantity can be evaluated
with a good precision by using the average kinetic energy
of a set of nucleons which can be chosen arbitrarily as long
as two conditions are satisfied. The first condition is that the
quantum effect should be negligible for any of these nucleons.
The other condition is that these nucleons have to be chosen
based on only the nucleon spatial coordinates without using
momentum variables. In this section, we name the subsystem
of these nucleons as System 1 and the rest of the system as
System 2.

The microcanonical ensemble {E,V,A} can be divided
into two subensembles: one with the number of nucleons of
System 1 (A1) is larger than zero and the other with A1 = 0.
The density of microstates of the total ensemble is given by
the sum of the microstates of these subensembles:

W (E) = WA1>0(E) + WA1=0(E). (B1)

The constraints on the total volume V and the total nucleon
number A are omitted in this expression and the following for
brevity. The temperature of this ensemble is defined by

1

T
= ∂ ln W (E)

∂E
(B2)

= WA1>0(E)

W (E)

1

TA1>0
+ WA1=0(E)

W (E)

1

TA1=0
, (B3)

where TA1>0 ≡ (∂(ln WA1>0(E)/∂E))−1 and TA1=0 ≡
(∂(ln WA1=0(E)/∂E))−1 are the microcanonical temperatures
of the subensembles of WA1>0 and WA1=0, respectively. The
contribution of the second term of Eq. (B3) may be neglected
if WA1=0(E) is much less than WA1>0(E).

Let us denote the spatial coordinates of nucleons in
System 1 by

R1 = {Re Zi/
√

ν; i ∈ System 1}. (B4)

If the quantum effects are negligible in System 1, the density
of microstates of System 1 under the constraint of the nucleon

014612-11



TAKUYA FURUTA AND AKIRA ONO PHYSICAL REVIEW C 74, 014612 (2006)

positions R1 is given by

W1(E1, R1) = (M/2πh̄2)
3
2 A1

A1! �
(

3
2A1

) (E1 − U (R1))
3
2 A1−1, (B5)

where E1 is the energy of System 1 (excluding the interaction
energy with System 2), U (R1) is the potential energy within
System 1 and M is the nucleon mass. The number of nucleons
A1 is implicitly understood by R1 in the left hand side
and in the following. Under the given condition R1 of the
nucleon positions of System 1, we consider the density of
microstates of System 2, which is denoted by W2(E′

2, R1).
The nucleon positions of System 2 are constrained by the
condition that only the nucleons of R1 belong to System 1 when
the defined algorithm is applied to the total system. System
2 consists of A − A1 nucleons. The energy E′

2 includes the
interaction energy between System 1 and System 2 in addition
to the internal energy of System 2 so that the total energy is
E = E1 + E′

2. The explicit expression for W2(E′
2, R1) is not

necessary. Using the density of microstates of System 1 and
System 2, WA1>0(E) can be given by

WA1>0(E) =
∫ ∫

W1
(
E − E′

2, R1
)
W2

(
E′

2, R1
)
dE′

2dR1,

(B6)

where the integral for R1 also includes the summation over the
various cases of the nucleon number A1 (>0) of System 1.

Let us consider the case that WA1=0(E) is negligible
compared with WA1>0(E) and thus W (E) is approximately
equal to WA1>0(E). Then the microcanonical temperature T
can be calculated by

1

T
 1

TA1>0
= ∂ ln WA1>0(E)

∂E

= 1

WA1>0(E)

∫ ∫
∂ ln W1

(
E − E′

2, R1
)

∂E

×W1
(
E − E′

2, R1
)
W2

(
E′

2, R1
)
dE′

2dR1

=
〈
∂ ln W1(E1, R1)

∂E1

〉
{E,A1>0}

. (B7)

By inserting Eq. (B5) into Eq. (B7), we obtain

1

T


〈 3
2A1 − 1

E1 − U (R1)

〉
{E,A1>0}

=
〈 3

2A1 − 1

K1

〉
{E,A1>0}

, (B8)

where K1 = E1 − U (R1) is the total kinetic energy of Sys-
tem 1. It is also possible to evaluate the same temperature
by

T  2

3

〈
K1

A1

〉
{E,A1>0}

, (B9)

if the nucleons in System 1 follow the Maxwell distribution,
which is usually the case with a good precision. In fact,
when the distribution of the kinetic energy of System 1 is
characterized by the Boltzmann factor e−K1/T0 , Eq. (B8) can
be calculated as〈

3
2A1 − 1

K1

〉
{E,A1>0}

=
∫ (

3
2A1 − 1

)
K

3
2 A1−2

1 e−K1/T0dK1∫
K

3
2 A1−1

1 e−K1/T0dK1

=
(

3
2A1 − 1

)
T

3
2 A1−1

0 �
(

3
2A1 − 1

)
T

3
2 A1

0 �
(

3
2A1

)
= T −1

0 . (B10)

On the other hand, Eq. (B9) can be calculated as

2

3

〈
K1

A1

〉
{E,A1>0}

= 2

3A1

∫
K

3
2 A1

1 e−K1/T0dK1∫
K

3
2 A1−1

1 e−K1/T0dK1

= 2

3A1

T
3
2 A1+1

0 �
(

3
2A1 + 1

)
T

3
2 A1

0 �
(

3
2A1

)
= T0. (B11)

Equation (B8) is derived under the assumption that
WA1=0(E)/W (E) is negligible. If WA1=0(E) is not negligible,
the applicability of Eq. (B8) and Eq. (B9) is questioned
unless TA1>0  TA1=0 is satisfied. If we cannot evaluate TA1=0

practically, Eqs. (B8) and (B9) should be used carefully when
the average number of the nucleons in System 1 is less than
one.
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